ChE677 Introduction to Polymer Physics and Rheology

Assignment 1

Due Date: 23 August 2006

1. Show that $\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-(\langle x\rangle)^{2}$ for any random variable x.
2. Consider the Poisson distribution

$$
P(m)=\frac{a^{m} \exp [-a]}{m!}
$$

where $m=0,1,2, \cdots$.
(a) Show that this distribution is normalized.
(b) Calculate the mean $\langle m\rangle$.
(c) Calculate the variance $\left\langle(m-\langle m\rangle)^{2}\right\rangle$, and show that for a Poisson distribution the variance is equal to the mean.
3. Consider the Gaussian distribution:

$$
P(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left[-\frac{(x-\langle x\rangle)^{2}}{2 \sigma^{2}}\right],-\infty \leq x \leq \infty
$$

By carrying out the required integrations explicitly:
(a) Show that $\int_{-\infty}^{\infty} d x P(x)=1$.
(b) Calculate the ' n -th central moment' defined by $\left\langle(x-\langle x\rangle)^{n}\right\rangle$ for $n=1,2,3$ and 4 .
4. Let x be a random variable such that $0 \leq x \leq \infty$, and let $P(x)$ be its probability distribution function. The characteristic function $\phi(s)$ of the probability distribution is defined as

$$
\phi(s)=\int_{0}^{\infty} d x \exp [-s x] P(x)
$$

Find a relation between $\phi(s)$ and the moments of $P(x)$.
Hint: Expand the exponential inside the integral and proceed.
5. Consider the Binomial distribution discussed in the lecture.

$$
\begin{equation*}
P(x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x} \tag{1}
\end{equation*}
$$

where p and q are the probabilities of success and failures at each trial, and $P(x)$ is the probability of obtaining x successes in n trials.
This problem guides you to derive the Gaussian distribution as a limiting case of the Binomial distribution in the limit $n \gg 1, x \gg 1$ and finite p and q.
Note the Stirling's approximation for $n \gg 1: n!\approx \exp [-n] n^{n} \sqrt{2 \pi n}$.
Approximate the factorials by Stirling's approximation and simplify to get:

$$
\begin{equation*}
P(x) \approx\left(\frac{n p}{x}\right)^{x}\left(\frac{n q}{n-x}\right)^{n-x} \sqrt{\frac{n}{2 \pi x(n-x)}} \tag{2}
\end{equation*}
$$

Show that if $\delta=x-n p$, then $x=n p+\delta$ and $n-x=n q-\delta$. Make these substitutions in the above equation. To evaluate the first two factors in $P(x)$ (ignore the square root for now): Take logarithm of the first two factors; show that

$$
\log \frac{n p}{x}=-\log \left(1+\frac{\delta}{n p}\right)
$$

and a similar formula for $\log [n q /(n-x)]$; expand the logarithms in a series of powers in $\delta /(n p)$, collect terms and simplify to get:

$$
\log \left[\left(\frac{n p}{x}\right)^{x}\left(\frac{n q}{n-x}\right)^{n-x}\right] \approx-\frac{\delta^{2}}{2 n p q}
$$

Now exponentiate this again to get an approximation for the first two factors in Eq. 2. Now assemble an expression for $P(x)$, and verify that $P(x)$ indeed converges to the Gaussian in the large-n limit.
6. Consider the Binomial distribution given in Eq. (1). This problem will guide you to obtain the Poisson distribution in the limit $n \rightarrow \infty, p \rightarrow 0$ and $n p \rightarrow$ finite.
First, show that $n!/(n-x)!\approx n^{x}$ for fixed x and large n. Hint: Write $n!/(n-x)!$ as a product of x factors, divide by n^{x} and show that the limit is 1 as $n \rightarrow \infty$.
Then write $q^{n-x}=(1-p)^{n-x}=\left(1-\frac{n p}{n}\right)^{n}(1-p)^{-x}$; evaluate the limit of the first factor as $n \rightarrow \infty, n p$ fixed. The limit of the second factor as $p \rightarrow 0$ is 1 . Assemble your results, and verify that you obtain a Gaussian. Hint: In the limit $n \rightarrow \infty, n p$ finite, show that, by expanding in a series:

$$
\left(1-\frac{n p}{n}\right)^{n} \approx \exp [-n p]
$$

