Formamidinium containing tetra cation organic–inorganic hybrid perovskite solar cell

Harish Singh, Pritik Dey, Shovon Chatterjee, Pratik Sen, Tanmoy Maiti

ABSTRACT

ABX₃ perovskites offer the advantage of manipulating its properties by introducing multiple cations in B-site. Over the years, researchers used mixed B-site perovskites in oxide electronics to tune their electrical, magnetic properties. Here we used the triple cations at B-site in formamidinium based organometallic halide perovskite solar cell (PSC) in order to improve its degradation behavior with respect to heat and moisture. We synthesized halide based two hybrid perovskites viz., formamidinium sodium bismuth lead iodide [NH₂CHNH₂(Na₂Bi₂I₆)] and formamidinium potassium bismuth lead iodide [NH₂CHNH₂(K₀.₂₅Bi₂₀.₅₉₃₅₃Pb₀.₇₅₃₅₃)] using solution chemistry. In order to decrease the content of toxic lead in these perovskites, trivalent bismuth was incorporated in the Pb-site. Monovalent sodium and potassium were used to maintain the charge neutrality of B-site, which has the formal valence of + 2 in these ABX₃ type perovskites. Both of these perovskites showed reasonable optical band gaps with good charge carrier lifetime suggesting it as potential candidates for solar energy conversion and provisionally we achieved power conversion efficiency η = 0.52%. Moreover, superior thermal and moisture stability in these perovskites were observed in periodical structural and spectral analysis carried out by XRD, UV–Vis spectroscopy, time-correlated single photon counting (TCSPC) over the period of one month. Furthermore, ultrafast carrier dynamics in these perovskites were unraveled using femtosecond transient absorption studies. Our transient absorption kinetics data suggested more auger recombination and faster free electron-hole recombination process in FKBPBI compared to FNBPI, which corroborates well with better energy conversion efficiency obtained in FNPBI based solar cell.

1. Introduction

Organic inorganic hybrid perovskite (OIHP) solar cells showed such a steep improvement (Grätzel, 2014; McGehee, 2014) in the power conversion efficiency over the last five years, that it is termed as the miracle photovoltaic material. Methylammonium lead halides (Green et al., 2014; Kojima et al., 2009; Lee et al., 2012; Burschka et al., 2013; Liu et al., 2013; Noh et al., 2013; Ball et al., 2013; Malinkiewicz et al., 2014) (MAPbX₃ where X = I, Cl, Br) are the most extensively studied perovskite materials owing to their high efficiency in energy conversion (Stranks and Snaith, 2015), and low fabrication cost. MAPbI₃ exhibits optical direct band gap of 1.55 eV (absorption edge at 800 nm) with the light absorbance in the entire visible spectrum (Jiang et al., 2016). However, considering the toxic and environmentally hazardous nature of lead, it is of prime concern to develop a lead-free perovskite solar cell material. Moreover, these materials suffer from poor moisture as well as thermal stability (Habisreutinger et al., 2014). In the presence of moisture, these materials degrade in the form of yellow PbI₂, which is a carcinogen. Hence the development of novel organometallic halide-based perovskite material is necessary to counter the degradation behavior of perovskite photo absorbers without compromising its high absorption coefficient. It was already reported that the compositional engineering (Comin et al., 2015) at halide site in MAPbX₃ helped in tuning its band gap. Similarly, the replacement at the A site by formamidinium (FA⁻) cation remained one of the most popular choices (Fang et al., 2016; Han et al., 2016; Ma et al., 2017; Weller et al., 2015). The use of FA⁻ results closed pack structure and exhibits lower band gap (Jen et al., 2015) (1.48 eV, absorption edge at 840 nm) compared to that of MAPbI₃. FAPbI₃ exhibits two different phases, α-FAPbI₃ (black) and β-FAPbI₃ (yellow) (Zhou et al., 2016). α-phase exhibits perovskite
structure, whereas δ-phase is a non-perovskite structure. The existence of non-perovskite structure is thermodynamically more stable in ambient atmosphere with high moisture content, whereas the conversion to α-FAPbI₃ happens only at temperature above 140 °C (Jeon et al., 2015; Zhou et al., 2016).

In the present work, we explored the doping route in perovskite structure to stabilize the α-FAPbI₃ phase and studied the effects of compositional modification on its optical absorbance, band gap, ultrafast fluorescence decay kinetics and the degradation behavior. We doped Bi with Na or K in the B site of (FA)PbI₃ perovskite, resulting the stoichiometry of triple cations at B-site i.e. (FA)K₀.₂₅Bi₀.₂₅Pbₐ₀.₅I₃ or FKBPI and (FA)Na₀.₂₅Bi₀.₂₅Pb₀.₅I₃ or FNBPI. In order to substitute Pb, researchers engineered various compounds using metals like bismuth, tin etc (Wei et al., 2016; Pazoki et al., 2016; Ran et al., 2017; Wang et al., 2017; Dey et al., 2018; Pazoki et al., 2016; Noel et al., 2014; Jacobsson et al., 2017; Dey et al., 2018; Pazoki et al., 2016; Ran et al., 2017; Wang et al., 2016). Although the ionic radius of the Bi³⁺ (119 pm) (Shannon, 1976), Bi³⁺ has a lone pair electron similar to Pb²⁺ causing relativistic effect, which stabilizes the perovskite system (Park, 2015). Further, it was reported that incorporation of Na⁺ in the perovskite precursor solution (PbI₂) significantly improved the microstructure of planar heterojunction p-i-n solar cell device (Bag and Durstock, 2016). Moreover, the effects of alkali metal ions are well known for CZTS based thin film solar cell (Steinmann et al., 2016; Haas et al., 2018). Low concentration of sodium helps to passivate the non-radiative defects present as well as grain growth (Gershon et al., 2015; Gershon et al., 2015). In the course of searching a lead-free, stable hybrid solar cell materials. The femtosecond transient absorption technique was used to evaluate ultrafast photinduced processes occurring in the excited states. The understanding of the charge transfer mechanism within perovskite photo absorber remained poor because the photodynamic parameters of these materials at ultrafast time scale have not been fully investigated till date. In the present article, we focused on the long-term stability, moisture sensitivity and better understanding of charge carrier dynamics of these materials.

2. Experimental section

2.1. Materials

Formamidine acetate (99%), Hydroiodic acid (HI, 57 wt% in H₂O, distilled, stabilized, 99.95%), Lead nitrate (Pb(NO₃)₂, 99%), Sodium iodide (NaI, 99.5%), Potassium iodide (KI, 99%) and Bismuth iodide (BiI₃, 99.999%), Titanium(IV) isopropoxide, (99.999%), Fluorine doped tin oxide (FTO) glasses (~13 Ω, TEC15), gold wire (99.99%), anhydrous γ-butyrolactone (GBL), absolute ethanol, Toluene (AR) and diethyl ether (Dry, AR) were purchased. All the reagents except toluene were used without any further purification; Toluene was distilled before use.

2.2. Synthesis of formamidinium iodide (FAI, H₂NCH = NH₂I)

\[\text{H}_₂\text{NCH} = \text{NH}_\cdot\text{CH}_₂\text{COOH} + \text{HI} = \text{H}_₂\text{NCHNH}_₂\text{I} + \text{CH}_₂\text{COOH} \]

FAI was synthesized by reacting HI (33 mL, dropwise) and Formamidine acetate (25 gm) in a 100 mL round bottom flask (RBF) on an ice-water bath with continuous Argon purging and stirring. Temperature was carefully controlled in between 0 and 5 °C. After three hours, the brownish solution was rotary evaporated under vacuum to get viscous brown slurry. Further, it was kept for crystallization. Filtered crystals were washed in diethyl ether. To get extremely pure product, dry crystals were dissolved in warm absolute followed by recrystallized in diethyl ether. Recrystallized product was then dried in vacuum oven at 60 °C for 24 h.
2.3. Lead iodide (PbI\textsubscript{2})

\[
Pb(NO_3)\textsubscript{2} + 2KI = PbI\textsubscript{2} + 2KNO_3
\]

lead iodide was synthesized by reacting Lead nitrate and Potassium iodide in 1:2 M ratios in a 500 mL RBF (aqueous medium). Slightly warm KI (aq) was added slowly to Lead nitrate (aq); bright golden crystals of lead iodide were appeared. Filtered crystals were dried in vacuum oven at 80 °C for 6 h.

2.4. Synthesis of perovskite absorbers

Both FKBPI and FNBPI are reddish crystalline powder. FKBPI was synthesized by mixing 4:2:1:1 equivalent molar ratio of formamidinium iodide, lead iodide, bismuth iodide and potassium iodide in GBL in a double neck round bottom flask (RBF).

\[
4H_\text{NCHNH}_2\text{I} + 2\text{PbI}_2 + \text{BiI}_3 + \text{KI} = 4\text{H}_2\text{NCHNH}_2(\text{K}_0.25\text{Bi}_{0.25}\text{Pb}_0.75)\text{Pb}_0.75\text{I}_3
\]

\[
4\text{H}_2\text{NCHNH}_2\text{I} + 2\text{PbI}_2 + \text{BiI}_3 + \text{NaI} = 4\text{H}_2\text{NCHNH}_2(\text{Na}_0.25\text{Bi}_{0.25}\text{Pb}_0.75)\text{Pb}_0.75\text{I}_3
\]

The RBF was kept on silicone oil bath for 4 hrs. with continuous stirring and Argon purging; temperature of the solution was maintained at 100 °C. Further, the final product was kept in vacuum oven at 60 °C for 24 h. The synthesis procedure for FNBPI was same as above.

All PSC devices were fabricated on FTO coated glass substrates. To clean the FTO glass substrates, these were ultrasonicated with Hellma nex III soap solution (v/v = 2:5:100 in water) for 30 mins in warm condition followed by ultrasonication in isopropyl alcohol and warm acetone–water mixture respectively for 15 mins in each step. Before deposition, FTO substrates were UV – O\textsubscript{3} treated for 30 mins. The TiO\textsubscript{2} sol precursor of the electron transporting layer (ETL) was prepared by using titanium tetra isopropoxide (TTIP) and ethanol (as solvent) in mild acidic condition. A solution consisting of TTIP and Ethanol (TTIP 500 μL in 5 mL of ethanol with 0.01 M HCl) prepared under the continuous vigorous stirring to get transparent sol. The as-prepared TiO\textsubscript{2} sol was then spin coated on substrate at 4000 rpm for 30 s and subsequently sintered for 500 °C for 1 h with heating rate of 5 °C per minute to form a compact layer. For Perovskite active layer, 0.88 M solution of FKBPI and FNBPI was prepared in GBL for the deposition of thin films. Before deposition of perovskite layer, the solution kept overnight at 55 °C. Spin coating of perovskite precursor was performed on preheated ETL layer on FTO glass substrates at 2500 rpm for 30 s. Further, Toluene was deposited just after 10 s of spin. All the thin film samples were annealed at 100 °C for 10 mins. The schematic of the perovskite active layer film deposition was shown in Fig. 1. Finally, gold was deposited by thermal evaporation as counter electrode with thickness of 50 nm.

2.5. Characterisation

X-ray diffraction patterns were collected by PANalytical X’Pert Powder diffractometer with Cu-Kα as incident radiation (λ = 0.154 nm) in the 2θ range between 5° to 55° with step size of 0.01°. All the Field emission scanning electron microscopy (FESEM) images were collected by NOVA NANOSEM 450 machine in secondary electron mode with accelerating voltage of 20 KV. FT-IR experiments were performed in PerkinElmer “Spectrum Two” spectrometer from 450 cm-1 to 4000 cm-1 of IR radiation. UV–Vis spectroscopy measurement was carried out in the range of 400 nm to 800 nm using Cary 7000 model of Agilent Technologies’ UV–Visible spectrophotometer. Fluorescence decays were recorded using a commercial time correlated single photon counting (TCSPC) setup (Life Spec II, Edinburgh Instruments, UK) with excitation by a 442 nm diode laser (EPL-445, Edinburgh Instruments, UK) and the full width at half maxima of the instrument response function (IRF) was about 120 ps. The time-resolved fluorescence was fitted with sum of three exponentials along with the deconvolution with the IRF. Femto-second transient absorption measurements were done in a commercial spectrometer (FemtoFrame-II, IB Photonics, Bulgeria). The fundamental 800 nm light was obtained from a Ti:Sapphire regenerative Amplifier (Spitfire Pro XP, Spectra-Physics) pumped by a 20 W Q-switched Nd:YLF laser (Empower, Spectra Physics) seeded by a Ti:Sapphire femtosecond oscillator (MaiTai SP, Spectra Physics, USA). In our experimental setup the 800 nm amplifier output had 80 fs pulse duration with 1 kHz repetition rate. One part of the fundamental beam was passed through a β barium borate crystal (BBO) to generate the second harmonic (400 nm), which was used as the pump beam. The power of the pump beam was varied from 15 μW to 30 μW by ND filter for power dependence study. The other part of the fundamental light was passed through a delay stage and then focused on a sapphire crystal to generate white
light continuum, and this was used as the probe beam. The pump and probe beam were focused onto the sample maintaining the magic angle condition. The probe light was dispersed in a polychromator, and the signal was detected in a CCD. The instrument response function of this setup is 150 fs. The Photovoltaic device characteristics were measured using a Keithley 2400 source meter under dark and simulated solar light (AM1.5G) using a Newport solar simulator.

3. Results and discussion

It is well known that adding antisolvent on top of the wet perovskite film during spin-coating induces fast crystallization (Xiao et al., 2014; Jeon et al., 2014). Antisolvent drop promotes fast nucleation resulting bigger and uniform grains all over the film. Evaporation of solvent during thin film deposition is critical to obtain uniform and homogeneous surface coverage of perovskite films, desirable for an efficient perovskite solar cell (Jeon et al., 2014; Nie et al., 2015). We have chosen toluene as our antisolvent after deciding the perovskite solvent (γ-butyrolactone, GBL). Perovskite precursors are insoluble in toluene but toluene itself is miscible in GBL. Toluene deposition over both FKBPI and FNBPI perovskite films, has removed excess GBL solvent by introducing heterogeneous nucleation. In order to understand the outcome of antisolvent treatment on the perovskite films, morphology of these perovskite thin films has been evaluated by FESEM images as shown in Fig. 2(a) & (b). Smooth, very uniform, homogeneous mosaic thin film has been observed throughout the FNBPI film after the antisolvent treatment of toluene as evident in Fig. 2(a). On the other hand, ordered 2D perovskite crystals have been found to be uniformly distributed throughout the FKBPI film resulting interlocked microstructure. Although the use of antisolvent has been attributed as the primary reason behind uniform and homogenous films obtained in the present work, it is also plausible that existence of Na\(^{+}\) or K\(^{+}\) in these perovskites promotes the formation of larger grains by acting as additional nucleation sites. It is possible that easy diffusion of smaller ions like Na\(^{+}\) or K\(^{+}\) facilitates in coalescing multiple grains during the solvent annealing process, resulting in the formation of larger grains. Furthermore, elemental color mappings of FNBPI and FKBPI compositions have been carried out by Energy Dispersive X-ray Spectroscopy to check the distributions of constituents in these perovskites. All the constituents such as C, N, Na/K, Pb, Bi and I have been found to be homogeneously distributed as shown in Fig. 2(c) & (d).

The crystal structure has been determined by X-ray diffraction (XRD), performed for as-synthesized thin films of perovskites as shown in Fig. 3(a) & (d) for FNBPI and FKBPI, respectively. Further XRD patterns have been fitted using Le Bail method (Le Bail, 2005) with constant scale factor in order to determine the lattice parameter and the space group of the sample as shown in Fig. 3. The fitted data has been found to be consistent with space group P4\(_{2}\)/mcm with tetragonal unit cell (a = b \(\neq\) c, \(\alpha = \beta = \gamma = 90^\circ\)) for Both FKBPI and FNBPI. Refined structural parameters of FKBPI and FNBPI compositions obtained by Le Bail refinement of XRD data using P4\(_{2}\)/mcm space group are presented in Table 1. The lattice parameters and unit cell volume of FKBPI have been found to be higher than that of FNBPI. It is expected since K\(^{+}\) (138 pm) has larger ionic radius compared to that of Na\(^{+}\) (102 pm).

The compositional engineering provides the freedom to tune the band gap of the material as well. The Na (102 pm) and Bi (103 pm) have comparable ionic radius. However, K has the larger ionic radius (138 pm). Room temperature UV–Vis spectra, shown in Fig. 4(a) have demonstrated high absorption in these perovskites. The absorption
spectra have been recorded from 400 nm to 800 nm. It is evident that both the perovskites have shown excellent absorption up to the 600 nm of visible region of light with high absorption coefficient. Compare to purely lead based perovskite materials, bismuth-based materials absorbed light at the higher energy side of the spectrum which resulted distinct color difference in FNBPI and FKBPI compare to MAPbI$_3$. The estimated absorption coefficient was in the order of 10^5 and the peak absorption occurred at 504 nm. Fig. 4 (b) represents Tauc plot. Optical band gap has been calculated by Tauc plot (Tauc, 1968) using Eqn (5).

$$\alpha \nu = A (\nu - E_g)^n$$

where, A is a constant, α is absorption coefficient and E_g is the energy gap between HOMO and LUMO; the values of n depend on the mode of transitions; here $n = 2$ for allowed direct transition. The band gaps (E_g) of FKBPI and FNBPI have been estimated to be 1.92 eV and 1.86 eV respectively. Although, derived band gap energy values of our materials are higher than the band gap energy of MAPbI$_3$ (1.55 eV) (Park, 2015). The achieved E_g is much lower than the other reported bi-based halide perovskites. The reported bandgap of methylammonium based double perovskite, (MA)$_2$KBiCl$_6$ is 3.04 eV (Wei et al., 2016). Cs$_2$AgBiBr$_6$ and Cs$_2$AgBiCl$_6$ exhibit bandgap of 2.26 eV and 3.0 eV respectively (McClure et al., 2016). There is another report corresponding to the bandgap of Cs$_2$AgBiBr$_6$, Where E_g is 1.95 eV (Slavney et al., 2016). However, the lowest reported bandgap has been 1.86 eV for Cs$_2$Ag(Bi$_{0.625}$Sb$_{0.375}$)Br$_6$.
composition (Du et al., 2017). Although the energy difference between HOMO and LUMO is as high as 3.3 eV, Cs$_2$InAgCl$_6$ double perovskite shows direct transition (Volonakis et al., 2017).

Furthermore, we explored the ultrafast dynamics of both the perovskites by ultrafast optical spectroscopy techniques. The time correlated single photon counting (TCSPC) and femtosecond transient absorption techniques have enabled us to evaluate ultrafast photoinduced processes occurring in the perovskite materials under investigation. The understanding of fundamental photophysical dynamics of these materials is very important to evaluate the potential of new perovskites for solar cell application.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Day 1</th>
<th>τ$_1$ in ns (%)</th>
<th>τ$_2$ in ns (%)</th>
<th>τ$_3$ in ns (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKBPI</td>
<td>0.2</td>
<td>21 (21%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 30</td>
<td>0.2</td>
<td>3.3 (10%)</td>
<td>23 (19%)</td>
<td></td>
</tr>
<tr>
<td>FNBPI</td>
<td>0.2</td>
<td>2.9 (20%)</td>
<td>26 (22%)</td>
<td></td>
</tr>
<tr>
<td>Day 30</td>
<td>0.2</td>
<td>3.1 (16%)</td>
<td>22 (32%)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 depicts the fluorescence transients of FNBPI and FKBPI films, deposited on FTO glass without any ETL. Room temperature photoluminescence spectra of the samples are shown in Fig. S1 of the SI. To determine the relative concentrations of the extracted and recombined charge carriers and their respective lifetimes, the fluorescence transients have been fitted to tri-exponential function along with the deconvolution with the IRF by iterative re-convolution method. The fitting lines are shown in Fig. 5 and the fitting parameters are tabulated in Table 2. The most exciting thing about these perovskites is their 30th day carrier lifetimes measured after keeping both the films in ambient atmosphere for one month. They have demonstrated remarkable moisture resistance behavior.

The sub nanosecond component of 0.2 ns in both FKBPI and FNBPI is a quenching component, mainly arising due to the formation of deep traps upon bismuth incorporation within the crystal (Yin et al., 2019; Harikesh et al., 2018). The lifetime component around 3 ns is assigned for the excitonic recombination (Begum et al., 2017; Yang et al., 2017; Peng et al., 2017) while the long component over 25 ns is the result of carrier recombination via the surface trapping sites (Begum et al., 2017; Yang et al., 2017). The formation of deep traps within the crystal upon...
bismuth insertion originates because of inertness of the 6 s orbital of the bismuth that leads to weak interaction with the halide ions (Harikesh et al., 2018). These deep traps restrict the charge carrier mobility and affects the solar cell performance. In the present investigation, this quenching component arising because of charge carrier trapping within the deep traps has been found to persist in both FKBPI and FNBPI. The relative contribution of trapping transfer process in FKBPI is higher than in FNBPI. Relatively lower contribution of trapping process in FNBPI than FKBPI also indicates the probability of favorable passivation of deep traps by sodium than potassium which makes FNBPI superior candidate for solar cell. However, the interaction of potassium and sodium with the deep traps within the lattice needs further studies. To check the stability issue, time resolved studies have been carried out for both FKBPI and FNBPI, which shows almost unaltered average lifetime, and confirms that both the thin films are stable in open atmosphere.

To gain a better understanding of the sub-nanosecond carrier dynamics femtosecond transient absorption studies for both FKBPI and FNBPI have been performed, which are depicted in Fig. 6. A broad photo induced absorption (PIA) around 520 to 750 nm has been observed for both the samples upon excitation at 400 nm (25 \(\mu \)W pump power). Furthermore, 620 nm transients of FNBPI and FKBPI thin films have been collected with 25 \(\mu \)W pump power, which have been found to be best fitted with a three-exponential function as shown in Fig. 7 and the fitting results are tabulated in Table 3. The short time component of few ps has been assigned to the auger recombination process (Li et al., 2020). It has been anticipated that 50 ps time component is due to the trapping of charged carrier by the deep trapping site within the lattice and further longer time component has been attributed to the free charge carrier recombination (Begum et al., 2017; Sum et al., 2016; Sheng et al., 2015; Deng et al., 2016). As the time window of our measurement is 1800 ps, we could not be accurate for the exact time constant beyond that. It is also evident from Table 3 that the third lifetime component decreases significantly from FNBPI (1445 ps, 34%) to FKBPI (1176 ps, 21%), which signifies that the free electron-hole recombination process become much faster. This also indicates that FNBPI thin film should be superior as a solar cell material than FKBPI thin film.

Moreover, we performed a pump power dependence measurement of FNBPI dynamics to have a better understanding of the various recombination processes. Usually at low carrier density, the auger process (which are not unimolecular) are expected to contribute less in the overall relaxation process and under a high pump power, the carrier density is expected to increase (Sum et al., 2016; Sheng et al., 2015; Deng et al., 2016; Piatkowski et al., 2015). Our pump power dependence study has further validated this, where the contribution of the fast decay component was seen to increase from 1% to 40% by increasing the pump power from 15 \(\mu \)W to 30 \(\mu \)W, as depicted in Fig. 7e to 7f. Furthermore, there is no noticeable change in the TA spectra at the higher pump powers with a broad PIA around 520 nm to 750 nm as shown in Fig. S2. On the other hand, the slow component is found to be inversely proportional to the pump power, which confirms that its origin is free electron-hole recombination process as favourable higher-molecular recombination process results in decrease in the contribution of the free electron hole recombination.

3.1. Device characterization

Optical properties and the morphology of the photo absorber material are the two important key factor that determines the efficiency of thin film based perovskite solar cells. To determine the photovoltaic properties of tetra cation based perovskite active layer, we have fabricated the device with conventional n-i-p configuration as also shown in Fig. 8. The current density-Voltage (J-V) measurements of both the potassium and sodium based formamidinium perovskite are determined as FF = 0.52%; whereas that for FKBPI are measured as FF = 0.37, \(\eta = \frac{V_{oc} \times J_{sc} \times \text{FF}}{P_{in}} \), and the devices measured are listed in the Table S1 in Supporting Information. The photovoltaic parameters of the best performance device of FNBPI perovskite are determined as FF = 0.35, \(V_{oc} = 0.35 \), \(J_{sc} = 4.23 \text{ mA cm}^{-2} \) and \(\eta = 0.52\% \) whereas that for FKBPI are measured as FF = 0.37, \(V_{oc} = \)

Table 3

Fitting parameters of TA kinetics at 620 nm of FNBPI and FKBPI. Contributions of the processes are given in parenthesis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Power of Pump ((\mu)W)</th>
<th>(\tau_1) in ps (%)</th>
<th>(\tau_2) in ps (%)</th>
<th>(\tau_3) in ps (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNBPI</td>
<td>15</td>
<td>0.3 (1%)</td>
<td>41 (52%)</td>
<td>1746 (47%)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.1 (11%)</td>
<td>54 (41%)</td>
<td>1644 (48%)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.7 (25%)</td>
<td>42 (41%)</td>
<td>1445 (34%)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.1 (40%)</td>
<td>49 (36%)</td>
<td>1565 (24%)</td>
</tr>
<tr>
<td>FKBPI</td>
<td>25</td>
<td>5.9 (37%)</td>
<td>65 (42%)</td>
<td>1176 (21%)</td>
</tr>
</tbody>
</table>

Fig. 8. Schematic device architecture of fabricated solar cell device.
Further we compare our device performance with Bi-based PSCs reported in the literature. Table 4 shows the various recombination pathways which therefore leads to low photocurrent and photovoltage (Park et al., 2015). Moreover, the solar cell performance does not solely depend on the material. For an efficient charge extraction, there should be no recombination at the interfaces of ETM/Active layer what we are using here as ETM is compact layer TiO$_2$ meso. This increased number of band gap states may contribute to the various recombination pathways which therefore leads to low photocurrent and photovoltage. Nevertheless, high photo current (4.23 mA/cm2) obtained in FNBPI shows its potential for developing advanced photodetector.

![Fig. 9. J-V curve of FNBPI under reverse bias condition.](image)

Table 4

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Device architecture</th>
<th>Processing Method</th>
<th>V$_{oc}$ (V)</th>
<th>J$_{sc}$ (mA/cm2)</th>
<th>FF</th>
<th>PCE (%)</th>
<th>Ref No. (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Spin-coating</td>
<td>0.45</td>
<td>0.11</td>
<td>0.459</td>
<td>0.022</td>
<td>(Lan et al., 2019)</td>
</tr>
<tr>
<td>2.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Chemical Vapor Deposition</td>
<td>0.40</td>
<td>0.11</td>
<td>0.36</td>
<td>0.016</td>
<td>(Sanders et al., 2018)</td>
</tr>
<tr>
<td>3.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/P3HT/Ag</td>
<td>Spray deposition</td>
<td>0.214</td>
<td>2.33</td>
<td>0.33</td>
<td>0.17</td>
<td>(Mohammad et al., 2019)</td>
</tr>
<tr>
<td>4.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/P3HT/Ag</td>
<td>Spin-coating</td>
<td>0.588</td>
<td>1.18</td>
<td>0.48</td>
<td>0.33</td>
<td>(Li et al., 2019)</td>
</tr>
<tr>
<td>5.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/P3HT/Ag</td>
<td>Spin-coating</td>
<td>0.68</td>
<td>0.52</td>
<td>0.33</td>
<td>0.12</td>
<td>(Park et al., 2015)</td>
</tr>
<tr>
<td>6.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Spin-coating</td>
<td>0.72</td>
<td>0.49</td>
<td>0.32</td>
<td>0.11</td>
<td>(Abulkikem et al., 2016)</td>
</tr>
<tr>
<td>7.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/P3HT/Au</td>
<td>Spin-coating</td>
<td>0.35</td>
<td>1.16</td>
<td>0.46</td>
<td>0.19</td>
<td>(Lyu et al., 2016)</td>
</tr>
<tr>
<td>8.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Spin-coating</td>
<td>0.56</td>
<td>0.83</td>
<td>0.48</td>
<td>0.26</td>
<td>(Singh et al., 2016)</td>
</tr>
<tr>
<td>9.</td>
<td>ITO/PEDOT:PSS/ (MA)$_3$Bi$_2$I$_9$/C60/BCP/Ag</td>
<td>Evaporation</td>
<td>0.83</td>
<td>1.39</td>
<td>0.34</td>
<td>0.39</td>
<td>(Ran et al., 2017)</td>
</tr>
<tr>
<td>10.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Spin-coating</td>
<td>0.87</td>
<td>1.6</td>
<td>0.34</td>
<td>0.41</td>
<td>(Ahmad et al., 2019)</td>
</tr>
<tr>
<td>11.</td>
<td>ITO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/MoS$_2$/Ag</td>
<td>Spin-coating</td>
<td>0.67</td>
<td>1.00</td>
<td>0.62</td>
<td>0.42</td>
<td>(Zhang et al., 2016)</td>
</tr>
<tr>
<td>12.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Vacuum deposition</td>
<td>0.83</td>
<td>3.00</td>
<td>0.79</td>
<td>1.64</td>
<td>(Zhang et al., 2017)</td>
</tr>
<tr>
<td>13.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ (MA)$_3$Bi$_2$I$_9$/spiroMeOTAD/Au</td>
<td>Vacuum deposition</td>
<td>1.01</td>
<td>4.02</td>
<td>0.78</td>
<td>3.17</td>
<td>(Jain et al., 2018)</td>
</tr>
<tr>
<td>14.</td>
<td>FTO/TiO$_2$/meso-TiO$_2$/ FNBPI/Au</td>
<td>Spinning</td>
<td>0.35</td>
<td>4.23</td>
<td>0.35</td>
<td>0.52</td>
<td>Current Work</td>
</tr>
</tbody>
</table>

0.05, J$_{sc}$ = 8.68 mAcm$^{-2}$ and η = 0.16%. The higher J$_{sc}$ values of FNBPI compared to FKBPI absorber layers corroborate well with our observation of faster recombination process of FKBPI compared to FNBPI in transient absorption kinetics study as discussed above. Also the FNBPI active layer shows more compact morphology (Fig. 2) due to addition of sodium at B site of the perovskite, which also helped in ameliorating the device efficiency by three times as compared to the FKBPI based device.
3.2. Degradation study

We have further recorded the degradation behavior of the perovskite films kept in the ambient condition by using TGA-DSC study, X-ray diffraction patterns and UV–Vis absorption spectra as shown in Fig. 10. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed simultaneously in the temperature range from room temperature to 850 °C to evaluate thermal stability of these perovskites as depicted in Fig. 10 (a) & (b).

TGA graph shows rapid decrease in weight from 270 °C and 290 °C in FNBPI and FKBPI respectively. It is expected since melting point of FAI is 242 °C. At around 500–550 °C almost 75% weight loss has been observed mainly due to PbI₂ and BiI₃ (BP. 542 °C) as their melting point lies at 402 °C and 408.5 °C, respectively. And 90% weight loss has been found to be occurred at around 700 °C because of sodium iodide (MP. 661 °C) and potassium iodide (MP. 681 °C). TGA plot suggests that there has been less than 1% decomposition in the temperature range up to 233 °C and 252 °C in FNBPI and FKBPI, respectively. Similarly, almost no change has been observed in the DSC curve until 220 °C and 230 °C in FNBPI & FKBPI respectively. TGA-DSC studies suggests that both the perovskite materials are stable up to 230 °C at least. In order to evaluate stability of the perovskite films in ambient condition, same thin film samples have been used for characterization throughout the experiments. However, there is no notable sign of degradation even after 15th day in the XRD profile of both perovskites as illustrated in Fig. 10 (c) & (d), suggesting superior resistance to moisture compare to its predecessors. Furthermore, UV–Vis spectra have demonstrated that not much changes in their respective absorption spectra except certain decrease in the overall absorption coefficient. Both these perovskites have exhibited strong optical absorption even after two weeks as stated in Fig. 10(e) & (f). The superior moisture resistance can be attributed to the high relativistic effect of bismuth. Due to relativistic effect, the s
orbital electrons are forced to become closer to the nucleus while the d and f orbital electrons are moved away. As a result, oxidation resistance increases for the element having relativistic effect (Bartlett, 1998), which is the consequence of high atomic number (Z) elements. Sn (Z = 50) experiences less relativistic effect compared to Pb (Z = 82). That’s why Sn gets readily oxidized into Sn2+. On the contrary, due to the large relativistic effect of Bi (Z = 83), it can be considered as a potential replacement of Pb in the PSC with better stability.

4. Conclusions

In summary, we have synthesized highly crystalline NH2C2H5NH3(Bi2/3Sn1/3)2(IBr)1/3 aha. FKBP and NH2C2H5NH3(Na2.25Bi0.25) Pb0.5I3 aka. FNBP perovskites with tetragonal crystal structure. UV–Vis spectra revealed high absorption in these perovskites with estimated band gap of 1.92 eV and 1.86 eV for FKBP and FNBP, respectively. Further, we studied a detailed photophysical processes in FNBP and FKBP thin films through TCSPC and f-TAS techniques. Average charge carrier lifetimes are estimated as 1.92 ns and 3.99 ns for FKBP and FNBP thin films, respectively even after keeping these perovskites at ambient atmosphere for 30 days. Our periodic XRD pattern and 2D XRD pattern show that the FKBP and FNBP thin films were polycrystalline perovskites having potassium compared to sodium. Although provision of Sodium as a Surfactant and Suppressor of Non-Radiative Recombination at External Surface in CsPbX3, Adv. Energy Mater. 5 (2), 14008-14019.

