QUIZ 3, MTH754A TOTAL MARKS: 3

ROLL NO: NAME:

Instructions:

- (1) You have 10 mins.
- (2) Tick (\checkmark) all correct answers among the options given. Illegible answers will be taken as incorrect.
- (3) Each question carries a $\frac{1}{2}$ mark.
- (4) Do all rough work at the back of this sheet.

Problems:

- Q1. Let F be the distribution function of a real valued random variable. Fix $a, b \in \mathbb{R}$ with a < b. The statement 'The function $x \in [a, b] \to F(x)$ is Riemann integrable' is
 - (a) true.
 - (b) false
- Q2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix $p \in [1, \infty)$. Convergence in $\mathcal{L}^{p}(\mathbb{P})$ implies convergence in $\mathcal{L}^{q}(\mathbb{P})$ for all
 - (a) $q \in [1, p]$.
 - (b) $q \in [p, \infty)$.
 - (c) none of the above.
- Q3. Identify the type of convergences which are metrizable.
 - (a) $\mathcal{L}^p(\mathbb{P})$ convergence for $p \in [1, \infty]$.
 - (b) a.s. convergence.
 - (c) convergence in probability.
 - (d) none of the above.
- Q4. Let X, Y be independent real valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let
 - $f,g:\mathbb{R}\to\mathbb{R}$ be measurable. Then the random variables f(X),g(Y) are
 - (a) independent.
 - (b) not necessarily independent.
- Q5. Let $\{\mathcal{F}_i\}_{i\in\Lambda}$ be an arbitrary collection of σ -fields on a non-empty set Ω . Then the Cartesian product $\prod_{i\in\Lambda} \mathcal{F}_i = \{\prod_{i\in\Lambda} A_i : A_i \in \mathcal{F}_i\}$ is a
 - (a) π -system.
 - (b) σ -field.
 - (c) Monotone class.
- Q6. Let $\{X_n\}$ be an iid sequence of random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Suppose $\mathbb{E}X_1 = 0$ and $Var(X_1) = 1$. Define $X := \lim_n n^{-2}(X_1 + \cdots + X_n)$ ($\stackrel{d}{=}$ denotes equality in distribution). Then

- (a) the limit may not exist and as such, X need not be defined.
- (b) the limit X exists, but can not be determined from the given information.
- (c) $X \stackrel{d}{=} N(0,1).$
- (d) X = 0.

Date: November 15, 2018.