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INTRODUCTION 

 

Genetic Algorithm has been developed by John Holland, his colleagues and his students at the 

University of Michigan in 1975. The book named “Adaptation in Natural and Artificial Systems” was 

the first by them that discusses GA. 

Genetic Algorithms are search algorithm based on mechanics of natural selection and natural 

genetics. They combine survival of the fittest among string structures with a structured yet 

randomized information exchange to form a search algorithm with some of the innovative flair of 

human touch. In every new generation a new set of strings is created using bits and pieces of fittest 

of the old. While randomized, genetic algorithms are no simple random walk. They efficiently exploit 

historical information to speculate on new search points with expected improved performance. 

The Central theme of research on genetic algorithms has been robustness the balance between 

efficiency and efficacy necessary for survival in many different environments. Genetic Algorithms are 

theoretically and empirically proven to provide robust search in complex spaces. These algorithms 

are computationally simple and yet powerful in their search for improvement.  

The key features of GAs are: 

1. GAs work with a coding of the parameter set and not the parameter themselves. 
 

2. GAs search from a population of points and not from a single point. 
 

3. GAs use objective function information and not derivatives or other auxiliary knowledge. 
 

4. GAs are probabilistic transition rules and not deterministic rules. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 



Algorithm 
 
There are four major steps in which Genetic Algorithm works 

 Selection 

 Reproduction  

 Crossover  

 Mutation  

Stopping Criteria: We need to provide a stopping criteria like the minimum final tolerance in the 

function or the total time the GA runs or the total number of generations. 

In our main problem statement, we have provided both minimum tolerance(=10^-6) and the 

maximum number of generations to be 400. 

For the purpose of explaining the different parts of GA we have considered a problem statement and 

written code to explain different parts of the GA. 

We have considered a simple problem in order to explain functioning of GA in optimization, i.e.  

x(1)^2-x(2)^2-5.13 
 

and the fitness function considered is…….. 

fitness function =1/abs((x(1)^2-x(2)^2-5.13)) 
 

INITIAL POPULATION 

Initially many individual solutions are randomly generated to form an initial population. The 

population size depends on the nature of the problem, but typically contains several hundreds or 

thousands of possible solutions. Traditionally, the population is generated randomly, covering the 

entire range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in 

areas where optimal solutions are likely to be found. 

To generate population of 10 strings and take transpose so that each column represent the string 

that we have randomly chosen. 

function y=generation() 
x1=[]; 
for i=1:10 
    x1=[x1;generate()];%8cross10 
end 
x1=transpose(x1);%10cross8 
 
Where generate function is… 
 
function y=generate() 
for j=1:8 
   if(rand>0.5) 



       x1(j)=1; 
   else 
       x1(j)=0; 
   end 
end 
y=x1; 
end 
 
It gives us a string of eight bit and assigning either 0 or 1 to it.. 
 
  initial_generation = 
 
     1     1     0     1     1     0     1     0 
     0     1     1     1     1     0     1     1 
     1     1     1     0     1     0     1     0 
     0     0     0     1     1     0     1     0 
     0     0     1     1     0     0     0     1 
     1     1     0     1     1     0     0     0 
     1     0     1     0     1     0     1     1 
     1     1     1     0     0     0     1     0 
     1     0     1     0     0     0     1     0 
     0     1     1     1     1     0     1     1 
 

SELECTION 

During each successive generation, a proportion of the existing population is selected to breed a 

new generation. Individual solutions are selected through a fitness based process, where 

fitter solutions (as measured by a fitness function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and preferentially select the best solutions. Other 

methods rate only a random sample of the population, as this process may be very time-consuming. 

Most functions are STOCHASTIC and designed so that a small proportion of less fit solutions are 

selected. This helps keep the diversity of the population large, preventing premature convergence 

on poor solutions. Some of the SELECTION methods are as follows: 

Roulette Wheel Selection 

It works on the concept of the game Roulette. Under this game each individual gets a slice of the 

wheel, but more fit ones get larger slices than less fit ones. The wheel is then spun, and whichever 

individual "owns" the section on which it lands each time is chosen. A form of fitness-proportionate 

selection in which the chance of an individual's being selected is proportional to the amount by 

which its fitness is greater or less than its competitors' fitness.  

Scaling Selection 

 As the average fitness of the population increases, the strength of the selective pressure also 

increases and the fitness function becomes more discriminating. This method can be helpful in 



making the best selection later on when all individuals have relatively high fitness and only small 

differences in fitness distinguish one from another. 

Tournament Selection 

Subgroups of individuals are chosen from the larger population, and members of each subgroup 
compete against each other. Only one individual from each subgroup is chosen to reproduce. 

Rank Selection 

Each individual in the population is assigned a numerical rank based on fitness, and selection is 
based on these ranking rather than absolute differences in fitness. The advantage of this method is 
that it can prevent very fit individuals from gaining dominance early at the expense of less fit ones, 
which would reduce the population's genetic diversity and might hinder attempts to find an 
acceptable solution. 

Hierarchical Selection 

Individuals go through multiple rounds of selection each generation. Lower-level evaluations are 
faster and less discriminating, while those that survive to higher levels are evaluated more 
rigorously. The advantage of this method is that it reduces overall computation time by using faster, 
less selective evaluation to weed out the majority of individuals that show little or no promise, and 
only subjecting those who survive this initial test to more rigorous and more computationally 
expensive fitness evaluation. 

REPRODUCTION 

Reproduction is a process in which individual strings are copied according to their objective function 

values that is f. We can call this function as Fitness Function. 

In other way around we can think this as some measure of profit, utility or goodness that we want to 

maximize. Here fitness values of string signifies that  

Strings with a higher value of would have higher probability of contributing one or more offspring to 

next generation . This operator is an artificial version of natural selection. The reproduction operator 

may be implemented in algorithmic form in a number of ways . We have used the concept of 

Roulette wheel here, where each current string in the population has a roulette wheel slot size in the 

proportion to its fitness. 

Each time we require another offspring , a simple spin of the weighted roulette wheel yields the 

reproductive candidate. In this way, more highly fit springs have a higher number of offspring in the 

succeeding generation . Once a string has been selected for replica this string is then entered in to a 

mating pool , a tentative new population for further operator action. 

Program for selection … 

Here x1 is a 10 cross 8 array. Where each column is the string that we have randomly generated.  

Convert is a function that converts the binary to decimal by breaking it into two 4 bit string and 

calculating its decimal value. So our range of solution space is from 0 to 15. 



%binary is 2cross1 
binary1=convert(x1(1:8)); 
binary2=convert(x1(9:16)); 
binary3=convert(x1(17:24)); 
binary4=convert(x1(25:32)); 
binary5=convert(x1(33:40)); 
binary6=convert(x1(41:48)); 
binary7=convert(x1(49:56)); 
binary8=convert(x1(57:64)); 
binary9=convert(x1(65:72)); 
binary10=convert(x1(73:80)); 
%main gives scalar 
 
Fitness is calculated by passing the values to the main function where values are inserted in actual 
equation ,error is calculated and so the fitness value, which is returned back. 
 
 
fitness1=[main(binary1); main(binary2);main(binary3); main(binary4); main(binary5); main(binary6); 
main(binary7); main(binary8); main(binary9); main(binary10)]; 
 
Roulette Selection is used to select the string which will go for the Reproduction . So, probability of 
each of the 10 strings are calculated that will undergo Reproduction on the basis of their fitness 
value. Using Random value and passing it down to different sets of condition we find the string 
which will undergo Reproduction. Also, those strings which are selected for Reproduction are stored 
in matrix named next.  
 
sum=0; 
for i=1:10 
    sum=sum+fitness1(i); 
end 
sum 
probability=[];%10cross1 
probability(1)=fitness1(1)/sum; 
for i=2:10 
    probability(i)=probability(i-1)+fitness1(i)/sum; 
end 
next=[];%8cross10 after selection 
for i=1:10 
   r=rand; 
    if(rand<probability(1)) 
            next=[next;x1(1:8)]; 
    elseif(rand<probability(2)) 
            next=[next;x1(9:16)]; 
    elseif(rand<probability(3)) 
            next=[next;x1(17:24)]; 
    elseif(rand<probability(4)) 
            next=[next;x1(25:32)]; 
    elseif(rand<probability(5)) 
            next=[next;x1(33:40)]; 
    elseif(rand<probability(6)) 
            next=[next;x1(41:48)]; 



    elseif(rand<probability(7)) 
            next=[next;x1(49:56)]; 
    elseif(rand<probability(8)) 
            next=[next;x1(57:64)]; 
    elseif(rand<probability(9)) 
            next=[next;x1(65:72)]; 
    elseif(rand<probability(10)) 
            next=[next;x1(73:80)]; 
    end 
end 
initial_generation=transpose(x1);%8 cross 10  // Row represent string  
after_selection=transpose(next);%10 cross 8   // Column represent string 
  
after_select=next;   // Finally String undergoing Reproduction is stored 
 
after_select = 
 
     1     1     1     0     1     0     1     0 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     1     1     0     1     1     0     0     0 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     1     1     0     1     1     0     0     0 
     1     1     1     0     1     0     1     0 
 
 
 
 
 

 
Pie chart representing the probability distribution in the Roulette Selection. 



CROSSOVER 

After reproduction, simple crossover may proceed in two steps. First each member of the newly 

reproduced strings in the mating pool is mated at random. Second, each pair of strings undergoes 

crossing over as follows. An integer position k along the string is selected uniformly  at random 

between 1 and the string length less one [1 , l – 1]. Two new strings are created by swapping all 

characters between k+1 and l inclusively. 

Here we crossover the selected strings using the above formulae and rest of the strings are directly 

inherited in the matrix. 

%let crossover probability be 80% 
cross=[];%8crossn stores the strings selected for the crossover 
count=0;%counts the length of crossover strings 
set=[];%takes care of the indexes of the strings not chosen for crossover 
for i=1:10 
    if(rand<=0.8) 
        cross=[cross;after_selection((8*i-7):8*i)]; 
        count=count+1; 
    else 
        set=[set;i]; 
    end 
end 
rest=[]; 
for i=1:length(set) 
    rest=[rest;after_selection((8*set(i)-7):8*set(i))]; 
end 
%rest 
%cross_selected=transpose(cross); 
%cross 
tran_cross=transpose(cross);%ncross8 
count1=[0 0 0 0 0]; 
%CROSSOVER 
comb1=[]; 
c1=greatest_integer(count/2); 
if(c1<count/2) 
    comb1=[tran_cross((8*count-7):8*count)]; 
end 
for i=1:2:(count-1) 
    r=rand*8; 
    great_int=greatest_integer(r); 
    temp1=tran_cross((8*i-7):(8*(i-1)+great_int)); 
    temp2=tran_cross((8*i-7+great_int):8*i); 
    temp3=tran_cross((8*(i+1)-7):(8*i+great_int)); 
    temp4=tran_cross((8*(i+1)-7+great_int):8*(i+1)); 
    crossover_d11=[temp1 temp4]; 
    crossover_d12=[temp3 temp2]; 
    comb1=[comb1;crossover_d11;crossover_d12]; 
end 
after_crossover=[rest;comb1]; 
 



Where greatest_integer function is… 
 
function g=greatest_integer(A) 
g=A-mod(A,1); 
end 
 
after_crossover = 
 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     1     1     1     1     0     0     0     1 
     0     0     1     0     1     0     1     0 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     0     0     0     1     1     0     0     0 
     1     1     1     1     0     0     0     1 
     1     1     1     0     1     0     1     0 
     1     1     0     1     1     0     0     0 
 
 

MUTATION 

Mutation adds new information in a random way to the genetic search process and ultimately helps 

to avoid getting trapped at local optima. 

Mutation in a way is the process of randomly disturbing genetic information. They operate at the bit 

level; when the bits are being copied from the current string to the new string, there is probability 

that each bit may become mutated. This probability is usually a quite small value, called as mutation 

probability. A coin toss mechanism is employed; if random number between zero and one is less 

than the mutation probability, then the bit is inverted, so that zero becomes one and one becomes 

zero. This helps in introducing a bit of diversity to the population by scattering the occasional points. 

This random scattering would result in a better optima, or even modify a part of genetic code that 

will be beneficial in later operations. On the other hand, it might produce a weak individual that will 

never be selected for further operations. 

Mutation value is taken as 0.01 and using the random value we  change the value of the binary digit 
if probability allows to do so. 
 
 
%MUTATION     
changes=0; 
for i=1:length(after_crossover) 
    if(rand<0.01) 
        after_crossover(i)=invert(after_crossover(i)); 
        changes=changes+1; 
    end 
end 
after_mutation=after_crossover; 
initial_generation 
after_select 



after_crossover 
after_mutation 
changes%gives number of changes 
initial_fitness=sum; 
initial_fitness 
final_fitness=fitness(after_mutation); 
final_fitness 
end 
 
after_mutation = 
 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     1     1     1     1     0     0     0     1 
     0     0     1     0     1     0     1     0 
     0     0     1     1     0     0     0     1 
     0     0     1     1     0     0     0     1 
     0     0     0     1     1     0     0     0 
     1     1     1     1     0     0     0     1 
     1     1     1     0     1     0     1     0 
     1     1     0     1     1     0     0     0 
 
 
changes = 0 
 
initial_fitness =  0.4753 
final_fitness = 1.4484 

 
 

MAIN PROBLEM STATEMENT 
 

The main problem statement which we are going to present is taken from the research paper “The 
application of Genetic Algorithm (GA) to estimate the rate parameters for solid state reduction of 
iron ore in presence of graphite”. GA’s have found their application in many diverse fields like 
physics, astronomy, finance, chemistry, etc. Here, we have applied GA to estimate the various rate 
parameters using experimental data and compared the results with those values presented in the 
literature. The reduction of hematite to iron has been considered to occur in three sequential steps 
namely as: 
 
(i) Hematite (Fe2O3) to Magnetite (Fe3O4), 
3Fe2 O 3 + CO = 2Fe3O4 + CO2  
 
(ii) Magnetite (Fe3O4) to Wustite (FeO), 
Fe3O4 + CO = 3FeO + CO2  
 
(iii) Wustite (FeO) to Iron (Fe), 
FeO + CO = Fe + CO2 

 

Mass balance equations were assumed to follow the first order kinetics.  



 
  

  
          ( 

  

  
) 

  

  
              ( 

  

  
)          ( 

  

  
) 

  

  
               ( 

  

  
)          ( 

  

  
) 

  

  
               ( 

  

  
) 

Where, H,M,W represent the concentrations of hematite, magnetite and wustite at time t 
respectively.  
The unknown parameters are three rate constants: kh, km, kw and activation energies, Eh, Em and 
Ew which we are going to find using GA and experimental data. The parameter which is measured 
using the experiment is defined as the degree of reduction coefficient which is found by using the 

formula :    (    )  
  

(      )
    , where Wh is the total weight of hematite at time t,    is the 

loss in weight of the packed bed and Z is the exit gas composition, i.e., CO/CO2 ratio. 
 
The predicted values of degree of reduction have been obtained from the respective rates of 
hematite, magnetite, and wustite, as follows: 
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Where, S0 gives the total concentration of oxygen consumed in time   , and 936 kg/m3 is the total 
removable oxygen. H, M and W can be found from the experimental graph of the concentration 
versus time graph. GA has been used to find the unknown parameters by minimizing the error 
between the experimental and predicted values of the degree of reduction. We have used a double 
vector to generate the populations.  GA parameters used by us are: 
 

 Fitness function: 1/(      ) 
 

 Generations: 400 

 

 Mutation Probability: 0.01 

 

 Cross over probability: 0.8 

 

 Selection technique: Tournament selection 

 

 Range at 1000oC: for kh (s-1), km(s-1), kw(s-1), Eh (KJ/mol), Em (KJ/mol), Ew (KJ/mol) is resp: 

 

[10^14,10^18], [10^12,10^17], [10^10,10^12], [100,600], [150,600], [175,600] 

 

 The total time chosen is 4800 s. and the initial values of H, M and W are 3100, 0 and 0 

respectively (from graph): 



 
Evaluation of concentration of various iron oxide phases as well as pure iron during packed bed reduction of 

iron ore – graphite composite pellets under argon atmosphere at 1000
0
C   

 

We made the following code to write the fitness function using MATLAB: 

function z=solve2(y) 
b1=y(1)*exp(-y(4)/10583.722); 
b2=y(2)*exp(-y(5)/10583.722); 
b3=y(3)*exp(-y(6)/10583.722); 
h=3100*exp(-b1*1300); 
m=0.97*3100*b1*(exp(-b1*4800)-exp(-b2*4800))/(b2-b1); 
w=0.93*b2*0.97*3100*((exp(-b1*4800)-exp(-b3*4800))/(b3-b1)-(exp(-b2*4800)-exp(-b3*4800))/(b3-b2))/(b2-
b1); 
ht=-h*b1; 
mt=0.97*h*b1-m*b2; 
wt=0.93*m*b2-w*b3; 
S0=0.033*(h-3100)+0.068*m+0.222*w; 
z=1/(0.62-((S0+(0.033*ht+0.068*mt+0.222*wt)*4800)/936)); 
end 

The code was run using the in-built function of MATLAB – ga. The GUI interface was used and the 

conditions were inserted and the code was run for 400 generations. The results found were: 

  Kh    (s-1) Km     (s-1) Kw     (s-1) Eh  
(KJ/mol) 

Em 
(KJ/mol) 

Ew 
(KJ/mol) 

GA 3.944*10^17 9.705*10^16 3.973*10^11 188.1611 393.6013 321.0304 

literature 6.00*10^17 7.50*10^16 1.70*10^11 380 410 330 



 

The results show quite a good agreement despite of several minor changes in the problem as 

mentioned below. 

Sources of errors in our calculation are: 

• The mutation probabilities are not the same as used in the paper. 

• The conditions mentioned in the problem is slightly varied like the elitism is not considered, 

the range is not the same as in the paper, etc. 

 

 

Applications of Genetic Algorithm 

1. Acoustics- GA is used to distinguish between sonar reflections and different types of object. 

Apart from that it is also used to design Active noise control systems which cancel out undesired 

sound by producing sound waves that destructively interfere the unwanted noise. 

 

2. Aerospace Engineering- To design wing shape Super Sonic aircraft minimizing aerodynamic drag 

at supersonic cruising speeds, minimizing drag at subsonic speeds, and minimizing aerodynamic 

load . 

 

3. Financial Markets – to predict the future performance of publicly traded stocks.  

 

4. Geophysics-locate earthquake hypocenters based on seismological data. 

 

5. Materials Engineering-To design electrically conductive carbon based polymers known as 

polyanilines. To design exposure pattern for an electron lithography beam. 

 

6. Routing and Scheduling- To find optimal routing paths in telecommunication networks which are 

used to relay data from sender to recipients . 

 

7. Systems Engineering- To perform multi–objective task of designing wind turbines used to 

generate electric power. 

 

8. Data mining- GA can also be used in data mining and pattern recognition. Given a large set of 

data, GA can perform a search for the optimum set of data which satisfies the conditions. Initial 

population in this case may be single objective conditions and at the end of the GA, we get a 

combined complex condition which when applied on the large data set can lead to finding the 

required set of data. 

 

 

 

 

 

 



Strengths of GAs  

1. The main strength of GA is that it is intrinsically parallel. Whereas most other algorithms are 
serial and search the solution space to a problem in one direction at a time. So, in such case 
if solution turns out to be suboptimal then we have to abandon all work previously and start 
over. However since GA has multiple offspring so they can explore the solution space in 
multiple direction at once given the condition that some of them would turn out as dead 
end. 

 

2. GA is better in solving problems where the space of all potential solution is truly huge. Non 
Linear functions falls into this category, where changing one component may have ripple 
effects on the entire system and where multiple changes that individually are detrimental 
may lead to much greater improvements in fitness function. 

 

3. GA performs well in problems for which fitness function is complex or discontinuous or noisy 
or changes over time or has many local optima. Whereas other search algorithms can 
become trapped by local optima but GA works well to avoid local optima. 

 

4. One of the main features of GA is its ability to manipulate many parameters simultaneously. 
Many problems cannot be stated as single value to be maximized or minimized but 
expressed as multiple objectives. 

 

5. GAs know nothing about the problem that they are deployed to solve. The virtue of this 
technique is that it allows GA to start out with open mind. Since in GA decisions are based 
on randomness all possible search pathways are theoretically open to GA.  

Other Optimizing Techniques 

Different Data Mining Techniques are  

1. Neural Networks or pattern Recognition 

2. Memory based reasoning 

3. Cluster Detection or Market Basket Analysis 

4. Link Analysis 

5. Visualization 

6. Decision Tree or Rule Induction 

7. Simulated Anealing 

8. Hill Climbing 

Neural Network and Genetic Algorithm 

Neural networks (NN) fall into the category of Supervised Models. That is, our data will be a set of 
rows, where each row contains an input and a corresponding output for that input. Our NN learns by 



seeing the difference between the correct output and one it predicted, and then adjusting its 
parameters. So one  can't use NN if he/she don't have input-ouput data . 
 
Examples: Graph extrapolation. Facial recognition. 
 
Genetic algorithms (GA) are basically optimizers. Here we will have some set of parameters that we 
want to optimize for something. We will need an evaluation function that takes these parameters 
and tells us how good these parameters are. So we keep changing these parameters somehow until 
we get an acceptable value from our evaluation function, or until we see that things are not 
improving any more. 
 
Examples: Scheduling airplanes/shipping. Timetables . Finding the best characteristics for a simple 
agent in an artificial environment. Rendering an approximation of a picture with random polygons. 
 
 If we have data that is suitable for supervising a model, then we can use a NN. If we want to 
optimize some parameters, then use a GA. But most importantly, it is the nature of our data and 
what we want out of it that should decide what model to use. 

Simulated annealing: 

 
Another optimization technique similar to evolutionary algorithms is known as simulated annealing. 
The idea borrows its name from the industrial process of annealing in which a material is heated to 
above a critical point to soften it, then gradually cooled in order to erase defects in its crystalline 
structure, producing a more stable and regular lattice arrangement of atoms. In simulated annealing, 
as in genetic algorithms, there is a fitness function that defines a fitness landscape; however, rather 
than a population of candidates as in GAs, there is only one candidate solution. Simulated annealing 
also adds the concept of "temperature", a global numerical quantity which gradually decreases over 
time. At each step of the algorithm, the solution mutates (which is equivalent to moving to an 
adjacent point of the fitness landscape).  

The fitness of the new solution is then compared to the fitness of the previous solution; if it is 
higher, the new solution is kept. Otherwise, the algorithm makes a decision whether to keep or 
discard it based on temperature. If the temperature is high, as it is initially, even changes that cause 
significant decreases in fitness may be kept and used as the basis for the next round of the 
algorithm, but as temperature decreases, the algorithm becomes more and more inclined to only 
accept fitness-increasing changes. Finally, the temperature reaches zero and the system "freezes"; 
whatever configuration it is in at that point becomes the solution. Simulated annealing is often used 
for engineering design applications such as determining the physical layout of components on a 
computer chip. 

 

 

 

 

 

 

 
 



Important Problems of GA: 
 
There are several problem related to using GA but we would like to stress on 4 major problems of 
GA:  

1. Difficulty in population selection, 
 

2. How to define Fitness Function, 
 

3. Premature  or rapid convergence of GA 
 

4. Converge to local optima inspite of global optima 
 
How we can overcome them is always a big question. 
 
Population Selection Problem: 
 
Population selection is a big question but different selections for different problem have been found 
out. Like for any case of optimization problem in which we have n independent variables and all 
have certain constraint over them like they are bounded in between the given values. In such 
problems first of all we are supposed to find out how much accuracy would be required and then if 
we go for Bit String representation then the corresponding population will be decided by 
 
 2m-1 < (b-a)*decimal order accuracy < 2m 
 

Defining Fitness Function: 
 

Generally GA Fitness Function value increases with the iteration so we have to define our 
Fitness Function in such a way so that it increases even with searching for minima or 
maxima. Like in our main Problem we were supposed to find out the optimal minimum 
value so we defined our fitness function in such a way so that optimal solution fitness can 
increase with every iteration. 
 
We defined it like 
 
 1/(different of fitness of particular individual to total fitness value) 
 
So we can always find a way to define our fitness function in such a way so that we fit it into 
the GA. 
 
 
Rapid Convergence of GA: 
 

Rapid convergence is a very common as well as very general problem in GA. It occurs 
because the Fitness function changes its value rapidly and that’s what results in a premature 
convergence There are several method to modify our Fitness function in such a way so that 
Convergence occur slowly which will allow enough time for GA to search in whole space and 
find the global optima.2 ways are defined below. 
 



 
1. F’ = a*F + b ; 

 
 F is normal Fitness value of the population String. 
 
       Here a is a small no while b is relatively larger number now it can be clearly seen that 
even if F rapidly increases then after F’ will increase slowly. 
 
2. F’ = a*Fk  ,   this is called power law  
 
       Here k is kept low so that even if F increases rapidly it may not create rapid Convergence 
. There is slightly advanced way to define Fitness function in which Fitness Function is 
modified in each and every generation. 
 
       So, 
 
 k = func(t) ,   t is generation 
 
       So in this case Fitness Function is modified in each and every case. 
 
Convergence to Local Optima: 
 

Another important problem is that most of the times GA converges to local optima. We may 
very well think that we have found the optimal solution but actually we didn’t. 

Now, it is important to note that GA ability to find the optimal solution lies in the 
hand of the user. Optimal solution will be achieved only if programmer has written the code 
so that GA has the ability to search over whole Space to find the optimal solution. So what 
we should do in such case is that we should modify our crossover and mutation function 
because they are responsible for changing the population in each and every iteration. 
 
 

Why does GA work? 
 
There is a concept of Schema defined as 
 
*10101100101 
 
Where  * is called as don’t care symbol and can be either  1 or 0. So the above schema matches with 
the string shown below: 
 
110101100101 
010101100101 
 
So from the above we can easily see that 1010100011 represent only one string but ********** 
represents all the string of length 10. 
 
Also a single string (1010100011) is matched by 210  Schema. 
 



1010100011 
*010100011 
1*10100011 
 
So on….. 
 

Now there are 2 important schema properties that should be noted here: 
 

• Order of the Schema (denoted by o(S)) :  it is defined as the total number of 0’s and    1’s in 
the Schema 
 

• Defining length of Schema(denoted by Ω(S)): is defined as distance between the 1st  and the 
last fixed string  position 

 
For Example –  
 
S1 = ***001*110 
S2 = 11101**001 
 
So,  
o(S1) = 6, o(S2) = 8 ;  
Ω(S1) = 10-4 = 6, Ω(S2) = 10-1 = 9 
 
There are two important things to note here  

• The notion of the order of a Schema is useful in calculating survival probabilities of the of the 
Schema for Mutation. 

• The notion of the defining length of a Schema is useful in calculating survival probabilities of 
the Schema for Crossover. 

 
Now as discussed earlier the GA program consists of four consecutive repeated steps: 
 t ⟵ t+1 
 
Select  P(t) from P(t-1) and recombine P(t). Evaluate P(t) for which we will require some new 
terms   
 
£(S,t) : it is defined as the number of string in the population which matches with the 
Schema at time t. 
 
for example 
 
S = ****111*********************** 
 o(S) = 3 
Ω(S) = 2 
 
If this is the population 
 
X1  = 11110111000000101010101010100 
X2   = 01110011001010010101001010101 
X3   = 01010100101011111111111111000 
X4   = 00000011111111111100000000011 



X5   = 10110110000000011010101001101 
X6   = 10101111110100000000111111111 
X7   = 00000000011111111101101010010 
X8   = 01010111111000000000111111111 
X9   = 10101010010100000111111111000 
X10 = 10101010100100101001010010101 
X11 = 10000111101010101111111100000 
X12 = 10101011111111111111111111111 
X13 = 10101111000000010101001010101 
X14 = 10001000000000000011111111111 
X15 = 10101111111111110000000000000 
X16 = 10000000010101010010101001001 
X17 = 10001110000000010101000010000 
X18 = 10000000000000000000000000000 
X19 = 11110000111101010010101001000 
X20 = 00000000000000000011111111111 
 
Then in the above population X13 , X15 ,X17 are the 3 strings that are matched  with the 
Schema. 
 
So £(S,t) = 3 
 
eval (S,t)  is defined as the average fitness of the String in the population which matches 
with the Schema ,i.e 
 
eval(S,t) =  ∑i=1

P   eval(Xi)/P        
                            
 Xi are the String which matches with the Schema. 
where P is the number of the String which matches with the Schema. 
The expected number of String which will match in the next iteration with the Schema is 
given by the relation below: 
 
£(S,t+1) = £(S,t).pop_size .eval(S,t) /F(S,t) 
 
Or    
 
£(S,t+1) = £(S,t) .eval(S,t) /F(S,t) 
 
Here pop_size is the population size and F(S,t) is the sum of the fitness of all the Strings. 
Where F(S,t)  is the average fitness of the entire population. 
 
Now from the above relation it is clear that “above average” Schema receive an increasing 
number of String in the next generation and “below average” Schema receive decreasing 
number of String in the next generation. 
 
Now if we assume that Schema S remain above average that means 
 



eval(S,t) = F(S,t)  + α.F(S,t) 
 
So, 
£ (S,t) = £(S,0)(1 + α)t   
 
Now we will consider the effect of Crossover and Mutation. 
So, first consider Crossover 
 
Consider 2 Strings: 
 
S1 = ***111************************** 
S2 = 111***************************01 
 
It can be clearly seen that there are relatively higher chances that S1 will survive after 
Crossover but on the other hand it is almost sure that the S2 will be destructed until unless 
it is Crossover by itself or similar kind of Schema. 

In general a crossover site is selected uniformly among m-1 possible sites. This 
implies that that the probability of destruction of Schema S is: 
 
pd(S) = Ω(S)/(m-1)  
 
So probability of survival of single String is 
 
ps(S) = 1 - Ω(S)/(m-1) 
ps(S1) = 30/32 , ps(S2) = 0 
 
So, 
 
ps(S) = 1 - pc(S). Ω(S)/(m-1) 
 
where pc(S) is the Crossover probability 
in fact, 
  
ps(S) ≥ 1 - pc(S). Ω(S)/(m-1) 
 
So, the modified number of expected number of String which will match in the next 
iteration with the Schema is given by: 
  
£(S,t+1) = (£(S,t) .eval(S,t) /F(S,t)).[ 1 - pc(S). Ω(S)/(m-1)] 
 
Now we will consider Mutation 
Since the the probability of alteration of single bit is pm  the probability of survival of bit is 1- 
pm . So 
 
ps(S) = (1 – pm)o(S)  
since pm << 1 . So 
ps(S)     1 –o(S).Pm 



  
hence,  
 
£(S,t+1) = (£(S,t) .eval(S,t) /F(S,t)).[ 1 - pc(S). Ω(S)/(m-1) - o(S). pm] 
£(S,t+1) = £(S,0) .[eval(S,t) /F(S,t).[ 1 - pc(S). Ω(S)/(m-1) - o(S). pm]]t 
 
So this is the final expected number of String which will be same as that of Schema. 
If     [eval(S,t) /F(S,t).[ 1 - pc(S). Ω(S)/(m-1) - o(S). pm]] > 1 
 
Then, the number of String similar to Schema will increase exponentially otherwise decrease 
exponentially. So this is how GA discriminate between the above average Schema and below 
average Schema.  
 
 
 

Conclusion: 

We have tried to explore the Genetic Algorithm as an optimizing technique and studied its 

advantages over the other optimizing techniques. The comparison was made with other 

optimization techniques and we found that GA due to its stochastic nature, parallelism and natural 

selection technique is better than others in many ways. GA’s can be applied to complex non-linear 

functions and problems involving huge solution space search where other optimizing techniques 

may not work.  For simple problems, GA may be quite expensive with respect to time.  

 

We also explained the algorithm with the help of an example showing all major steps of GA 

including reproduction and selection, cross over and mutation. We found that the total fitness of the 

population increases with iterations and hence, we approach to optimum values. We discussed 

varied applications of GA in many fields and finally, showed the use of GA in finding the rate 

parameters of reduction of iron ore in presence of graphite.  
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