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Abstract

Future high speed, broadband networks such as B-
ISDN (Broadband Integrated Services Digital
Network) support diverse applications like voice, video
and data transfer. ATM (Asynchronous Transfer Mode)
is considered to be the most promising transfer
technology for implementing these networks. This
paper presents a scheme, which may be used for the
performance evaluation of ATM switching networks
where an ATM switch is modeled as a discrete-time
finite buffer queue. Approaches have been proposed
for the performance analysis of discrete-time, finite
buffer capacity open queuing networks by
decomposition of each queue and then individually
analyzing them. Cell arrivals to the network is modeled
as a two-state Markov Modulated Bernoulli Process
(MMBP). An approximation method for fitting a two-
state MMBP to the departure processes of queues has
been presented. The results obtained from this
analytical algorithm have been shown to be acceptably
close to those obtained through simulations.

1. Introduction

          In ATM networks, the time axis is slotted and
fixed length packets are used to transfer information.
Modeling and performance prediction of these
networks is a major issue for switch design and its
operation. The traffic in these systems may be from a
collection of data, voice, and video sources with
varying characterizations and different Quality of
Service (QoS) requirements. Models like the Markov
Modulated Phase-type Process (MMPP) and the
Markov Modulated Bernoulli Process (MMBP) have
been proposed to capture the burstiness and correlated
nature of this traffic. These models have also been used
in the literature for queuing analysis [1-5].
         Several authors [6-8] have considered the
performance of an ATM switch by modeling it as a
discrete-time queue. Such networks of discrete-time
queues are generally not exactly analyzable but
approximate techniques for studying them may be
developed. It may be possible in some cases to analyze
the performance of these networks by isolating the
queues and then analyzing them individually. Tandem

networks of discrete-time queues have been analyzed
by this approach in [5, 9].
          We have extended the approach of [5] for the
analysis of general open networks of discrete-time,
finite buffer capacity queues. In some ATM switch
architectures, a cell may be re-transmitted several times
due to possible collision with other cells. In this case,
the total transmission time is typically modeled by a
geometric distribution. with parameter σ. This means
that with the probability σ the cells will be
retransmitted. We have also assumed this model in our
analytical approach to model the service time.
Burstiness of the source and its correlation in
successive arrival of cells need to be considered for the
typical traffic expected in future high-speed networks.
We have done this by modeling the number of cell
arrivals by a two-state Markov Modulated Bernoulli
Process (2-MMBP). Since in a general queuing
network, partitioning of the paths is common,
probabilistic splitting of a 2-MMBP are modeled and
approximated by other 2-MMBPs with different,
appropriately computed, parameters. An approach for
approximating the output process of a queue as a 2-
MMBP when it is fed with two or more 2-MMBP
arrival processes has also been developed. The
subsequent sections of the paper are organized as
follows. In Sec.2, we provide a brief description of the
2-MMBP and explain the method for approximating
the random splitting of this process as 2-MMBP. In
Sec.3, the approach for merging of two 2-MMBP in a
queue has been given. These merging and splitting
operations will be needed to analyze a network of
discrete-time, finite capacity queues. Sec.4 applies
these to analyze some examples of discrete-time open
queuing networks with arbitrary configurations. The
results obtained by our proposed approach and those
obtained through simulations are presented for these
examples. In Sec.5 summary of the present work is
given.

2. Two-State Markov Modulated Bernoulli Process
and Its Random Splitting

2.1 Two-State Markov Modulated Bernoulli process
(2-MMBP) [11]
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         A 2-state MMBP is characterized by its transition
probability matrix P and a diagonal matrix  Λ of arrival
probabilities, as given below.
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where, 0<p, q <1   and  0<α,β<1. In a 2-MMBP, there
is a geometrically distributed period of time during
which an arrival occurs in Bernoulli fashion with a
specific probability α; the system is said to be in state 1
during this period. The system may move from state 1
to another state, i.e. state 2, where arrivals will occur in
a Bernoulli fashion with a different probability β; the
system will then spend a geometrically distributed
period of time in this state before moving to state 1.
These periods alternate continuously. Given that the
process is in state-1 (state-2) in slot n, it will remain in
the same state in the next slot (n+1) with probability p
(q), or will change to state-2 (state-1) with probability
1-p (1-q). The mean, E[T], and the squared coefficient
of variation, Csq

2 , of the interarrival times of cells for
the process are given by the expressions [11].
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The coefficients of autocorrelation for interarrival
times and of the number of cells per slot are the other
two moments, which are of interest [11]. The auto-
correlation coefficient of the interarrival times of cells
for lag 1, ψ1, is given by-
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The autocorrelation coefficient φ(k) of the number of
arrivals per slot (‘ 0 ' or ' 1’) of a 2-MMBP for lag k, is
given by-
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2.2 Probabilistic Splitting of a 2-MMBP

The departure process of discrete-time, finite buffer
capacity queue with a 2-MMBP arrival process, can
itself be approximated by another 2-MMBP. This has
been shown in [5]. We have used this in our approach
to analyze discrete-time open queuing networks in
which each of the external arrival processes are
assumed to be 2-MMBP. We also make similar
approximations for the derived processes obtained
from a 2-MMBP by randomly routing its generated

cells to two or more branching routes through a
probabilistic splitting of the original process. We have
approximated the processes in each route as a 2-
MMBP with different (appropriately computed)
parameters, which are obtained by satisfying certain
conditions. In Fig. 1, we have shown an example of
(N+1) queues connected in a specific fashion where
such an approximation will be useful.

Figure 1: Probabilistic Splitting of 2-MMBP along
N Routes

Assuming the arrival process to Q0 to be a 2-MMBP
with parameters p, q, α, β, the output process of the
queue can be approximated, as described in [5], by 2-
MMBP with parameters p', q', α', β'. The processes
after the random splitting are approximated with the
same state transition probabilities as before the
splitting. Cell generation now depends on the cell
arrival probabilities before partitioning the process and
on the routing probabilities, ci , i=1,2…N. The sum of
all the routing probabilities must be equal to one i.e.

1
1

=∑
=

N

i ic . The process for the route i, i.e. the arrival

process to Qi, may now be defined by its own state
transition probability matrix Pi and diagonal matrix of
arrival probabilities Λi as -
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The four moments i.e. Mean, Squared coefficient of
variation, autocorrelation coefficient of interarrival or
departure times and autocorrelation coefficient of
number of cells per slot for the processes on ith route
are given by the same expressions as in (2), (3), (4) and
(5) by replacing four parameters of 2-MMBP with as
derived for 2-MMBP on ith  route.

2.3 Verification of Analytical Approximations
through Simulations

We have verified the approximation for fitting 2-
MMBPs on each route after probabilistically splitting
the process by considering the probabilistic splitting of
a 2-MMBP into three branches as shown in Fig. 2. The
original parameter values of 2-MMBP before splitting
are p=0.9, q=0.45, α=0.99, β=0.56 and routing
probabilities considered are c1=0.1, c2=0.4, c3=0.5. In
Table 1, the approximated parameters for the 2-MMBP
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after splitting have been given for the three branches.
Tables 2 present the theoretical Vs simulation results
for the various moments for each of the three branches,
respectively.

Figure 2: Splitting of 2-MMBP in three Branches

Branches pi qi αi βI

Route 1 0.9 0.45 0.099 0.056
Route 2 0.9 0.45 0.396 0.224
Route 3 0.9 0.45 0.495 0.280
Table 1:Approximated parameters of 2-MMBPs for
three Branches

Route -1 Route - 2 Route - 3

Theoretical
values

Simulation
Results

Theoretical
values

Simulation
Results

Theoretical
values

Simulation
Results

Rate(ρρ) 9.23846e-2 9.23313e-2
±9.38211e-5

3.69538e-1 3.69420e-1
±1.53283e-4

4.6192e-1 4.61871e-1
±1.62971e-4

2
sqtC

9.10333e-1 9.09418e-1
±2.07107e-3

6.40400e-1 6.403428e-1
±6.66420e-4

5.50155e-1 5.50490e-1
±5.06913e-4

E[Tn-1Tn] 1.17171e+2 1.173550e+2
±2.75951e-1

7.32703e+0 7.33014e+0
±6.56209e-3

4.69057e+0 4.69089e+0
±3.53338e-3

)1(ψ 4.67286e-5 3.38439e-4
±1.07779e-3

8.88163e-4 5.13412e-4
±4.99444e-4

1.52677e-3 1.20869e-3
±4.82459e-4

E[Yn] 9.23846e-2 9.23269e-2
±9.37907e-5

3.69539e-1 3.69417e-1
±1.53185e-4

4.61923e-1 4.61869e-1
±1.62841e-4

2
sqnC

9.82431e+0 9.83161e+0
±1.10085e-2

1.70608e+0 1.70699e+0
±1.12269e-3

1.16486e+0 1.16513e+0
±7.63034e-4

E[Yn-1Yn] 8.6192e-3 8.61195e-3
±3.18299e-5

1.37907e-1 1.37837e-1
±1.40387e-4

2.15479e-1 2.15459e-1
±1.66689e-4

)1(φ 1.00471e-3 1.04115e-3
±3.12387e-4

5.78552e-3 5.86580e-3
±3.35922e-4

8.47358e-3 8.59277e-3
±2.89246e-4

                   Table 2: Theoretical Vs Simulation Results for three Branches

The various moments in Table 2 are C2
sqt ,the squared

coeff. of Var. of interarrival time, E[Tn-1Tn ], the
correlation between Tn-1 and Tn , where Tn is time
between nth and (n-1)th arrival, E[Yn], mean number of
cells per slot, C2

sqn , squared coeff. of Var. of number
of cells per slot, and E[Yn-1Yn], the correlation between
Yn-1 and Yn. One can observe that the theoretical results
are very close to the results obtained from simulations
and are also well within the confidence intervals shown
for a confidence level of 96%.

3. Merging of 2-MMBPs in a Queue [12]

Fig. 3 shows two 2-MMBPs (with possibly different
parameters) jointly providing the arrivals to a queue.
For the departure process from this queue, we evaluate
the four moments, i.e. mean, squared coefficient of

variation 2
dC , coefficient of autocorrelation of inter-

departure time )(kdψ , and coefficient of auto-

correlation of number of cells per slot )(kdφ . As

described in [5] these four moments can then be used
to model the merged departure process approximately
as a 2-MMBP.

p1, q1, α1, β1

p2, q2, α2, β2

Figure 3:Merging of Two 2-MMBPs in a Queue

The slot lengths are fixed throughout the entire network.
Hence in each slot the state of both 2-MMBPs may fall
in one of the four combinations of states i.e. state (i, j)
with i, j =1, 2. These 2-MMBPs are independent so the
combination of the two 2-MMBPs can be considered as
a single four-state Markov chain which can now
generate either 0, 1, or 2 cells per slot. We have replaced
the two 2-MMBPs by a four state Markov chain as
shown in Fig. 4.

Figure 4: Four State Markov Chain.
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The state transition matrix P of this process becomes
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 Now our aim is to analyze a discrete-time single server
queue of buffer capacity K with 4-state Markov arrival
process and geometrically distributed service times. Let
Pd =Pwd+Pwod be the transition probability matrix of the
queue with Pwd and Pwod as the transition probability
matrices with a departure and without a departure.

The Z- transform of interdeparture process,
D(z), is the product of I(z) and S(z) where I and S are
the server idle period and service time. The generating
functions of I and S can be determined as in [12]. The
mean interdeparture time E[tn]=1/ρd, variance and the
squared coefficient of variation of interdeparture times
may be found by differentiating D(z) as obtained in
[12].Using D(z), I(z), Pwd, Pwod, one can determine
expression for E[tntn+ k] as in [12].The autocorrelation
coefficient of the interdeparture times of cells for the
queue with a 4-state Markov arrival process for lag k,

)(kdψ , can now be obtained from the expression-
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Let Yn be a random variable representing the number of
departures at the nth slot, where Yn can be either 0 or 1.
The autocorrelation coefficient of number of cells per

slot for lag k, )(kdφ , may now be obtained as   -

               
][

][
2

][
)(

nYVar

nYEknYnYE
kd

−+
=φ             (9)

where dXnYEnYE λ== ]
2

[][ and the correlation between

Yn and Yn+k, E[YnYn+k], is given as in [12] by-
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with X as stationary probability vector for queue and
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3.3 Characterization of the Departure Process by 2-
MMBP

 We have used the algorithm proposed in [5]
for computation of four parameters of 2-MMBP from
four computed moments. The approximated 2-MMBP
is characterized by the four parameters, pest, qest, αest,
and βest. We match the computed four moments of the
departure process e.g. ρd, Cd

2, autocorrelation
coefficient φd(1), and Ψd(1) with that of the 2-MMBP
respectively in order to obtain pest, qest, αest, and βest .

3.4 Verification of Analytical Approximations
through Simulations

Simulation results have been obtained to examine the
feasibility of the proposed approach. For the departure
process of a queue theoretical values of various
moments have been computed and verified by
simulation.

S.No. p q αα ββ σσ K

0.65 0.7 0.11 0.0061.
0.75 0.45 0.99 0.25 0.2 5
0.9995 0.9999 0.88 0.012.
0.85 0.8 0.5 0.99 0.15 8
0.85 0.74 0.6 0.453.
0.99 0.8 0.45 0.5 0.09 15
0.89 0.89 0.001 0.454.
0.79 0.90 1.0 0.09 0.005 20
0.89 0.89 0.001 0.455.
0.79 0.90 1.0 0.09 0.1 20
0.89 0.89 0.001 0.456.
0.79 0.90 1.0 0.09 0.2 20
0.89 0.89 0.001 0.457.
0.79 0.90 1.0 0.09 0.5 20

                    Table 3: Parameters of Arrival Processes and that of the Queue
As shown in Fig 5, we have considered a single
discrete time queue in which two 2-MMBPs act as

arrival processes to a queue. In Table 3 we have shown
the parameters of the arrival processes. Seven different
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cases are considered. In Table 4 the calculated
moments of the departure process and the simulation
results for the same moments have been presented.
 p1, q1, α1, β1

p2, q2, α2, β2

Figure 5: merging of two 2-MMBPs in a Queue

The results with simulations are obtained by running
each simulation run for one million events. We find
that our results are very close to the results obtained
from simulations. If we go on increasing the value of σ,
the mean interdeparture time and queue length must
also increase. The same effect is observed in Table 4.

S.
No.

ρρd C2
d E[tntn+1] ΨΨd(1) E[Yn] E[YnYn+1] φφd(1) Mean

Queue
Length

T* 7.6384e-1 2.4759e-1 1.7147e+0 1.6994e-3 7.6384e-1 5.8653e-1 1.7119e-2 3.0220e+01.
S* 7.6362e-1 2.4762e-1 1.7156e+0 1.4311e-3 7.6361e-1 5.8621e-1 1.7178e-2 3.0223e+0
T 7.4078e-1 3.3039e-1 1.8643e+0 6.9691e-2 7.4078e-1 5.6622e-1 9.0908e-2 2.9661e+02.

S 7.4542e-1 3.2428e-1 1.8410e+0 6.9437e-2 7.4541e-1 5.7287e-1 9.0369e-2 3.1664e+0
T 9.0906e-1 9.1405e-2 1.2103e+0 1.4177e-3 9.0906e-1 8.2654e-1 1.8789e-3 1.2315e+13.
S 9.0916e-1 9.1226e-2 1.2099e+0 1.3181e-3 9.0918e-1 8.2680e-1 2.4625e-3 1.2284e+1
T 6.0904e-1 1.2849e+0 3.1572e+0 1.3316e-1 6.0909e-1 4.8589e-1 4.8278e-1 1.3913e+04.
S 6.0867e-1 1.2856e+0 3.1615e+0 1.3306e-1 6.0866e-1 4.8537e-1 4.8237e-1 1.3834e+0
T 6.0887e-1 1.1483e+0 3.1009e+0 1.3027e-1 6.0887e-1 4.5879e-1 3.6982e-1 2.1173e+05.
S 6.0819e-1 1.1514e+0 3.1099e+0 1.3039e-1 6.0818e-1 4.5811e-1 3.7021e-1 2.1089e+0
T 6.0732e-1 9.6400e-1 3.0286e+0 1.2144e-1 6.0732e-1 4.2789e-1 2.4765e-1 3.5209e+06.
S 6.0672e-1 9.6808e-1 3.0370e+0 1.2159e-1 6.0671e-1 4.2745e-1 2.4868e-1 3.5084e+0
T 4.9413e-1 5.2549e-1 4.1106e+0 6.9629e-3 4.9413e-1 2.4540e-1 4.9662e-3 1.4862e+17.
S 4.9412e-1 5.2524e-1 4.1111e+0 7.0149e-3 4.9411e-1 2.4516e-1 4.0521e-3 1.4856e+1

Table 4: Theoretical Vs Simulation Results for Moments
T* - Theoretical results
S* - Simulation results

4. The General Algorithm for Approximate Analysis of
a Network of Discrete Time-Queues

This has been done under the following assumptions -

• All the external arrival processes are 2-MMBP
• All the queues are of finite buffer capacity.
• Cells are served as FIFO.
• No immediate feedback.
• Time slots are of equal length.
• Service time is geometrically distributed.

Algorithm 4

Step 0: First of all consider only feed forward flows of
the traffic in the networks. Start with any queue in the
network to which the arrival processes are external
known processes.
Step 1: Approximate the departure process of the queue
using algorithms [12] with another 2-MMBP by
appropriately computing the parameters of 2-MMBP.
Step 2: If the departure process is feeding N number of
queues with routing probabilities ci's, where

1
1

=∑
=

N

i
ic , then approximate the process after splitting

departed 2-MMBP in each routing branch by 2-MMBP
using proposed algorithm for splitting [12].
Step 3: Start again with the same queue as taken in step
0 by considering the feed backs from the queues. Do
iteratively steps 1, 2 and 3 until the parameters of 2-
MMBP for input to each queue become approximately
constant.
Step 4: Isolate each queue from the network together
with known arrival processes.
Step 5: Analyze each queue individually.

4.1 Verification of Analytical Approximations
through Simulations

 The network considered for analysis, shown in Fig. 6,
consist of three nodes. Each node has an input from 2-
MMBP source and each of them feeds the other two
nodes in the network. In Tables 5 and 6 we have given
the parameters of the external arrival processes and of
the nodes in the network respectively. Each queue is
decomposed and analyzed individually. In Table 7 the
theoretical and simulation results for Q1, Q2, Q3
respectively have been presented.
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Figure 6: A Three-Node Network

Process No. pi qi αi βi

         1 0.700 0.900 0.55 0.650
         2 0.999 0.999 1.00 0.008
         3 0.990 0.880 0.60 0.450

Table 5: External Arrival Processes

Node σ K
      1 0.050 15
      2 0.100 16
      3 0.089 25

Table 6: Node Parameters

Queue-1 Queue-2 Queue-3Parameters

Theoretical
Values

Simulation
Result

Theoretical
Values

Simulation
Result

Theoretical
Values

Simulation
Result

Throughput
(ρρd)

9.38919e-1 9.238172e-1
±4.67314e-4

5.98989e-1 6.032432e-1
±8.55418e-3

8.88478e-1 8.85953e-1
±6.87678e-4

Squ. Coeff.
of Var. (c2

dt)
6.61029e-2 1.030169e-1

±1.04369e-3
1.23977e+0 1.23051e+0

±1.33715e-2
1.24144e-1 1.29853e-1

±1.11745e-3
Mean_Q
Length

7.85669e+0 7.74869e+0
±4.16152e-2

8.11202e+0 8.21839e+0
±2.17318e-1

1.01332e+1 1.05162e+1
±1.51117e-1

Mean_Q
Delay

8.36779e+0 8.40704e+0
±5.26169e-2

1.35428e+1 1.36747e+1
±2.63935e-1

1.14051e+1 1.19265e+1
±2.05261e-1

Cell Loss
Probability

0.010200 0.010188
±2.54302e-4

0.231533 0.231168
±3.98390e-3

0.007042 0.007005
±3.79572e-4

Table 7: Parameters for all three queues

From the table one can see that the results from
proposed approaches are very close to the results
obtained from simulations and are also well within the
confidence intervals shown for a 96% confidence level.

5. Summary

We have developed a method for analyzing the
performance of general network of discrete-time finite
buffer capacity queues. This method may be useful in the
analysis of an ATM network where the ATM switching
nodes are modeled as discrete-time queues with finite
buffers. Our proposed approach is implemented by
extending the techniques available in the literature for the
analysis of discrete-time finite buffer queues. The
proposed algorithm has been used for the analysis of
discrete-time open queuing networks with finite buffer
capacity queues under rejection blocking. This is done by
isolating and modeling each switching node by a discrete-
time finite buffer queue. Isolation of the queues has been
carried out after computing the relevant details of the
arrival process to each queue.
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