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We examine the linear stability of the gravity-driven flow of a viscoelastic fluid film down

an inclined plane. The viscoelastic fluid is modeled using the Oldroyd-B constitutive equa-

tion, and therefore, exhibits a constant shear viscosity and a positive first normal stress

difference in viscometric shearing flows; the latter class of flows includes the aforesaid

film-flow configuration. We show that the film-flow configuration is susceptible to two

distinct purely elastic instabilities in the inertialess limit. The first instability owes its ori-

gin entirely to the existence of a free surface and has been examined earlier (Shaqfeh et al.,

Journal of non-Newtonian Fluid Mehcanics, 31, 87-113, (1989)). The second one is the

analog of the centermode instability recently discovered in plane Poiseuille flow (Khalid

et al., Physical Review Letters, 127, 134502 (2021)) and owes its origin to the base-state

shear; it is an example of a purely elastic instability of shearing flows with rectilinear

streamlines.

One may draw an analogy of the aforesaid pair of unstable elastic modes with the iner-

tial free-surface and shear-driven instabilities known for the analogous flow configuration

of a Newtonian fluid. While surface tension has the expected stabilizing effect on the

Newtonian and elastic free-surface modes, its effect on the corresponding shear modes is,

surprisingly, more complicated. For both the Newtonian shear mode and the elastic cen-

termode, surface tension plays a dual role, with there being parameter regimes where it

acts as a stabilizing and destabilizing influence. While the Newtonian shear mode remains

unstable in the limit of vanishing surface tension, the elastic centermode becomes unstable

only when the appropriate non-dimensional surface tension parameter exceeds a thresh-

old. In the limit of surface tension being infinitely dominant, the free-surface boundary

conditions for the film-flow configuration reduce to the centerline symmetry conditions

satisfied by the elastic centermode in plane Poiseuille flow. As a result, the regime of in-

stability of the film-flow centermode becomes identical to that of the original channel-flow

centermode. At intermediate values of the surface tension parameter, however, there exist

regimes where the film-flow centermode is unstable even when its channel-flow counter-

part is stable. We end with a discussion of the added role of inertia on the aforementioned

elastic instabilities.
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I. INTRODUCTION

Understanding the stability and dynamics of liquid films flowing over a surface has important

implications in coating-flow processes such as slide delivery1, wherein single or multiple liquid

layers are made to flow on an inclined surface prior to their application onto a web. Such gravity-

driven film flows are prone to instabilities that could be detrimental to the coating process by

causing nonuniformities in the coated film. While the instability may be driven by the free surface

for a single liquid film, for multiple liquid layers, each of the internal liquid-liquid interfaces is

also potentially susceptible to instabilities that, for Newtonian liquids, arise due to a jump in vis-

cosity or density2–5, and require inertia. However, in many coating applications, the liquids being

coated are rheologically complex, and often viscoelastic, due to the presence of polymer additives

in the formulation. Viscoelastic film-flow configurations involving a single liquid layer with a

free surface, or multiple liquid layers with internal interfaces, are again prone to instabilities, with

the instability of the multi-layer configurations now arising from the interfacial jump of an elastic

property: most often, the first normal stress difference6–8 which leads to growing perturbations

along the direction of the flow; and less frequently, due to the smaller second normal stress dif-

ference which leads to the growth of spanwise varying perturbations9. Importantly, in contrast to

the Newtonian case, such normal-stress-driven interfacial instabilities occur even in the absence

of inertia.

In addition to the interfacial instabilities mentioned above, one may have competing effects

arising from bulk instabilities. For Newtonian liquids, bulk instabilities arise from the shear within

the flowing film, requiring only inertia or the combined influence of inertia and viscosity. In con-

trast, it is now well known, based on research in the last three and a half decades, that viscoelastic

fluids can sustain purely elastic bulk instabilities even in the inertialess limit10–12. Examples of

such elastic instabilities include those that occur in the canonical rheometric configurations, for

instance, the cone-and-plate, parallel-disc, and Taylor-Couette geometries. Importantly, unlike the

viscoelastic interfacial instabilities, all of the above bulk elastic instabilities pertain to curvilinear

shearing flows. Thus, the growth of infinitesimal amplitude perturbations in all cases is driven by

hoop stresses that arise due to the tension along the curved base-state streamlines, with the tension

itself being the result of a positive first normal stress difference11,13.

In the present study, we revisit the stability of gravity-driven viscoelastic film flow over an

inclined plane surface (termed the single-layer configuration above), a configuration previously
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considered by Gupta14, Lai15, and Shaqfeh et al.16, with an objective of characterizing all possible

unstable modes in this flow configuration. The said studies were motivated, in part, by the classical

analyses of Benjamin2 and Yih3 which first showed that gravity-driven Newtonian film-flow is

prone to a long-wave surface instability, termed the free-surface mode herein (and abbreviated

FSM henceforth), with a threshold Reynolds number that is a function of the angle of inclination.

The studies of Gupta14, Lai15, and Shaqfeh et al.16 have shown that, much like the scenario for

the bulk instabilities discussed in the previous paragraph, the viscoelastic analog of the above

film-flow configuration is susceptible to a long-wave elastic instability even in the absence of

inertia; we refer to this as the ‘elastic FSM’ to, on one hand, distinguish it from the aforesaid

(Newtonian) FSM, and on the other hand, to emphasize the existence of a free surface as being

essential for its existence. Now, in the Newtonian case, as first shown by Lin17 and later, in a more

comprehensive investigation by Floryan and co-workers18, there also exists a competing bulk-

shear-driven mode that governs the transition from the unidirectional base-state for very small

angles of inclination (less than about 0.5′); this change from an FSM-controlled transition to a

shear-mode-controlled one occurs because the FSM threshold diverges in the limit of a horizontal

surface. A natural question to ask is if there exists a similar (elastic) bulk-shear mode for the

viscoelastic film-flow configuration that likewise controls the transition for sufficiently shallow

inclinations.

Until recently, the answer to the question above would have been in the negative. As already

mentioned above, all of the known linear elastic instabilities, driven by a bulk shear, are also

known to require streamline curvature, and would appear to be absent for gravity-driven flow over

any plane surface, in turn implying that the analyses of Gupta14, Lai15 and Shaqfeh et al.19 are

complete. However, research in the last five years which includes experiments20,21, linear stability

analyses22–26, computations of exact nonlinear traveling wave structures27,28, and direct numerical

simulations29, has shown that novel elastoinertial, and even purely elastic, instabilities can arise

in rectilinear shearing flows devoid of a base-state streamline curvature30. In particular, the exis-

tence of a linear purely elastic instability for a rectilinear shearing flow was first shown by Khalid

et al.30, for the case of plane Poiseuille (channel) flow, by the explicit calculation of an unstable

eigenfunction and the associated growth rate, using both spectral and shooting formulations. In

light of the aforementioned very recent research, one expects the stability scenario for gravity-

driven viscoelastic film flow to be similar to its Newtonian counterpart, in the sense of supporting

both free-surface-driven and bulk-shear-driven elastic modes in the absence of inertia, and estab-
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lishing this fact is indeed one of the primary motivations of the present effort. We show that there

do exist two qualitatively different elastic instabilities of the viscoelastic film-flow configuration:

the long-wave elastic FSM predicted in the earlier efforts highlighted above14–16, and the analog

of the finite-wavelength elastic centermode (CM) instability for channel flow30 which has a lower

threshold for sufficiently small angles of inclination.

It is useful to discuss, at the outset, the rationale for anticipating an analog of the aforesaid

elastic CM in the present film-flow configuration. While the base-state for gravity-driven flow

of an Oldroyd-B fluid film is the half plane-Poiseuille profile, the eigenfunctions are required to

satisfy the kinematic, normal stress, and tangential stress conditions at the free surface instead.

The latter is in contrast to channel flow where the eigenfunctions satisfy no-slip conditions at the

rigid boundaries. Thus, the unstable eigenfunctions in the two configurations are expected to be

different in general. In the limit of surface tension going to infinity, however, the free-surface

conditions reduce to symmetry conditions at the channel centerline, and the film-flow eigenmode

therefore reduces to the original channel-flow CM eigenfunction (restricted to the half-channel

domain)30. Interestingly, in the original Newtonian case, the eigenfunction for the bulk shear in-

stability in channel flow (the well-known Tollmein-Schlichting (TS) mode) is antisymmetric, with

a nonzero wall-normal velocity at the channel centerline. Since free-surface fluctuations become

negligible for an infinite surface tension, the resulting incompatibility with a finite wall-normal

velcoity implies that the bulk shear instability is absent in this taut interface limit. In the opposite

so-called floppy-interface limit, the amplitude of the free surface fluctuations remains finite, and

hence, it is permissible to have a non-zero wall-normal velocity, consistent with antisymmetry of

the TS eigenfunction. Despite this, there is no direct connection between the shear-driven mode

in the film-flow configuration, and the channel flow TS mode, owing to the additional shear-stress

boundary condition in the former case. Such a connection was erroneously postulated in the early

eff ort of Lin (1967)17, with the error being clarified in the later effort of Floryan et al. (1987)18.

Before moving on to the organization of the manuscript, we briefly mention more recent efforts

that have addressed the influence of additional physical factors on the elastic FSM above. The

efforts of Wei31 and Pal and Samanta32,33 have examined the effects of imposed shear, wall slip,

as well as the presence of surfactants on the free-surface instability in viscoelastic film flows. The

effort of Hu et al.34 has studied the nonlinear evolution of the viscoelastic film-flow configuration

using a reduced model, and in the limit of weak elasticity, predicts the formation of steady perma-

nent waves for long times. Although not directly relevant to the present problem, several recent
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x
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FIG. 1. Schematic of the configuration: a viscoelastic liquid film flowing down an inclined surface.

efforts have examined the evolution of viscoelastic films on a wavy surface.

The remainder of this paper is organized as follows: Section II provides the governing equa-

tions and boundary conditions, along with the linearized system of equations, within a temporal

stability framework, that govern the stability to imposed small-amplitude perturbations. Section III

provides a discussion of the results of the linear stability analysis. We first examine the inertialess

limit in section III A, before going on to describe the role of finite inertia in section III B. The

salient conclusions of this study are provided in Section IV.

II. PROBLEM FORMULATION

We consider the gravity-driven flow of an incompressible viscoelastic liquid layer down an in-

clined plane which makes an angle θ with the horizontal (Fig. 1). The viscoelastic liquid is mod-

eled using the Oldroyd-B constitutive relation35,36, in which the total stress is given by the sum of

Newtonian solvent and viscoelastic polymeric contributions. The model has three material con-

stants: the shear-rate-independent polymer contribution to the viscosity µp, the polymer relaxation

time λ , and the solvent viscosity µs; the solution viscosity being given by µ = µp+µs. As will be

seen below, these three dimensional parameters lead to a pair of non-dimensional parameters - the

Weissenberg number and the solvent-to-solution viscosity ratio - that, among others, govern the

instability threshold. The aforesaid liquid layer (film) of density ρ has a uniform thickness in the

base state, occupying the region 0 < z∗ < H, and is assumed to be in contact with a passive gas that

has a negligible viscosity, and is therefore accounted for via a free-surface boundary condition37.

In the equations given below, the following scales are used to nondimensionalize various quanti-

ties: lengths by the base-state film thickness H, velocities by the speed at the free-surface of the
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unperturbed liquid layer V ≡ ρgH2 sinθ
2µ , time by H

V
, pressure by

µV
H

, polymeric stresses by
µpV

H
, and

solvent stresses by
µsV
H

.

A. Governing equations

The dimensionless equations governing the dynamics of the liquid layer are the mass conser-

vation and Cauchy momentum equations:

∇ ·v = 0 , (1)

Re

[

∂v

∂ t
+v ·∇v

]

= ∇ ·T+
2

sinθ
ĝ . (2)

Here, v is the velocity field in the liquid, ĝ is the unit vector pointing in the direction of gravity

and Re = ρV H/µ is the Reynolds number. The total stress tensor in the fluid, T =−pI+τ , is the

sum of an isotropic pressure and an extra stress tensor τ = βτ s +(1−β )τ p, with β = µs

µ being

the ratio of the solvent and solution viscosities. The Newtonian solvent contribution to τ is given

by τ
s = [∇v+(∇v)T ], while τ

p, the polymeric contribution to τ , is governed by the Oldroyd-B

constitutive relation35,36:

W

[

∂τ p

∂ t
+v ·∇τ

p − (∇v)T ·τ p −τ
p ·∇v

]

+τ
p =∇v+(∇v)T . (3)

Here, W ≡ λV
R

is the Weissenberg number that is the ratio of the polymer relaxation time to a

characteristic flow time scale, and thereby, a non-dimensional measure of the fluid elasticity. In

the limit β = 0, the Oldroyd-B model reduces to the upper-convected Maxwell (UCM) model

which provides an approximate description of the rheology of polymer melts. Either of the limits

W = 0 and β = 1 correspond to that of a Newtonian fluid.

The boundary conditions at the free surface include a dynamic component that involves the

tangential and normal stress balances, and a kinematic component that involves the velocity normal

to the evolving free surface. Because the overlying gas is assumed to be passive, the tangential

stress balance reduces to the tangential stress at the free surface of the liquid layer being zero, with

the normal stress equalling a constant hydrostatic pressure plus surface tension times curvature

of the perturbed free surface. The kinematic and dynamic boundary conditions may therefore be
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written in the form:

∂th+ vx∂xh = vz , (4)

n ·T · t = 0 , (5)

n ·T ·n = Σ(∇ ·n) , (6)

where h(x, t) describes the free surface position for perturbations uniform along the spanwise (y)

direction, while n and t are the unit normal (pointing out of the liquid layer) and unit tangent vec-

tors to the free surface, respectively. Note that the boundary conditions (5) and (6) are stated in

invariant form, and are thereby valid for an arbitrarily deformed free surface; t = 1x and n =−1z

for the uniform layer in the base-state. The normal stress boundary condition (6) includes a dimen-

sionless surface tension parameter Σ= γ/(µV ), with γ being the coefficient of surface tension; Σ is

the inverse of the capillary number Ca = µV/γ . Other dimensionless measures of surface tension

have also been suggested in the literature: the Ohnesorge number Oh = (Ca/Re)1/2, the elastic

capillary number W/Ca, and the Weber number We = ReCa, the former two being independent of

the flow velocity scale12.

B. Base State

The laminar base state whose stability is examined here is the gravity-driven flow of a non-

shear-thinning elastic liquid, in the x direction, with an undeformed plane free surface. The non-

dimensional velocity, pressure and polymeric stress fields for this base state (represented by an

overbar) are given by:

vx = 1− z2 , vz = 0 , (7)

p = 2zcotθ , τ p
zz = 0 , (8)

τ p
xz = −2z , τ p

xx = 8Wz2 . (9)

The positive τ p
xx characterizes the tension along the rectilinear base-state streamlines arising from

stretched polymer molecules. This tension is a quadratic function of the transverse coordinate (z),

but is zero at the free surface (z = 0) owing to the base-state shear vanishing at this location.
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C. Linearized governing equations

A temporal linear stability analysis is performed wherein all dynamical quantities are perturbed

about the base state defined in section II B above, and substituted in the governing equations, with

only terms linear in the perturbations being retained. At linear order, the perturbation f ′ to any

physical variable may be expanded in terms of independent non-interacting Fourier modes of the

form:

f
′
= f̃ (z)exp[ik(x− ct)] , (10)

where k is the (real) wave number of the Fourier mode, c = cr + ici the complex wavespeed, and

f̃ (z) the complex amplitude function that governs the ‘shape’ of the disturbance. The flow is

unstable (stable) if ci > 0 (< 0) for one or more Fourier modes. When the above ansatz is used in

the linearized equations and boundary conditions, one obtains a set of linear ODEs that governs

the z-dependence of the amplitude functions, and that involves the wavespeed c. The system of

ODEs governing the evolution of small amplitude perturbations to the gravity-driven viscoelastic

film flow configuration are given by:

dzṽz + ikṽx = 0 , (11)

Re [ik(vx − c)ṽx +(dzvx)ṽz] =−ik p̃+β [d2
z ṽx − k2ṽx]

+(1−β )[ikτ̃ p
xx +dzτ̃

p
xz], (12)

Re [ik(vx − c)ṽz] = −dz p̃+β [d2
z ṽz − k2ṽz]

+(1−β )[ikτ̃ p
xz +dzτ̃

p
zz], (13)

with dz ≡
d
dz

. The above equations can be combined to give a single fourth-order Orr-Sommerfeld-

like equation for ṽz:

ikRe[(vx − c)(d2
z − k2)−d2

z vx]ṽz = β (d2
z − k2)

2
ṽz+

(1−β )[k2dz(τ̃
p
xx − τ̃ p

zz)− ik(d2
z + k2)τ̃ p

xz] , (14)

which reduces to the original Orr-Sommerfeld equation for β = 1. In (14), τ̃
p
zz, τ̃

p
xz and τ̃

p
xx are

obtained from the following linearized constitutive equations:

[1+Wik(vx − c)]τ̃ p
zz = 2(ikWτ p

xzṽz +dzṽz), (15)

9
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[1+Wik(vx − c)]τ̃ p
xz =Wdzvxτ̃ p

zz

−[Wdzτ
p
xz − ik(1+Wτ p

xx)]ṽz +dzṽx, (16)

[1+Wik(vx − c)]τ̃ p
xx = 2Wdzvxτ̃ p

xz−

Wdzτ
p
xxṽz +[2ik(1+Wτ p

xx)]ṽx +2Wτ p
xzdzṽx . (17)

The linearized kinematic, and tangential, and normal stress boundary conditions at the unper-

turbed free surface (z = 0) are:

ik[vx − c]h̃ = ṽz , (18)

β [−2 h̃+(
dṽx

dz
+ ikṽz)]+(1−β )[τ̃ p

xz +
dτ p

xz

dz
h̃] = 0, (19)

− p̃− (2cotθ)h̃− k2Σ h̃+2β
dṽz

dz
+(1−β )τ̃ p

zz = 0 . (20)

The boundary conditions at the underlying rigid surface (z = 1) are the usual no-slip conditions for

ṽz and ṽx.

The above system of linear ODEs and boundary conditions constitute an eigenvalue problem

for the complex wavespeed c as a function of the non-dimensional parameters Re,W,β ,k,θ and

Σ. To solve for c, we have employed two different numerical methods; the first being a Cheby-

shev spectral collocation method which gives the complete spectrum of eigenvalues for specified

values of the aforementioned non-dimensional parameters, including both the discrete spectra and

discretized versions of the continuous spectra; the second being an orthonormal numerical shoot-

ing procedure38, combined with a Newton-Raphson method, that solves the characteristic equation

for the eigenvalue c starting from an appropriate initial guess. Owing to the high-dimensional pa-

rameter space, the results presented below pertain to a pair of inclination angles: θ = 50◦ and

θ = 90◦, the latter corresponding to a vertical-film configuration that is the most unstable.

III. RESULTS AND DISCUSSION

To begin with, it is worth emphasizing a novel feature of the present investigation - the iden-

tification of two elastic instabilities, of distinct physical origins, associated with a given shearing

flow configuration. This is in contrast to almost all earlier research on purely elastic instabilities

in viscometric shearing flows as summarized, for instance, in Larson (1992) or Shaqfeh (1996). In

cases where the shearing flow is entirely bounded by rigid surfaces, examples of which include
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the Taylor-Couette39 and Taylor-Dean configurations40, or the torsional flow in the parallel-plate41

or cone-and-plate42 geometries, the purely elastic instability identified in earlier efforts invariably

owes its origin to hoop stresses associated, directly or indirectly, with the curvature of the base-

flow streamlines. That the base-state streamline curvature is the underlying cause of all of the

above elastic instabilities is reinforced by the so-called Pakdel-Mckinley criterion43.

For the gravity-driven film-flow configuration examined here, the earlier efforts of Gupta14 and

Shaqfeh, Larson, and Fredrickson16 have established the existence of a long-wavelength purely

elastic instability whose origin is intimately linked to the presence of a free surface, and is hence-

forth referred to as the free-surface mode (‘FSM’). A hallmark of this unstable mode is that its

phase speed, in the long-wave limit (k → 0), is twice the base-state maximum (that occurs at the

free surface), a relation that arises from the volumetric flow rate per unit span scaling as the square

of the liquid layer thickness2. Herein, we show that, in addition to this mode, the film flow con-

figuration supports a second finite-wavelength elastic instability with phase speed approximately

equal to the base-state maximum. This latter mode is shown to be an analog of the unstable ‘cen-

termode’ originally identified in both viscoelastic pipe22,24 and plane25 Poiseuille flow in presence

of inertia, and more recently, extended to the inertialess limit for the plane Poiseuille flow case30.

The latter extension led to the discovery of an elastic instability of shearing flows with rectilinear

streamlines that arises from a novel critical-layer mechanism30 as opposed to the aforementioned

hoop-stress origin of the usual elastic instabilities. For plane Poiseuille flow, the said unstable

mode has a phase speed nearly equal to the base-state maximum which occurs at the channel

centerline, and hence the aforementioned terminology of a centermode. While the centermode

nomenclature is natural for the channel flow geometry, we continue to use this terminology for

the finite-wavelength unstable mode discovered here, for the film-flow configuration, since, as

mentioned above, the mode continues to have a phase-speed close to the base-state maximum; the

identity of the film-flow and channel centermodes, for Σ → ∞, was discussed in the introduction.

Further, it was shown Khalid et. al30 that, for plane Poiseuille flow, the elastic centermode in-

stability occurs only when β & 0.99, and accordingly, we focus on this ultra-dilute regime in the

present study.

In light of the above discussion, the results below are organized into two parts: an initial longer

description focused on the inertialess limit (Re= 0), followed by a shorter exploration of the added

influence of fluid inertia (Re 6= 0) on the growth rates and domains of existence of the two unstable

modes. While all of the detailed results with regard to the eigenspectra, the growth rate and phase
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speed variations, etc, presented below, pertain to θ = 50◦, the neutral stability envelopes are given

for both θ = 50◦ and θ = 90◦.

A. The inertialess limit: Re = 0

Figure 2 shows the eigenspectrum in the absence of surface tension (Σ = 0) for β = 0.995, W =

900 and k= 1. A well-known feature of the eigenspectra for viscoelastic shear flows is the presence

of an elastic continuous spectrum (abbreviated ‘CS’ henceforth) that owes its origin to the spatially

local nature of the Oldroyd-B equation, and comprises eigenvalues with real parts (phase speeds)

that vary continuously in the base range of velocities, and with ci = −1/(kW ) corresponding

to decay rates that equal the inverse relaxation time23. The theoretical CS is a branch cut in

the complex c-plane44, and allows for eigenvalues to disappear into and/or reappear from it with

changes in one or more parameters (such as W as discussed below; also see24,25). For any β 6= 1,

there is also a second viscous continuous spectrum23,44 with ci = −1/(βkW ), although, for the

ultra-dilute regime (β → 1) under consideration, the decay rates of these viscous CS-modes are

practically indistinguishable from those belonging to the elastic CS.
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(a) Overall features of the spectrum
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(b) Enlarged view of spectrum near cr = 1

FIG. 2. Elastic eigenspectrum for film flow of an Oldroyd-B fluid, demonstrating the presence of a stable

(discrete) centermode with cr ≈ 1, just above and to the right of the CS balloon; Σ = 0, β = 0.995, W = 900,

k = 1, Re = 0, θ = 50◦.

The aforementioned CS is present in the numerically computed elastic eigenspectrum in Fig 2a,

albeit as a ballooned-up structure around the theoretically predicted horizontal segment (0 < cr <

1;ci = −1/(kW )) owing to the finite numerical resolution; the balloon does narrow down with
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FIG. 3. Elastic eigenspectrum for film flow of an Oldroyd-B fluid, demonstrating the presence of an unstable

centermode for Σ= 80. Other parameters are identical to Fig 2: β = 0.995, W = 900, k = 1, Re= 0, θ = 50◦.

increase in the number of collocation points (from N = 200 to 300). The magnified view of the

neighborhood of cr = 1 in Fig 2b shows that, in addition to the CS, there is also a stable discrete

mode just above and to the right of the CS balloon which, for reasons mentioned earlier, we

label as the ‘centermode’45. Further, as shown in Fig 3, this centermode becomes unstable as Σ

is increased to 80, with other parameters remaining fixed. This transition of the centermode to

instability occurs for k ∼ O(1), and is therefore in stark contrast to the FSM analyzed by Gupta14

and Shaqfeh et al.16. For the ultra-dilute regime under consideration, the latter mode is unstable

only for k ≪ 1, rendering it much less significant than its Newtonian counterpart2,3.

A noteworthy feature is the dual role of surface tension on the elastic CM identified above.

While Figs. 2 and 3 showed that increasing surface tension (from Σ = 0 to 80) leads to a desta-

bilization of the centermode, Fig 4 shows that the resulting instability persists only over a finite

range of Σ values, with the CM again becoming stable for sufficiently high Σ. It is therefore useful

to speculate on the reasons that underlie the non-monotonic variation of the growth rate, with in-

creasing Σ, in Fig. 4b; we present arguments in this regard in the limits Σ = 0 and Σ → ∞. To begin

with, note that the elastic CM identified previously in the channel-flow configuration is a sym-

metric mode25,30, the symmetry pertaining to that of the tangential velocity eigenfunction about

the channel centerline, and as a result, the wall-normal perturbation velocity is identically zero at

the centerline. In light of this, one expects the elastic CM to be carried over from the channel-

flow to the film-flow configuration, provided the free surface remains undeformed (or nearly so).
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FIG. 4. The dual role of surface tension on the elastic centermode, illustrated via the variation of cr and ci

as a function of Σ; β = 0.995, W = 480 and k = 1.5,Re = 0, θ = 50◦.

Examining the ‘floppy-interface’ limit (Σ = 0) first, one finds the aforementioned constraint of an

undeformed free surface to be in conflict with the non-trivial variation of the elastic CM polymeric

normal stresses along the channel centerline (τ̃
p
zz |z=0) that would necessarily perturb the free sur-

face. In other words, the original CM eigenfunction fails to satisfy the normal stress boundary

condition, (Eq. 20), thereby precluding a direct connection, for Σ ≪ 1, between the elastic CM

identified above and that for channel flow. Not surprisingly therefore, the CM for the film-flow

configuration remains stable for Σ → 0.

In the opposite ‘taut-interface’ limit (Σ → ∞), as alluded to in the Introduction, the normal

stress boundary condition (Eq. 20) shows that the free surface perturbation h̃ must be O(Σ−1), and

hence, vanishingly small. Assuming, therefore, an unperturbed interface for Σ → ∞, the kinematic

boundary condition, Eq. 18, implies a zero normal velocity component (ṽz = 0). Further, Eq. 20

is satisfied provided the polymeric shear stress (τ̃
p
xz) is zero, and the tangential velocity compo-

nent has a zero slope (dṽx/dz = 0) at the unperturbed free surface, both of which are true for the

channel-flow CM. This implies that the original channel-flow CM eigenfunction, now restricted

to the half-channel domain, satisfies both the kinematic and shear stress boundary conditions at

the free surface in the limit Σ → ∞. Note that the only constraint arising from the normal stress

boundary condition is the requirement of an unperturbed free surface, as already mentioned above;

the combination Σh̃ remains non-trivial for Σ → ∞, allowing the unperturbed interface to never-

theless support an arbitrary jump in normal stresses. The implication of the above arguments is
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FIG. 5. Figure illustrating the elastic centermode being unstable even in the Σ ≫ 1 limit. The dotted

horizontal line shows the eigenvalue obtained from channel flow for the same set of parameters. Data for

β = 0.995, W = 1150 and k = 0.8,Re = 0, θ = 50◦.

that the elastic CM for the film-flow configuration approaches the original elastic CM in the limit

Σ → ∞. For the particular choice of parameters in Fig. 4, however, the latter is stable, and it is this

that causes the stabilization of the film-flow CM for sufficiently large Σ. To reinforce the above

inference, in Fig. 5, we show the variation of cr and ci with Σ at a much higher W = 1150, and for

k = 0.8, which correspond to the channel-flow CM being unstable. While we again find surface

tension to play an initial destabilizing role similar to Fig. 4, the elastic CM now remains unstable

in the limit of Σ → ∞. A noteworthy feature in both Figs. 4 and 5 is that the magnitude of ci is

highest for an intermediate finite Σ (Σ ∼ O(1) in Fig. 4, and Σ ∼ O(100) in Fig. 5), suggesting

that the film flow configuration is more unstable than its channel-flow counterpart, with the elastic

CM for the former remaining unstable even in parameter regimes (in the W − k plane) where the

original channel-flow CM is stable.

On the whole, the role of surface tension described above remains counterintuitive. While sur-

face tension is known to play a destabilizing role for liquid jets/columns (the Rayleigh-Plateau

instability), its effect in Figs. 4 and Fig. 5 does stand in contrast to its usual role for planar shearing

flows where, most often, it solely acts to damp out large wavenumber fluctuations. This is essen-

tially because the film-flow elastic CM, aside from relying on the bulk shear for destabilization, is

associated with a nearly undeformed free surface for large Σ, rendering surface tension redundant.

One may ask the analogous question for the shear mode in the Newtonian film-flow problem.
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Interestingly, and in contrast to the above, the TS-mode for Newtonian channel flow is antisym-

metric, with a wall-normal velocity that remains finite at the channel centerline. Thus, for the

TS-mode to be preserved in the film-flow configuration, the free surface must deform in a manner

compatible with this normal velocity. For a vertical film (θ = 90◦) in the floppy-interface limit,

the resulting normal stress boundary condition may be shown to be identically satisfied by any an-

tisymmetric eigenfunction (including the TS-mode in particular). A direct connection between the

Newtonian channel and film-flow configurations is still absent, however, owing to the additional

(zero) tangential stress boundary condition in the latter case. The threshold for the onset of the

shear mode instability in the film-flow configuration therefore differs from the well-known thresh-

old (Re ≈ 5772) for linear instability in plane Poiseuille flow, being a function of the inclination

angle18. As mentioned in the introduction, a connection between the Newtonian channel flow and

film-flow problems, for Σ = 0, was erroneously attributed by Lin17, although clarified in a later

effort18.
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FIG. 6. The locus of the elastic centermode in the cr–kWci plane, with changing k, for film flow of an

Oldroyd-B fluid (k increases starting from the lower RHS corner). The horizontal black line represents the

CS terminating at cr = 1, its extension beyond this point being denoted by a dashed line. Data for β = 0.995,

W = 900, Σ = 80, Re = 0, θ = 50◦.

Figure 6 shows the locus of the centermode eigenvalue in the cr − kWci plane with changing

k. The locus begins at the lower right corner for small k, moves to the left and then upward

as k is increased, crossing the real axis (corresponding to a transition to instability), and then

back (transition to stability), as k → ∞. The pair of real-axis crossings imply that the elastic cen-
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termode instability is present only over a rather small k-interval. While the absence of the center-

mode instability in the low-k limit is analogous to its absence in the floppy interface limit described

above - it is the combination k2Σ that occurs in the normal stress boundary condition (20) - the

stabilization at large k is somewhat counterintuitive, again along the lines of the large-Σ limit men-

tioned above. Note that even the original elastic centermode instability in plane Poiseuille flow25,30

is only present over a finite range of k, for W fixed, an aspect that is preserved for the film-flow

configuration. An intriguing feature in Fig 6a is that the eigenvalue locus appears to across the

CS-line (kWci = −1) while remaining continuous, seemingly in violation of the fact that the CS

is a branch cut in the complex c-plane. A closer examination in Fig 6b, however, reveals that the

smooth variation occurs because cr > 1 when kWci = −1, that is to say, the phase speed of the

centerline is just outside the base range of velocities at the point that its decay rate equals those of

the CS-modes, and there is therefore no crossing of the CS-line.
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FIG. 7. Emergence of the unstable mode from the CS as W is increased; β = 0.995, k = 0.8, Σ = 80, Re = 0,

θ = 50◦.

In Fig 7, we plot the variation of cr and ci with W in order to illustrate the origin of the elastic

CM as W is increased. In Fig 7a, the CM is seen to first emerge from the CS at a threshold

W ≈ 500, move up towards the real axis, becoming unstable at W ≈ 771, and transitioning back

to stability at W ≈ 1343; as shown in Fig 7b, cr remains close to unity over the entire range of W

examined. Similar to the k-dependence for a fixed W , the elastic centermode is unstable only over

a finite range of W for a fixed k. Importantly, the absence of a CS in the Newtonian spectrum,

associated with any shearing flow in a finite domain, ensures that the elastic centermode can have

no Newtonian counterpart. In other words, one cannot smoothly continue the elastic centermode
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onto any of the centermodes that populate the P-branch in the Newtonian spectrum. This behavior

is identical to that found in an earlier more detailed examination of viscoelastic channel flow25.
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(b) Enlarged view near cr = 2

FIG. 8. Eigenspectrum for Oldroyd-B film-flow showing the existence of an unstable free-surface

mode (FSM) with cr ≈ 2; β = 0.995, W = 200, k = 0.001, Σ = 80, Re = 0, θ = 50◦.

At this point, it is useful to briefly discuss features of the FSM, the second elastic instability

present in the film-flow configuration, both in the interest of completeness and for purposes of

comparison with features of the centermode instability discussed above. Fig 8 shows the elastic

eigenspectrum for k = 0.001, and includes an unstable FSM; the small k value leads to the phase

speed cr ≈ 2. Owing to the near-unity β , the FSM remains unstable only over a very small range

of k, as seen in Fig 9. Fig 9a depicts the FSM eigenvalue locus on the complex c-plane; one

moves along the locus starting from the lower left, as k decreases, eventually crossing the real

axis, implying a transition to instability for sufficiently small k (see inset). Figure 9b shows cr

and ci individually as functions of k. From the ci-plot in this latter figure, one sees a transition

to stability for k . 0.002. This renders the FSM, at least for β → 1, less relevant in the sense of

requiring an experimental system with an unrealistically large extent along the flow direction. This

is perhaps the reason that the original linear stability analyses of Benjamin (1957) and Yih (1963)

for the Newtonian surface mode have been followed up by a large number of efforts that account

for the effects of nonlinearity (as reviewed in Chang (1994)46, for instance), but that the earlier

effort of Shaqfeh and co-workers (1989)16 for the viscoelastic case has not attracted a similar level

of attention.

Before proceeding to discuss the neutral stability curves for the FSM and CM, we illustrate, in
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FIG. 9. (a) The locus of the FSM eigenvalue in the complex c-plane as k is increased from top right to

bottom left; (b) Variation of cr and ci with k for the FSM. Data for Σ = 5, β = 0.995, W = 300, Re = 0,

θ = 50◦.
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FIG. 10. Comparison of the velocity and stress eigenfunctions for the CM and FSM; data for Re = 0,

β = 0.995, Σ = 80, and θ = 50◦. The FSM eigenfunctions correspond to W = 200, k = 0.001, and to the

eigenvalue c = 1.99941+0.00059613 i. The CM eigenfunctions correspond to W = 900, k = 1, and to the

eigenvalue c = 0.999381+0.000111991 i.
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Fig. 10, the qualitative differences between the respective eigenfunctions. The FSM eigenfunctions

from the spectral code are shown for k = 10−3, and for such low k, the numerical results agree

very well with the analytical expressions from an asymptotic analysis16,47 for the velocity and

stress fields. In this limit, the streamwise velocity ṽx shows a linear variation, being driven by the

shear stress at the perturbed free surface. Mass conservation then yields a normal velocity ṽz that

is monotonic, exhibiting a quadratic variation with a maximum at the free surface and reaching

zero at the bottom rigid wall. The above is in stark contrast to the ṽx and ṽz for the CM, both of

which exhibit a non-monotonic variation with z. The τ̃xx stress for the CM, in particular, shows

a sharp peak close to the free surface, at a location termed the ‘critical layer’ where the phase

speed cr equals the local base-flow velocity. This feature is analogous to the elastic centermode in

viscoelastic channel flow30, and the aforesaid peak approaches a singularity in the limit of neutral

stability. The absence of a critical layer for the FSM, owing to its phase speed being (nearly) twice

the base-state maximum, implies that τ̃xx for this mode exhibits a smooth monotonic variation with

z. A comparison of the τ̃xz eigenfunctions for both modes again highlights the non-monotonic

variation for the CM.

Figures. 11a–c show the CM neutral stability curves in the W–k plane for fixed β and Σ, re-

spectively. For finite Σ and 1−β , these curves are in the form of loops, with the unstable region

corresponding to the loop interior, and therefore, being finite in extent; in Fig. 11c, the loops ev-

idently recede upward to infinity for β → 1. As discussed earlier, the film-flow CM approaches

the channel-flow one for Σ → ∞, and this approach is reflected in the changing character of the

neutral loops, with increasing Σ, in Fig 11b. While the lower boundary of the neutral loop recedes

upward with increasing Σ, corresponding to an increase in the threshold W , there is a concomitant

increase in the size of the loops. Eventually, for sufficiently large Σ, this increase in size is primar-

ily an increase in length on account of the the upper boundary receding to infinity, and the lower

boundary asymptoting to that for channel flow. Clearly, the infinite-Σ limit is a singular one. For

any finite Σ, one has instability only within a neutral loop, implying that there exists a maximum

W beyond which the film-flow configuration is stable to perturbations of all wavenumbers. In con-

trast, the half-channel configuration, that the film-flow stability problem asymptotes to for Σ → ∞,

has unstable regions that, for any β , appear as infinite-length tongues in the W–k plane that extend

all the way to k = 0; the upper and lower branches of the tongue following a W ∝ 1/k scaling in

the small-k limit30. In the above sense, the role of surface tension appears to be analogous to that

known for finite extensibility in the context of curvilinear shearing flows11. In light of the above,
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one expects the neutral loops shown in Fig 11b to also morph into tongues for sufficiently large

values of Σ, with these tongues now receding to infinity for β → 1. When Σ or β varies in the op-

posite direction, the region of instability shrinks and for sufficiently small Σ’s (less than about 4),

or for β . 0.99, the neutral loop collapses to a point, with the instability being absent for smaller

Σ or β . For the range of parameters explored in Fig 11, the critical wavenumber corresponding to

the minimum W remains of order unity during this limiting process.
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FIG. 11. Neutral stability curves in the W–k plane, for the elastic centermode, for different Σ (panels (a)

and (b)) and different near-unity β (panel (c)); Re = 0, θ = 50◦. The neutral curves for the channel-flow

configuration, corresponding to Σ = ∞, appear as dashed lines in (b).

The neutral curve for the FSM is shown in Fig 12a. It has a lower branch which asymptotes to

a constant W for k → 0, with this lower threshold value agreeing with the results of earlier small-k

asymptotic analyses14,16,47; the upper branch diverges as W ∝ 1/k for k → 0. Note that the finite-W
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threshold for the FSM arises due to the choice of inclination (θ = 50◦). For the vertical film-flow

configuration (θ = 90◦) shown in the next figure, instability must arise for any nonzero W or Σ

provided k is sufficiently small. In stark contrast to the effect of Σ on the centermode neutral

curves in Fig 11a, the neutral curve in Fig 12a, owing to its restriction to very small k’s (k ∼ 10−3

or smaller), is virtually unaffected by Σ. Fig 12b depicts the neutral curves for both the elastic

free-surface and center modes on the W–k plane. While the neutral curves for the latter appear

smaller in extent owing to the choice of a logarithmic scale, the threshold for the elastic CM is

nevertheless higher for the chosen angle of inclination. In the conclusions section, we show that

this is no longer the case for sufficiently small θ .

While all of the above results are for an angle of inclination of θ = 50◦, in Fig. 13, we show the

neutral curve for the vertical film-flow configuration corresponding to θ = 90◦. It is known that the

FSM in this case is unconditionally unstable for k → 016,47, and therefore that there is no longer a

lower threshold in the W–k plane. Accordingly, the lower boundary of the envelope turns around

and extends vertically down to a critical k that serves as the upper bound for the unstable range of

wavenumbers in the limit W → 0. In contrast, the neutral curve for the CM remains qualitatively

similar to those for θ = 50◦, the implication being that the threshold W for the centermode remains

high, within the Oldroyd-B framework, regardless of θ .

Finally, Fig 14 shows the variation of the critical Weissenberg number (Wc, the minimum of

the W–k neutral curves) with (1− β ) for both elastic modes identified, for θ = 50◦. The plots

show the expected divergence of Wc for β → 1. Although the centermode instability also ceases

to exist for β . 0.99 (1−β & 0.01), akin to the channel flow scenario30, this transition to stability

does not occur via a divergence of Wc for β → 0.99+ (as for channel flow). The difference in be-

havior is on account of the different shapes of the neutral curves - loops (film-flow for finite Σ) vs

tongues (channel flow) in the W–k plane. As already seen in Fig. 11b, the loops simply shrink in

size with decreasing β , disappearing for β . 0.99. This, in turn, leads to the Wc-curves in Fig. 14

simply terminating in a point at the threshold β . The threshold W for the FSM can be obtained

from a low-wavenumber analysis16 as Wc = cotθ/(2(1−β )) for β ∈ [0,1). An important impli-

cation of this expression, which we return to briefly in the conclusions section, is the divergence

of the FSM Wc for θ → 0, which leads to the elastic centermode controlling the transition from the

unidirectional laminar state for sufficiently small angles of inclination.

22

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
5
4
7
6
8



Accepted to Phys. Fluids 10.1063/5.0154768

 10

 100

 1000

 10000

 0.0001  0.001  0.01  0.1

W

k 

(a) Neutral curve for FSM

 10

 100

 1000

 10000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

W

k

Free−Surface mode

Σ=4

Σ=5

Σ=20

Σ=50

Σ=80

(b) Neutral curves for both FSM and

cenermodes.

FIG. 12. Neutral stability curve in the W–k plane for the free-surface mode (FSM) (panel (a)) and for both

the FSM and centermodes at different Σ’s (panel (b)). The neutral curves for the FSM are unaffected by Σ

as the instability exists only for low k; β = 0.995, Re = 0, θ = 50◦.
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FIG. 13. Neutral curves for both FSM and centermode in the W–k plane for the vertical flow configuration

with θ = 90◦; Data for β = 0.994, Σ = 80, and Re = 0.

B. Role of inertia: Re 6= 0

In this section, we examine the role of fluid inertia on the centermode and FSM. We character-

ize inertia using the elasticity number E =W/Re. The inertialess limit considered in the previous

section corresponds therefore to E → ∞, and we consider here the implications of decreasing E.

Inertia is a prerequisite for instability of the FSM in Newtonian film flow2,3. With the inclusion of

viscoelasticity, the analytical expression for the growth rate in the long-wave limit16,47 has inde-
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FIG. 14. Wc vs (1-β ) for the centermode (CM) and free-surface (FSM) instabilities. The centermode

instability is absent beyond a threshold (1−β ), and is affected by Σ. The FSM extends all the way from

0 ≤ β < 1 and is independent of Σ; Data for Re = 0, θ = 50◦.
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FIG. 15. Elastoinertial eigenspectrum for film-flow of an Oldroyd-B fluid with an unstable centermode;

β = 0.99, k = 0.8, Re = 8, E = 65, θ = 50◦.

pendent destabilizing contributions from elasticity (proportional to W ) and inertia (proportional to

Re). Thus, one expects decreasing E to destabilize the FSM, and this expectation will be borne out

below. Our earlier investigations of the elastoinertial centermode, especially for channel flow11,25,

has shown that the effect of inertia is rather complicated in this case. For β < βc (≈ 0.99), in-

ertia has a stabilizing effect with the threshold W increasing as Re
1
3 (see, for instance, Fig 11a
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FIG. 16. Elastoinertial eigenspectrum for film-flow of an Oldroyd-B fluid with an unstable FSM; β = 0.99,

k = 0.001, Re = 5, E = 65, θ = 50◦.

in Sanchez et al. (2022)11); on the other hand, for β > βc, which is when the elastoinertial cen-

termode continues down to Re = 0 (morphing into a purely elastic centermode in the process),

inertia has an initial destabilizing influence, with W decreasing until a certain Re, before eventu-

ally starting to increase as Re
1
3 (see Fig 11b in Sanchez et al. (2022)11). Herein, over the range of

β and Re examined, we find inertia to have a uniformly destabilizing influence on the film-flow

configuration.

To begin with, we show a pair of finite-E spectra, one with an unstable centermode with

cr ≈ 1 (Fig 15), and the other with an unstable FSM with cr ≈ 2 (Fig 16); the second spectrum

corresponding to a much smaller value of k. On the whole, these spectra are very similar to their

inertialess analogs shown in Figs 2 and 3. In Fig. 17, the dual effect of surface tension Σ, on the

elastoinertial centermode, is seen to be analogous to that already seen for the elastic centermode in

Fig. 4, with there being an instability only for a finite interval of Σ values. As for the purely elastic

case, the stability of the elastoinertial centermode, for both Σ → 0 and Σ → ∞, is due to the modest

value of W . For a higher W , similar to Fig. 5, one finds that the elastoinertial CM remains unstable

in the limit Σ → ∞; in fact, the threshold W required for the persistence of the CM instability in

the infinite-Σ limit is lower on account of the aforesaid destabilizing effect of inertia. The stability

of the elastoinertial CM in the zero-Σ limit is in contrast to the Newtonian scenario wherein the

shear mode remains unstable, for Σ = 0, over a substantial range of Re17,18.
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FIG. 17. The dual role of surface tension on the elastoinertial centermode, illustrated via the variation of cr

and ci as a function of Σ; β = 0.99, k = 1.5, E = 25, Re = 12.79, θ = 50◦.
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FIG. 18. Variation of cr and ci with k for the elastoinertial centermode; β = 0.99, E = 65, Re= 7.1, θ = 50◦.

The variation of cr and ci with k (Fig. 18) shows that the CM instability is present only over

a finite range of O(1) k’s, similar to the inertialess limit discussed earlier (see Fig. 6). The non-

monotonic variation of ci with Σ, discussed above, is also evident from these figures. In contrast,

the variation of cr and ci for the FSM (Fig. 19) shows a substantial difference between the inertia-

less and finite-Re scenarios. The FSM for finite Re’s, remains unstable over a much larger range

of k’s compared to the inertialess limit; the larger k’s also lead to a perceptible effect of Σ on both

cr and ci. As already alluded to at the beginning of the section, this trend can be attributed to

the destabilizing role played by fluid inertia via the mechanism already present in Newtonian film

flow2,3.
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FIG. 19. Variation of cr and ci with k for the elastoinertial free-surface mode; β = 0.99, E = 65, Re = 15,

θ = 50◦.

Next, we discuss the neutral stability curves in the W–k and Re–k planes for fixed β and varying

E for two different Σ’s (Fig. 20). For Σ = 100, while the unstable loops in the W–k plane shrink in

size as E is increased, they eventually asymptote to a finite region in the limit E ≫ 1 (Fig. 20(a)),

implying that the instability continues all the way down to the inertialess limit. This is also seen

in the neutral loops in the Re–k plane (Fig. 20(b)); the horizontal extent of these loops remains

invariant for E → ∞, corresponding to the unstable range of k in the elastic limit, with their vertical

extent decreasing as E−1. In contrast, for Σ = 60 (Fig. 21), the neutral curves in the W–k plane

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0.4  0.7  1  1.3  1.6  1.9  2.2  2.5  2.8

W

k

E=10

E=25

E=40

E=65

E=300

E=600

E=5100

E=53000

(a) W -k plane

 0.001

 0.01

 0.1

 1

 10

 100

 0.4  0.7  1  1.3  1.6  1.9  2.2  2.5  2.8

R
e

k

E=10

E=25

E=40

E=65

E=300

E=600

E=5100

E=53000

(b) Re-k plane

FIG. 20. Neutral stability curves for the elastoinertial centermode in viscoelastic film flow for different E;

β = 0.99, Σ = 100, θ = 50◦. The centermode instability persists in the inertialess limit (E → ∞).
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continue to shrink as E is increased, eventually disappearing at a large but finite E (Fig. 21(a)),

implying the absence of elastic centermode instability in the inertialess limit for Σ = 60. A similar

trend is seen in the Re–k plane in Fig. 21(b), where the unstable zone shrinks and eventually

disappears at a small but finite Re.
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FIG. 21. Neutral stability curves corresponding to the elastoinertial centermode in viscoelastic film flow for

different E; β = 0.99, Σ = 60, θ = 50◦. The centermode instability does not continue to the inertialess limit

(E → ∞).

In Fig. 22 we show both the neutral curves and phase speeds as a function of E, for the elastoin-

ertial FSM, in the W–k plane. For very large E’s, the neutral curve corresponds to the inertialess

limit seen earlier in Fig. 12. However, as E is decreased, the range of k’s for which the insta-

bility persists increases considerably, as already seen in Fig.19. It is useful to define kmin as the

wavenumber where the W–k neutral curve has a minimum; the neutral curves for the elastoinertial

CM shown in Figs. 20 and 21 have a well-defined kmin ∼ O(1). For the FSM, in contrast, kmin is

strictly zero (Fig. 22). Thus, in order to quantify the k’s where this instability can be observed,

it is appropriate instead to use the maximum value of k (referred to as kmax) beyond which the

FSM is absent in the W–k plane. The variation of kmax (for the FSM) and kmin (for the CM) with E

(Fig. 23) shows that for the FSM, there is a sharp decrease in kmax (to O(10−2) and smaller) around

E ≈ 100, corresponding to the transition of the neutral curve from a two-lobed to a single-lobed

structure. This transition also implies that the FSM for E’s of this order or smaller will not be read-

ily realized in experiments, unless configurations, with a sufficiently large extent along the flow

direction, are considered. The kmin for the centermode always remains O(1) over a wide range of
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FIG. 22. Neutral stability curves for the free-surface mode in the W -k plane and the corresponding variation

of cr. Data for β = 0.99, Σ = 100 θ = 50◦.
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FIG. 23. Effect of E on kmax, the maximum wavenumber up to which the free-surface instability exists in

Fig. 22, and kmin, the wavenumber at which the minimum occurs in the Re-k neutral curve for the centermode

instability in Fig. 20. Data for β = 0.99, Σ = 100, θ = 50◦.

In Fig. 24, we show the variation of Rec with E for both the center and free-surface modes. For

the Σ and β values considered here, both the FSM and centermode continue down to the inertialess

limit (E → ∞). This is reflected in the scaling Re ∼ E−1, seen for E ≫ 1, for both modes. For

finite E, the scaling exponent is weaker than −1, this being consistent with the destabilizing role

of inertia alluded to at the beginning of this section. The Rec for the centermode is consistently
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FIG. 24. Variation of Rec with E for the center and free-surface modes in viscoelastic film flow. Data for

β = 0.99, Σ = 100, and θ = 50◦.

 1000

 10000

10
−4

10
−3

10
−2

10
−1

10
0

W

k

FSM

CM

FIG. 25. Neutral curves for both FSM and centermode in the W–k plane for θ = 4◦; Data for β = 0.994,

Σ = 80, and Re = 0. For such small angles of inclination, the threshold W for the centermode is lower than

that of the FSM.

larger than that for FSM for the entire range of E’s shown. However, the feasibility of experimental

observation of the CM is nevertheless more favorable compared to the FSM for reasons discussed

in the following section.

IV. CONCLUSIONS

We have provided a comprehensive description of the first instance of occurrence of two qual-

itatively distinct purely elastic instabilities in a given flow configuration - that of gravity-driven

viscoelastic film flow down an inclined plane - the viscoelastic fluid being modeled using the
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Oldroyd-B constitutive equation. While one of these instabilities, corresponding to a free-surface

mode, is known from earlier efforts14,16, the second is an analog of the novel elastic centermode

instability recently identified in plane Poiseuille flow25,30. In the inertialess limit, it is shown that

the FSM is present only for k ≤ O(10−2), while the centermode instability is present at k ∼ O(1),

albeit at higher Weissenberg numbers. With the inclusion of inertia, most of the aforementioned

features prevail, except for the larger range of wavenumbers over which the FSM is unstable.

In almost all of the results presented here, we have fixed the angle of inclination at a value (50◦)

intermediate between the horizontal and vertical orientations; the neutral curves alone have been

shown for the vertically oriented configuration. Although the CM threshold has been found to be

considerably higher than the FSM one for the above cases, this will no longer be true for θ → 0.

Similar to the Newtonian case18 discussed in the introduction, one expects the threshold W for the

CM instability to become independent of θ for θ → 0, and therefore, to be lower than that for

the FSM (which diverges as cotθ ∼ θ−1 for in the same limit14,19) for sufficiently small angles

of inclination. To illustrate this feature, Fig. 25 shows both the FSM and CM neutral curves for

θ = 4◦; here, the threshold W for the FSM is O(103), with the instability being present only for

k < 2× 10−3. In contrast, the threshold W for the CM is much lower (≈ 700), and the critical

wavenumber is O(1). It is worth noting that this transition from an FSM-controlled instability to a

shear-mode-controlled one occurs at much lower angles of inclination (θ ≈ 0.5′) in the Newtonian

case.

Moreover, based on recent work on viscoelastic channel flow using the more realistic FENE-P

model28 that incorporates the finite extensibility of the polymer chains, and especially considering

the possibility of subcritical bifurcations from the linear threshold, one expects the CM identified

here to become more relevant; for instance, in the sense of the CM threshold being lower than

the FSM one over a larger range of inclination angles than that found here within the Oldroyd-B

framework. We anticipate the predictions in this manuscript to be relevant to viscoelastic coating

flows, in terms of aiding the identification of stable operating regimes.

Data Availability: The data that supports the findings of this study are available within the

article [and its supplementary material].
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