QUIZ 2, MTH754A TOTAL MARKS: 3

ROLL NO: NAME:

Instructions:

- (1) You have 10 mins.
- (2) Tick (\checkmark) all correct answers among the options given. Illegible answers will be taken as incorrect.
- (3) Each question carries a $\frac{1}{2}$ mark.
- (4) Do all rough work at the back of this sheet.

Problems:

- Q1. Let \mathcal{F}_1 and \mathcal{F}_2 be two σ -fields on a non-empty set Ω such that $\mathcal{F}_1 \subsetneq \mathcal{F}_2$. Then
 - (a) $\{\mathcal{F}_1/\mathbb{B}_{\mathbb{R}} \text{ measurable functions }\} \supseteq \{\mathcal{F}_2/\mathbb{B}_{\mathbb{R}} \text{ measurable functions }\}$
 - (b) $\{\mathcal{F}_1/\mathbb{B}_{\mathbb{R}} \text{ measurable functions }\} = \{\mathcal{F}_2/\mathbb{B}_{\mathbb{R}} \text{ measurable functions }\}$
 - (c) $\{\mathcal{F}_1/\mathbb{B}_{\mathbb{R}} \text{ measurable functions }\} \subsetneq \{\mathcal{F}_2/\mathbb{B}_{\mathbb{R}} \text{ measurable functions }\}$
- Q2. Let $F : \mathbb{R} \to [0, 1]$ be a distribution function corresponding to a probability measure \mathbb{P} on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$. Then the set of discontinuities of F, i.e. $\{x \in \mathbb{R} : F(x) = F(x-)\}$ is necessarily
 - (a) an empty set.
 - (b) a finite or countably infinite set.
 - (c) a uncountable set.
- Q3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix $p, q \in (1, \infty)$ with p < q. Then
 - (a) $\mathcal{L}^p(\mathbb{P}) \subseteq \mathcal{L}^q(\mathbb{P}).$
 - (b) $\mathcal{L}^p(\mathbb{P}) \supseteq \mathcal{L}^q(\mathbb{P}).$
 - (c) $\mathcal{L}^p(\mathbb{P}) = \mathcal{L}^q(\mathbb{P}).$
- Q4. Let \mathbb{P} be a probability measure on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$. The function $x \in \mathbb{R} \mapsto e^{itx} \in \mathbb{C}$ is in $\mathcal{L}^p(\mathbb{P}; \mathbb{C})$ (a) for p = 1.
 - (b) for $p \in [1, \infty)$.
 - (c) for no values of $p \in \mathbb{R}$.
- Q5. Let $A := [0,1] \cap \mathbb{Q}$, where \mathbb{Q} denotes the set of rationals in \mathbb{R} . Consider the function $f:[0,1] \to \mathbb{R}$ defined as $f(x) := 1_A(x)$. Then f
 - (a) is Riemann integrable as well as Lebesgue integrable.
 - (b) is Riemann integrable, but not Lebesgue integrable.
 - (c) is Lebesgue integrable, but not Riemann integrable.
 - (d) is neither Riemann integrable, nor Lebesgue integrable.
- Q6. Consider the following statement: 'Given a Lebesgue-Stieltjes measure μ on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$, there exists a unique distribution function $F : \mathbb{R} \to \mathbb{R}$ such that $\mu((a, b]) = F(b) F(a)$.' This statement is
 - (a) true.
 - (b) false.