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Peer-to-peer networks generally comprise of rational users. This leads to

the problem of free riding, i.e, users want to use resources from network but do

not want to contribute back to the network. This problem can be theoretically

explained on the basis of Prisoners’ Dilemma. The problem of free riding can be

overcome by providing suitable incentives for sharing. For proper provisioning

of incentives, some kind of reputation management system is required.

Peer-to-peer networks don’t have any central control or repository. Large size

of peer-to-peer networks makes the reputation management more challenging

task. Hence reputation management system should perform all the tasks in

distributed fashion. When these kind of systems are implemented, peers try to

deceive them to take maximum advantage. Whitewash and collusion are two
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ways to deceive the reputation management system. Here whitewash implies the

tendency of a peer to change its identity to avoid the bad reputation. Whereas

collusion means forming groups to deceive the system collaboratively.

Probabilistic allocation based on reputation may be a good option for alloca-

tion of resources because in this case nodes that don’t have very good reputation

about each other, may allocate at least some resource with finite probability. This

avoids disconnect between them.

In this thesis, various issues in different reputation management systems

have been explored. New algorithms for making a complete reputation manage-

ment system have been proposed. An algorithm for resource allocation on the

basis of reputation is proposed. The main objective of the thesis is to identify

the limitations of existing reputation management system and to solve them by

proposing new algorithms that are simple and light weight in implementation.

The thesis has been organized in the following six chapters.

Chapter 1 discusses Client Server and peer-to-peer architectures, their differences,

advantages and disadvantages. Classification of peer-to-peer networks have also

been presented. Problem of free riding, its theoretical justification on the ba-

sis of Prisoners’ Dilemma and experimental evidences on the basis of different

experimental [1, 2, 3] studies are presented.

Chapter 2 discusses the estimation of trust in peer-to-peer file sharing net-

work. Different uncertanities involved in measurement of trust are explained

and have been considered for trust estimation in the proposed algorithm. These

uncertanities include uncertainty due to load variation, uncertainty due to con-
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gestion, uncertainty due to multiple demands. Best Linear Unbiased Estimator

(BLUE) [4] is used for estimation. Proposed hypothesis has been verified through

simulation.

Chapter 3 discusses the aggregation of trust values from all nodes in the

network. Before aggregation, the aggregating node multiplies weight of every

node to the trust value shared by that node. These weighted trust values are

averaged to get a final aggregated trust value. Nodes perform distributed aver-

aging using a variant of gossip algorithm viz. ’differential gossip algorithm’ for

scale free networks. An upper bound for convergence time of differential gossip

algorithm has also been derived. Robustness of algorithm against collusion has

also been analysed theoretically. Simulation results are presented to understand

the performance of algorithm.

Chapter 4 discusses the problem of whitewashing and proposes a solution by

making initial reputation adaptive. Adaptive initial reputation algorithm has been

analysed and it is concluded that this algorithm discourages the whitewashing

tendency of users. Payoff for a newcomer and a whitewashing nodes are also

calculated in presence of permanent, free and finite cost identities respectively.

Chapter 5 proposes a resource allocation algorithm based on reputation.

Algorithms are presented for optimizing the shared capacity, reputation based

probabilistic allocation that is optimal for a node, and formation of interest groups

on the basis of similarity between interests of nodes. Generally in peer-to-peer

network many users have common interests but they may not necessarily form a

group. Simulation results are presented to verify the hypothesis.
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Chapter 6 discusses the major conclusions of the thesis, and suggest problems

that can be investigated further.
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Chapter 1

Introduction

1.1 Introduction

Exchange of knowledge and information has always been a strong desire of human

being. Internet has come up as a good medium for it. Traditionally internet has

been operated on client server model. Client server model is defined as a model

where one entity acts as server and other entities act as clients. Whenever a

client needs something, it asks server for the same. Server provides the requested

resource to the client. These kind of systems have problems of scalability and

have single point of failure. Initially, as the computers were expensive as well as

of low computing capacity client server structure evolved to share expensive and

high computing capacity server while using low cost ordinary clients..

Now a days, due to development of integrated circuit technology, computing

and storage become cheaper As a result, the difference of computing power be-

tween server and clients has reduced. Another consequence of this is that the

server cannot serve the same size of client population. Another innovation has
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happened in the form of optical fiber which provides very high bandwidths mak-

ing the bandwidth cheaper. The combination of above has made it possible to

talk about of almost equal status machines connected with a reliable network,

forming peer to peer network. Whenever a peer needs some resource, starts a

search among all peers in the network. The peer that have the requested resource,

serves the requesting peer. Scalability is not an issue in these kind of networks as

serving capacity of network is also growing with increase in the number of peers.

As all peers are equal, absence of any particular peer does not affect the system.

In this thesis words peer and node are used interchangeably.

1.2 Classification of Peer-to-Peer Networks

Peer-to-peer networks are classified on the basis of query resolution technique.

If object location is stored distributively following a specific algorithm, we call it

structured peer-to-peer network. Networks that do not follow any such algorithm

are called unstructured peer-to-peer networks.

Structured peer-to-peer networks are further classified as centralised, pure and

hybrid peer-to-peer networks. These are discussed in the subsections later.

1.2.1 Structured Peer-to-Peer Networks

Structured peer-to-peer networks are the networks where object location is stored

distributively following a specific algorithm. This algorithm ensures the faster

query response. Structured peer-to-peer networks guarantee the resolution of a
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query for the resource that is available in the network even for the rarest resource.

Structured peer-to-peer networks generally uses distributed hash table (DHT).

Example of such networks are Chord [5], Pastry [6], Tapestry [7] etc..

In such networks, objects’ locations are stored according to their hash values.

A map is created with the hash values of node ids. Objects are mapped to the

node that has nearest hash value to object’s hash value. If some node wants to

search some object, it computes the hash value of that object id and then looks up

the node that has id having hash value nearest to hash value of object id. Now

it contacts this node and asks about the location of said object. Once it gets the

location of object, it contacts the node that has the object and downloads it from

there directly. This process is explained in figure 1.1. In this figure, red lines are

used for query propagation whereas green lines are used for data transport. These

networks require high overhead to maintain graph for efficient query routing.

1.2.2 Unstructured Peer-to-Peer Networks

Unstructured peer-to-peer networks are those that do not follow any specific

algorithm for storage of object location. These networks are further classified on

the basis of query resolution.

1.2.2.1 Centralised Peer-to-Peer Networks

Centralised Peer-to-Peer networks are the networks that have one or more server

in the network. This server is used for indexing services. Indexing servers are

infrastructure nodes. When somebody wants to share some object, it informs the
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Figure 1.1: Structured Peer-to-Peer networks
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Figure 1.2: Centralised Peer-to-Peer Network

server about the object and its own address. The Server keeps this detail with

it. When any node needs an object, it asks indexing server about it. Indexing

server, inform the querying node the location of resource on the basis of indexing

entries. Once the querying node gets the information about the object’s location, it

directly contacts the concerned node and gets the object. This process is explained

in figure 1.2. Napster [8] is an example of such kind of peer-to-peer network.

1.2.2.2 Pure Peer-to-Peer Networks

Pure peer-to-peer networks are the networks where every node is equal to any

other node. These networks can be seen as a replica of human networks. When

some node wants to search any objects, it asks its neighbours. If neighbours

have that object, they reply to query otherwise they propagate the query to their
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Figure 1.3: Pure Unstructured Peer-to-Peer networks

neighbours and so on. When query reaches to a node that has the queried object,

it sends the response to the the query. The response follows the same path in

reverse direction, which was followed by the query. After getting the reply of its

query, querying node contacts directly to the responding node and gets the object.

This process is explained in figure 1.3. These networks are simple in nature and

do not guarantee the discovery of resource. There are many methods proposed

in literature to make search more efficient in such networks viz. random walk [9],

Bubblestorm [10] etc..

1.2.2.3 Hybrid Peer-to-Peer Networks

In hybrid peer-to-peer networks few nodes act as super nodes and others are

normal nodes. Super nodes play an important role in making search process
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efficient. In these networks, super nodes are mutually connected and normal

nodes are connected to one of the super nodes. When a node needs some object,

it asks a super node for the object. Super node asks other super nodes for that

object and in this way node gets the query resolved. Once the query is resolved,

node directly takes the object from the replying node. This process is depicted in

figure 1.4.

1.3 Free Riding in Peer-to-Peer Networks

Distributed nature of the peer-to-peer networks brings many challenges for sys-

tem designers. These networks are usually designed keeping in mind that every

node is honest and co-operative. It means, if some node takes some resource from

the community, it will also reciprocate to the community.

But nodes are the entities operated by rational human beings so they are ex-

pected to behave in a selfish manner i.e. they try to maximise their utility. This

results in their non co-operative behaviour. This phenomenon is explained by the

famous problem of game theory – Prisoners’ Dilemma which shows that individu-

als do not cooperate even if cooperation may yield better result. [11].

1.3.1 Game Theoretic Explanation of Free Riding

In this example, there are two prisoners A and B. They have been caught by police

and are suspect of a major crime. Police does not have proper evidences against

them. Police interrogates them separately. If both of them says that other one is
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Figure 1.4: Hybrid Unstructured Peer-to-Peer networks
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Cooperate(B) Defect (B)
Cooperate(A) (1,1) (10,0)

Defect(A) (0,10) (5,5)

Table 1.1: Payoff in Prisoners’ Dilemma

innocent, i.e. cooperate with each other, both will be convicted for a minor crime

and get a sentence of only one year. If A says that B is guilty and B says A is

innocent, i.e. A defects and B cooperates, A walks free and B gets sentence of

10 years. Similarly if B defects and A cooperates, B will be freed and A will be

sentenced for 10 years. If both defect, both of them will be sentenced for 5 years

each. These payoffs (Number of years prisoner is sentenced) are shown in table

1.1. First payoff is for player or prisoner A whereas second payoff is for player

or prisoner B. Prima Facie it seems that (Cooperate, Cooperate) gives the least

punishment so it should be the best strategy and hence both should follow it.

When this is analysed for players individually, we find out that it is not the case.

Considering the payoff for player A, it can be seen that when B cooperates, defect

will free the prisoner A whereas cooperate will put him in jail for one year. When

B defects, defect will put the prisoner A in jail for 5 years, whereas cooperate will

put him in jail for 10 year. Hence, it can be observed that for player A, defect is

the most optimal choice. Applying similar logic while considering the payoff of

player B, it can be observed that defect is the most optimal choice for B as well.

Therefore, the Nash Equilibrium (NE) of this game is (defect, defect), i.e., when

both prisoners deceive each other.

Similarly in a file sharing network, if there are two nodes, their interaction can

also be modelled as a two players Prisoners’ Dilemma game. If players get a payoff
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Share(B) Not Share(B)
Share(A) (d − s,d − s) (−s,d)

Not Share(A) (d,−s) (0,0)

Table 1.2: Payoff in two player File sharing system

of −s for sharing and d for downloading, the payoff table will be as follows. Here

nodes are considered as players. When both players share, both gets the payoff

of ( d − s), when one player shares and one does not then sharing player receives

the payoff of (−s) as there is nothing to download for him and non-sharing player

receives the payoff of (d) as he is not sharing any thing and when nobody shares,

no body gets any thing either positive or negative i.e. zero payoff. Analysing as

the above case like the prisoners dilemma, it can be observed that equilibrium of

the game is (not share, not share) i.e. with payoff (0, 0). It means that NE is the

point where none of them shares any resources [12]. This tendency of nodes to

draw resources from the network and not giving any thing in return is termed as

’Free Riding’.

1.3.2 Experimental Studies on Peer-to-Peer Networks

Experimental Studies on different peer-to-peer networks have been performed to

measure the level of contribution made by the nodes to the network. First study

was conducted on Gnutella network [13] in 2000 by Adar et al. [1]. In this study,

they observed the following points.

1. In Gnutella, 70% users did not share any file.

2. 5% of the hosts shared 70% of all the files.
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3. Top 1% hosts shared 25% and top 25% shared 98% of all files.

4. 63% of the peers, who shared some files, never answered a single query.

This may be thought as another form of free riding.

5. Free riders were found distributed equally through the network.

Another study in 2002 by Saroiu et al. [2] on Nepster and Gnutella networks

revealed the following points.

1. 25% of total hosts in Gnutella did not share any file.

2. 75% of total hosts in Gnutella shared 100 or less files and 7% of total hosts

shared major portion of total files shared in the network.

3. In Napster, 40% to 60% of hosts shared 5% to 20% of total files.

4. Peers were found to report less bandwidth than they were actually having.

One more study conducted on Gnutella in 2005 by Hughes et al. [3] which shows

that free riding increased over time since 2000. Their findings were, 85% of hosts

shared no file. This number is bigger than that was observed in 2000 by Adar et

al.. It is also reported that free riding is possible in Bittorrent. [14].

1.4 Solution to Free Riding Problem

In literature, various researchers have suggested different methods to combat

free riding. these methods have generally proposed to give some incentive for
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sharing or disincentive for not sharing or both [15, 16, 17, 18]. These incentives

are generally provided in terms of better quality of service to contributing node

and degraded quality of service to non contributing nodes when they request for

some resource. Few people have also come up with the idea of micro-payments,

i.e. every node should pay some amount of money for receiving the resource, to

the serving node [19].

To implement incentives or disincentives of any form, one needs methods a

system that may keep account of actions of a node. Such systems are termed as

reputation management systems [20, 21, 22, 23, 24]. In a peer to peer file sharing

network, trust or reputation of a node represents a measure of its co-operative

behaviour towards other nodes. A node seeking a resource from another node

measures the ratio of received resources to the requested resource after every

transaction and uses it to update the trust value. If a node imparts all the requested

resource, it’s reputation is considered as one and if a node always declines sharing

of resources, its reputation is considered as zero.

Eigen-Trust [21] depends largely on pre-trusted peers i.e. peers that are globally

trusted, this is scalable to a limited extent. Peer-Trust [20] stores the trust data

(i.e. trust values of all the peers in the network) in a distributed fashion. This

is performed using a trust manager at every node. In Peer-Trust, hash value of

a node id is calculated to identify the peer where the trust value of node will be

stored. Song et.al. [25] used fuzzy inference to compute the aggregation weights.

In Fuzzy-Trust, each peer maintains the local trust value and transaction history

of the remote peer. At the time of aggregation each peer asks for the trust value

from the qualified peers and combine the received values and locally existing
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values to compute updated trust values. Power trust [23] depends largely on

power nodes. Power nodes are few top reputation nodes in the network. It uses

score manager like trust manager in Peer Trust and Look ahead Random Walk

for aggregation. Gossip Trust [22] uses gossip algorithm for aggregation. PET

[24] categorises services qualities of different transactions into four types and then

compute the total average of a node by giving different weight to each category

of transaction.

In order to gain insight into intricacies of reputation systems, we can look into

what is implemented by on-line commerce portals. In e-commerce portals like

e-bay, people sell and buy different things on-line. Buyers and sellers generally

do not know each other, so the possibility of cheating or possibility of providing

a product or service of inferior quality always exist. To avoid this, e-bay uses a

rating based reputation system. After every transaction, user gives a feedback

rating to his counterpart and based on these ratings, reputation is decided. This

reputation helps users in making decision about transactions [26].

The advantage with e-bay like systems is that these have a central server which

keeps all the feedback rating and reputation related data. So, if a user wants to

check any other user’s reputation, he just asks the central server and receives

authentic information. In peer-to-peer file sharing networks, as there is no central

server, trust has to be estimated and stored by each node in a distributed fashion.

When reputation management is implemented, nodes try to deceive the system

to exploit the network. This results in problem of collusion and whitewashing.

Here whitewash implies the tendency of a peer to change its identity to avoid the
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bad reputation whereas collusion means forming groups to deceive the system

collaboratively.

Many authors have suggested that whitewashing can be totally removed if

system has permanent identities [27, 28]. Problem of whitewashing due to avail-

ability of cheap or free identities was initially pointed out by Friedaman et.al.

[29]. They proved that considering every newcomer as defector is a better policy

than any other static stranger policy. Whereas Feldman et.al. [30] proved that

newcomers should only be punished if turnover rate is high. They also proved

that a legitimate user can only win from a whitewashing user if newcomer will

be served well with a very small probability [31]. Yang et.al. studied Maze file

sharing system and concluded that incentives promote whitewashing [32].

Probabilistic allocation based on reputation may be a good method to allocate

the resources because in this case nodes that do not have very good reputation

about each other, may be allocated at least some resource with finite probability.

This avoids disconnect between them.

In this thesis, we have investigated a new algorithm for making a complete

reputation management system. The proposed system is robust against collusion

and whitewashing tendency of nodes. Moreover, it poses less overhead on the

system. An algorithm for resource allocation on the basis of reputation is also

proposed.

Rest of the thesis is organised as follows. Chapter 2 discusses the uncertanities

in trust measurement and proposes an estimator for trust estimation. Chapter 3

proposes a method to aggregate the opinions of different peers in the network
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to get the reputation of a peer. In this method every peer gives higher weights

to its trusted peers. The aggregation is performed using a variation of gossip

algorithm. An upper bound for convergence time of differential gossip algorithm

is also computed. Chapter 4 computes the payoff of cooperative peer and non

cooperative peer. It proposes a solution to avoid whitewashing tendency of non

cooperative peers when zero cost identities are used in the network. Chapter 5

proposes the reputation based probabilistic resource allocation algorithm. It also

proposes the algorithm to form common interest groups. Chapter 6 presents the

major conclusions of the thesis and possible future work.



Chapter 2

Trust Estimation in Peer-to-Peer
Network Using BLUE

2.1 Introduction

A good trust estimation method is required for efficient reputation management

system in peer-to-peer networks. Trust can be estimated in a very simple way

as the ratio of received to requested resources but this simple method can not

overcome the effect of noise (i.e. uncertainty) in the estimation of trust value.

We are proposing a trust estimation method using BLUE (Best Linear Unbiased

Estimator) [4]. This method overcomes the noise effects considerably and requires

almost same amount of memory and computation.

The remainder of this chapter is organised as follows. Section 2.2 discuses the

related work in reputation management while section 2.3 describes the system

model. In section 2.4 the estimator for trust using BLUE is derived. Section 2.5

presents the numerical results and section 2.6 concludes the chapter.
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2.2 Related Work

Different authors have used different approaches for measurement of trustworthi-

ness of a node. The trust is more if the contributions from the node are more. One

approach is to observe the contribution made by the serving node [15, 33, 34, 35].

Second approach is to consider the quality of service obtained from the serving

node [33, 36, 37, 38, 21, 20, 23, 22]. Another approach is to take the ratio of the

resources received and provided to a node [39, 40, 41]. It may be noted that in

this case reputation can be more than one. One more approach is to calculate the

ratio of the sum of resources received to the resource requested to that node for

last ten transactions [42].

Different methods are employed for measurement using the above said ap-

proaches. Eigen-Trust [21] uses sum of positive and negative ratings, Peer-Trust

[20] normalises the rating on each transaction whereas Power-Trust [23] uses

Bayesian approach to calculate reputation locally.

Mengshu et.al. [43] took the ratio of successful transactions to total transactions.

PET [24] categorises services qualities of different transactions into four types

and then compute the total average of a node by giving different weight to each

category of transaction. In [44], different reputation is been calculated for different

resources. In Fuzzy-Trust [25], nodes do fuzzy inference on parameters to calculate

the trust score locally for another node ’x’ and then aggregate it with trust scores

of the node ’x’ as received from other nodes using their weights. In [45], peer

maintains a binary vector of m bits. After a transaction, one or zero is added

at most significant position of the vector, after shifting right all the previously
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placed bits by one place. This trust vector is considered as a m bit binary number.

To compute the trust, value of the m bit binary number is divided by 2m. This

ensures that the trust value lies in between 0 and 1. But none of the above work

considers the uncertainties in the input while estimating the trust value.

2.3 System Model

There is no dedicated server in peer-to-peer networks and peers in this network

are rational, i.e. they are only interested in their own welfare. They are connected

to each other by an access link followed by a backbone link and then again by an

access link to the second node. We are assuming that the network is heavily loaded

i.e. every peer has sufficient number of pending download requests, hence these

peers are contending for the available transmission capacity. We also assume that

every peer is paying the cost of access link as per the use. So, every peer wants

to maximises its download and minimise its upload so that it can get maximum

utility of its spending and this leads to problem of free riding.

If a node is downloading, some other node has to upload. So the desired

condition is, download should be equal to upload for a node. Usually this means

that there is no gain. Even in this scenario the node gains due to interaction with

others. In any society, even when resources given and taken are same for each

participating entity, they have better chance of survival compared to a society

where there is no interaction. Thus interaction itself is an incentive for all the

peers as it increases their utility.
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A node will usually try to get the content and avoid uploading it as this

maximises gain for it. Thus free riding becomes optimal strategy. So, a reputation

management system needs to be enforced to safeguard the interest of every node

by controlling the free riding.

In reputation management system, every node maintains a reputation table.

In this table, the node maintains the reputations of the nodes with which it

has interacted. Whenever it receives a resource from some node, it adjusts the

reputation of that node accordingly. When a node asks for the resource from

this node, it checks the reputation table and according to the reputation value

of requesting node, it allocates resource to that node. This ensures that every

node is facilitated from the network as per its contribution to the network and

consequently free riding is discouraged.

For using such a reputation management system, a node needs to estimate

the trust value of the nodes interacting with it. This estimation can be made on

the basis of requested and actual transfer rates and other parameters after every

transaction.

A node can estimate the reputation of nodes with whom it is interacting. But

the existing neighbours may not always suffice and it may have to interact with

new nodes. At that point it can either use a default initial reputation or some

estimate which is maintained via reputation management mechanism. For an

efficient p2p network, we would like to use some realistic estimate of reputation

of new node. Next chapter describes a reputation management mechanism.

The trust can be estimated by the various methods as described in the literature.
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We have modified one such method where a node estimates the trust by

tk
i j =

Zk
i j

Requk
i j

. (2.1)

Here Requk
i j

represents the amount of resources requested by node i from node j

for kth transaction; Zk
i j

represents the amount of resource received by node i from

node j in kth transaction.

In estimation of trust value by such a method, few important points are missed

out. These points are as follows.

1. In peer-to-peer networks, when a peer asks for some resource, it is not

guaranteed that it will get the asked resource. So, generally peer asks for

larger amount of resource than needed and when it is offered more resource

than its requirement, it refuses the extra offered resource. Also, it does not

give any credit for this extra offer.

2. Once requesting node decides about the node from which it is going to

take data, both of the nodes decide about the rate of data according to their

upload and download capacities. But at the same time underlying network

may not be able to provide the agreed data rate because of congestion in the

network at different routers. So, even if service provider node is willing to

give data, it may not be able to send at the committed rate, due to limitations

of underlying transport network. This affects the reputation assignment as

reputation is assigned on the basis of actual data rate.

3. If some node has already got too many requests, it will not be able to provide

the quality of service that it could have provided with lesser load. To avoid
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the distortion due to the above fact, the requesting node should estimate the

reputation of service provider node considering the load and the previous

transactions with that node.

One may argue about having a minimum QoS constraint. If this constraint is put,

then a node with the resource will provide the service only when it can provide

the QoS above a threshold. In this case also, the requesting node will assume that

the serving node is not cooperating and thus will reduce its reputation drastically.

While, providing service even with lower QoS indicates that the serving node is

willing but it may have bandwidth constraints. Thus the reputation reduction may

be subtle and not drastic considering the earlier behaviour. Although it is possible

that a serving node may only provide the service if QoS is above a threshold, but

in this case the reputation should be estimated with much less successful sample

interactions with serving nodes and many more interaction where service was

not provided. The successful interaction need to somehow indicate that the

serving node is not responding intentionally due to QoS constraint and not due

to unwillingness to provide the service.

To resolve the above issues, Node will use equation (2.8) for calculation of trust

value (ti j).

Let the data rate qr,i j is requested by the node i. At the serving node, qw, ji,

the willing service rate from node j to node i, is decided according to point 3

mentioned in earlier paragraph. As qw,i j will change according to qr,i j, an estimate

of
qw, ji

qr,i j
is desirable.
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Assuming that reputation of node i for node j is r ji, we can see that,

qw, ji = f (qr,i j, r ji, ν j).

Here, ν j is an arbitrary constant chosen by node j and will range from 0 to 1. As

this is a distributed scenario, nodes will not be bound by rules and they will act

as per their wish. It is not guaranteed that a node will serve strictly as per the

value obtained on the basis of earlier requests made by a node and the reputation

of that node. The vj takes care of this tendency. v j = 1 implies that node is serving

as per the value obtained from function whereas v j = 0 implies that node is not

providing any service. One possible way to decide qw, ji can be,

qw, ji = qr,i j · (r ji)
x · ν j.

Here x is a reputation exponent. Value of x will be same for all the nodes in

the network. The details about x are given in section 4.4. Nodes can decide

individually on the mechanism of computing qw, ji. Generally with higher r ji and

qr,i j, a higher qw, ji should be chosen. After deciding willing service rate for all the

requesting nodes, two different conditions are possible,

∑

i

qw, ji ≤ B j,

=⇒ ∀i, qo, ji = qw, ji.

or
∑

i

qw, ji > B j =⇒ qo, ji ≤ qw, ji

such that
∑

i

qo, ji = B j.
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Here B j is the shared bandwidth of node j and qo, ji is the offered service rate from

node j to node i. Thus we can write

qo, ji[n] = qw, ji[n] − w̃ ji[n]

=⇒ qo, ji[n]

qr,i j[n]
=

qw, ji[n]

qr,i j[n]
− w̃ ji[n]

qr,i j[n]
(2.2)

Here n is time instant.
qo, ji[n]

qr,i j[n]
is observable quantity and

w̃ ji[n]

qr,i j[n]
is the uncertainty due

to demand variation on node j in the network. Equation (2.2) can be written as,

Qo, ji[n] = Qw, ji[n] − W̃ ji[n] (2.3)

Here Qo, ji[n], Qw, ji[n] and W̃ ji[n] are
qo, ji[n]

qr,i j[n]
,

qw, ji[n]

qr,i j[n]
and

w̃ ji[n]

qr,i j[n]
respectively. We can see

that Qw, ji[n] = (r ji)
α · ν j will remain constant over the time, so it can be replaced by

Qw, ji. Let us assume that mean value of W̃ ji[n] is W̃ ji and the ratio of W̃ ji and Qw, ji

is C ji given by

C ji =


1 − 1

C ji,1×C ji,2
, if C ji,1 × C ji,2 > 1.

0, otherwise.
(2.4)

Here

C ji,1 =
requests made by the node

download capacity o f the node
(2.5)

C ji,2 =
total capacity shared by the nodes in the network

total requests made by nodes in the network
. (2.6)

Here C ji,1 is the ratio of the total request made by the node to the download

capacity of the node i.e. how much node over requested, and C ji,2 is the ratio of
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Figure 2.1: Process Diagram

total capacity shared by all the nodes to the total requests made in the network

by all the nodes. C ji,2 is statistically the average upload capacity against the unit

request made by a node in the network. Multiplying C ji,2 with C ji,1 will give us

the average upload capacity per unit download capacity of the node. We have

assumed that uncertainty have identical distribution for every sample and all the

samples are independent, i.e. the noise samples are i.i.d.. Hence, we expect every

sample to have same variance. Let us assume this variance be σ. Estimate for qw, ji

i.e. q̂w, ji is derived in section 2.4.

Once a node gets an offer from some node, it may act in three ways, first, it

may completely accept the offer, second, it may partially accepts the offer or third
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it may not accept the offer as mentioned in point 1 in this section. So

qo, ji = qi j,ay + qi j,an. (2.7)

Here qi j,ay and qi j,an are accepted and not accepted data rates respectively. The

reputation must be given on the basis of qi j,ay and not qo, ji as it is most likely the

actual transfer rate. It is given by,

ti j =

(

qa, ji

min(qi j,ay, q f , ji)

)1−ηi

×
q̂w, ji

qr, ji
. (2.8)

Here qa, ji is actual service rate i.e. the average rate at which receiver receives

the data, q f , ji is feasible service rate (point 2) i.e. the rate at which the TCP Reno

algorithm can get the throughput via underlying link with packet loss probability

p. Here we are assuming that underlying transport layer is using TCP Reno

algorithm. This rate can be computed using the equation (2.10) [46].

Equation 2.8 is the multiplication of two factors viz.
q̂w, ji

qr, ji
and
(

qa, ji

min(qi j,ay,q f , ji)

)1−ηi

.
q̂w, ji

qr, ji

i.e. the ratio of estimated willing service rate and requested service rate gives the

value of trust as per willing service rate. Whereas
(

qa, ji

min(qi j,ay,q f , ji)

)1−ηi

ensures that node

is not playing a game by offering more data rate and not serving it. Value of ηi will

decide the amount of penalty in case of cheating by the offering node. This means

that node will be punished for offering more and actually providing less. The

ηi = 0 means maximum punishment whereas ηi = 1 means that no punishment is

given to the node for the difference in the offered and actual provisioning. The ηi

can be decided by a node based on its experience with network. To compute the

value of ηi, node i can take the exponential moving average of the ratio
qa, ji

min(qi j,ay,q f , ji)
,
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i.e.,

ηi(n) =
βi(n − 1) + ηi(n − 1)

2
. (2.9)

Here βi(n) = (
∑

j

qa, ji(n)

min(qi j,ay(n),q f , ji(n))
)/
∑

j 1 and ηi(1) = βi(1). If node will not accept

the offer, the value of
qa, ji

qi j,ay
will be taken as a limiting case of 1 as both qa, ji =

min(qi j,ay, q f , ji) = 0.

q f , ji ≈




Wmax

RTT
,

1

RTT

√
2bp

3
+ T0 ·min

(

1, 3

√
3bp

8

)

p(1 + 32p2)



. (2.10)

Here q f , ji is the feasible service rate as a function of packet loss probability p;

Wmax is the maximum window opened by the receiver; RTT is the round trip time

between the two nodes; T0 is the time-out period and b is the number of packets

acknowledged by a single acknowledgement.

Fig 2.1 shows the process starting from resource query to trust estimation. In

this process when a node i needs a resource; it pushes a query in the network for

resource. If node j has the asked resource, it replies to node i. Then requesting

node requests to node j, the data rate it want. Node j replies to node i as per its

shared capacity and request made by node i. After getting all such replies from

different nodes like j, node i handshakes with the replying nodes as per their

replies and its own download capacity. This process is followed by data transfer.

After data transfer, requesting node estimates the willing service rate for each

replying node and finally calculates the reputation of these nodes on the basis of

actual transfer rate and willing service rate.
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2.4 Estimation of Trust

Based on observed values of trust, exact trust value can be estimated using some

estimator. We have used Best Linear Unbiased Estimator (BLUE) [4] for this

purpose. Taking expectation in eqn (2.3)

E[Qo, ji[n]] = E[Qw, ji] − E[W̃ ji[n]], (2.11)

= Qw, ji − W̃ ji.

so the scaled mean will be

S[n] =
E[Qo, ji[n]]

Θ
(2.12)

where Θ = Qw, ji is the parameter to be estimated

S[n] =
Qw, ji − W̃ ji

Qw, ji
= 1 − W̃ ji

Qw, ji
.

So

S =
(
1 − W̃ ji

Qw, ji

)
11×M. (2.13)

Here 11×M is a 1 ×M matrix of 1s i.e. [111111.............1]T.

The covariance matrix

Cov =




σ2 0
0 σ2 0
. . .
. . .

0 σ2




M×M

, (2.14)
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Cov = σ2IM×M. (2.15)

As we know that the BLUE [4] is

Q̂w, ji =
StCov−1Qo,ji

StCov−1S
(2.16)

substituting the values,

Q̂w, ji =

(
1 − W̃ ji

Qw, ji

)
1t 1
σ2 IM×MQo,ji

(
1 − W̃ ji

Qw, ji

)
1t 1
σ2 IM×M

(
1 − W̃ji

Qw,ji

)
1

(2.17)

solving, we get

Q̂w, ji =

1
N

n∑
k=n−M

Qo, ji[k]

1 − W̃ ji

Qw, ji

=
Qo, ji[n]

1 − W̃ ji

Qw, ji

So, we can see that we need to compute the sample mean of all the samples

and the ratio of noise mean and parameter mean.

This formulation have a problem that it is difficult to compute the sample mean

when the number of samples is large. We can use moving average to estimate

Qo,i j[n] as,

Qo, ji[n] = α ·Qo, ji[n] + (1 − α) ·Qo, ji[n − 1]. (2.18)
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Here α depends on the rate of change of behaviour of nodes. Initially Qo, ji[1] =

Qo, ji[1].

Value of C ji,2 is estimated regularly on the basis of its download capacity and

total requests made. Whereas value of C ji,2 for complete network, is difficult

to find. Nodes will gather the capacities shared and requests made by their

neighbouring nodes. On the basis of this data, nodes will evaluate the value of

C ji,2 locally and then exchange this value with its neighbours. The values received

from different neighbours will be averaged to get a better estimate of C ji,2. This

process will be done periodically.

As shown in section 2.2, estimation of trust has been done by a number of ways

in literature. We are considering just one of these. But the uncertainties have not

been generally considered in all of these. So the method similar to above can be

modified for estimating trust from the observables.

2.5 Numerical Results

Performance of estimation method proposed in this chapter has been evaluated

for 200 node network. We have considered the discrete time instants for the

purpose of measurement and estimation in the simulations. Every slot is termed

as an iteration. At the start of every slot every node queries for some resource

and after getting the reply it requests for resource from the replying nodes. A

node asks for the resource as per its download capacity from the nodes having

the resource. Requested nodes allocate their bandwidth as per their reputation
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Figure 2.2: absolute change in reputation for homogeneous network

table in a probabilistic manner. Number of requests that a node will serve is fixed.

For homogeneous network it is same for every node. Whereas, it is different

in heterogeneous network. Finally requesting node and requested nodes will

transact after the negotiation of resource transfer rate. At the end of slot each node

updates its reputation table as per the quality of transaction. First 50 iterations

have been taken as acquaintance period i.e. a node will allocate their bandwidth

without referring to the reputation table.

We have plotted the absolute change in reputation estimation with increasing

number of iterations up to 500. Here, absolute change in reputation (∆t) is

∆t(itr) =
∑

i, j

|ti, j,itr − ti, j,itr−1|. (2.19)
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Figure 2.3: absolute change in reputation for heterogeneous network

Here, ti, j,itr and ti, j,itr−1 are the reputation of node j after iteration itr and itr − 1

respectively, as estimated by node i. The N is total number of nodes.

In figure 2.2, ∆t is plotted by taking the average of last ten measurements as

proposed in [42] and according to our proposed reputation estimation method for

homogeneous network. In figure 2.3,∆t has been plotted for the same methods but

for heterogeneous networks. For the above simulations, we have considered 200

nodes once with α=0.1 and then with α=0.3. Homogeneous network means that

all the nodes have same download capacity and are ready to provide resources to

same number of nodes. Whereas by heterogeneous network, we mean that nodes

have different download capacities and are ready to serve different number of

nodes.
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Figure 2.4: Network utilisation by a homogeneous network of 200 nodes

This is evident in both figure 2.2 and 2.3 that using estimator, the change in

reputation is less. This implies that by use of proposed estimator, reputation can

be estimated more accurately.

In figure 2.4 and 2.5, the utilisation level of shared resources in the network is

plotted for homogeneous and heterogeneous networks of 200 nodes for α = 0.1

and 0.3 respectively.
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Figure 2.5: Network utilisation by a heterogeneous network of 200 nodes

2.6 Conclusion

In peer-to-peer networks, free riding is a major problem that can be overcome

by using reputation management system. In this chapter we have proposed an

estimation technique using BLUE.

The proposed trust estimator considers uncertainties in the trust estimation.

The absolute change in trust values in the trust table of nodes is considerably

less than the older techniques. It implies that reputation can be estimated more

accurately using this estimator. The better estimation of reputation will lead to a

better counter measures against free riding in a peer-to-peer system.



Chapter 3

Reputation Aggregation in
Peer-to-Peer Network

3.1 Introduction

Good methods for trust aggregation need to be designed for an effective reputation

management system. Aggregation of trust generally consumes a lot of time and

memory. It becomes even more difficult when number of nodes is large. Moreover,

existing methods assume that the reputation of a peer must have a global value,

i.e. peers behave uniformly with all other peers, but this is not true at least in the

case of selfish nodes. In this work, the trust estimated by a node directly, trust

reported by neighbours and trust averaged using a variation of gossip algorithm

[47] are aggregated to make trust vector at each node.

This algorithm has been simulated to work with networks having power law

degree distribution, i.e. networks formed by Preferential Attachment (PA) model.

The PA graphs are introduced in [48] and formally defined in [49]. According to
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[49], Gm
N is converted from Gm

N−1
when a new node joins the network with m edges.

The joining node chooses the node i with probability Pi. Here

Pi =
degree o f node i be f ore this connection is made

sum o f degree o f all the nodes be f ore this connection is made
.

Remainder of this chapter is organised as follows. Section 3.2 discusses the

related work in reputation management. Section 3.3 describes the system model.

Section 3.4, proposes differential gossip trust algorithms for aggregation of trust.

Section 3.5 presents the analysis and numerical results. Section 3.6 concludes the

chapter.

3.2 Related Work

Many methods [21, 20, 25, 23, 22] have been proposed for reputation aggregation

in the literature. Eigen-Trust [21] depends largely on pre-trusted peers i.e. peers

that are globally trusted, this is scalable to a limited extent. Peer-Trust [20] stores

the trust data (i.e. trust values of all the peers in the network) in a distributed

fashion. This is performed using a trust manager at every node. In Peer-Trust,

hash value of a node id is calculated to identify the peer where the trust value

of node will be stored. Song et.al. [25] used fuzzy inference to compute the

aggregation weights. In Fuzzy-Trust, each peer maintains the local trust value

and transaction history of the remote peer. At the time of aggregation each peer

asks for the trust value from the qualified peers and combines the received values

and locally existing values to compute updated trust values. Power trust [23]

depends largely on power nodes. Power nodes are few top reputation nodes in

the network. It uses score manager like trust manager in Peer Trust and Look
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ahead Random Walk for aggregation. Gossip Trust [22] uses gossip algorithm for

aggregation. Generally earlier works [21, 20, 23, 22] assume that reputation of a

peer must have a global value, i.e. peers behave uniformly with all peers. But

this is not the case due to nodes being selfish in nature. A peer behaves with

different decency levels with different peers. The same holds for the opinion as

well, i.e. peer gives different weights to opinions of different peers. These aspects

have been taken into account in our algorithm called Differential Gossip Trust.

The current work combines local, reported value from trusted neighbours and

global trust using a new variation of gossip to define a novel trust aggregation

algorithm.

3.3 System Model

In this work we are studying a peer-to-peer network. Typically there will be

millions of nodes in a peer-to-peer network. These nodes are connected by a

network graph generated by PA process Gm
N [50] for m ≥ 2. Generally nodes will

have small number of neighbours. Here by neighbour, we mean, that these nodes’

addresses is stored with the node.

There is no dedicated server in this network. Peers in this network are rational,

i.e. they are only interested in their own welfare. They are connected to each

other by an access link followed by a back bone link and then again by an access

link to the second node. We are assuming that the network is heavily loaded

i.e. every peer has sufficient number of pending download requests, hence these

peers are contending for the available transmission capacity. We also assume that
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every peer is paying the cost of access link as per the use. So, every peer wants

to maximise it’s download and minimise it’s upload so that it can get maximum

utility of it’s spending and this leads to problem of free riding.

If a node is downloading, some other node has to upload. So the desired

condition is that the download should be equal to upload for a node. Usually

this means that there is no gain. Even in this scenario the node gains due to

interaction with others, as the chance of survival increases. Thus, interaction itself

is an incentive. A node will usually try to get the content and avoid uploading

it as this maximises gain for it. Thus free riding becomes optimal strategy. So a

reputation management system need to be enforced to safeguard the interest of

every node by controlling the free riding.

In a reputation management system, every node maintains a reputation table.

In this table, the node maintains the reputations of the nodes with whom it

has interacted. Whenever it receives a resource from some node, it adjusts the

reputation of that node accordingly. When another node asks for the resource from

this node, it checks the reputation table and according to the reputation value of

the requesting node, it allocates resource to the other node. This ensures that

every node is facilitated from the network as per its contribution to the network

and consequently free riding is discouraged.

For using such a reputation management system, the nodes need to estimate

the trust value of the nodes interacting with them. There are number of ways to

estimate reputation [51]. We assume that trust value observed by node i for node

j can be defined as ti j.
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3.4 Aggregation of Trust

Whenever a node needs a resource, it asks from its neighbours; if they have the

resource, the node gets the answer of its query. If neighbours do not have it,

they forward the query to their neighbours and so on. The node that have the

resource, replies back to the requesting node. The requesting node now asks for

the resource from the node having the resource. The answering node provides

the resource now directly according to the reputation of the node.

If a node receives a request from another node that is not its neighbour, the

reputation of that node needs to be estimated some how in order to decide the

quality of service to be provisioned. If two nodes are going to transact for the

first time they should have reputation of each other with them. This can be done

by getting the reputation of node from neighbours and then using it to make an

initial estimate. When for a node, multiple trust values are received, we need an

aggregation mechanism to get the trust value. Trust value should always lie in

between zero and one.

For the whole network, we can define a trust matrix t, a matrix of dimensions

N × N. Here ti j represents the trust value of j as maintained by i based on direct

interaction. This matrix is generally sparse in nature as generally a node will have

very small number of neighbours as compared to total number of nodes in the

network. It may be noted that ti j is estimated based on transaction between nodes

i and j and can be called as local trust value. These trust values will be propagated

and aggregated by all the nodes in the network. The trust estimate which should

be actually used will be based on aggregation of local trust values and trust
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estimates received from neighbours. For the reputation information received from

direct neighbours, the weights can be assigned based on neighbours’ reputation.

3.4.1 Differential Gossip Trust

We have modified the gossip based information diffusion algorithm to form a

innovative differential gossip information diffusion algorithm. It allows faster

diffusion of trust values to enable faster estimation of global trust vectors at all

the nodes. The algorithm can be divided into two parts. In first part, we will

discuss about the method of information diffusion whereas in second part, we

will discuss about the information that is to be diffused.

3.4.1.1 Differential Gossip Algorithm

Gossip Algorithms are used for information spreading in large decentralised

networks. These algorithms are random in nature as in these algorithms, nodes

randomly choose their communication partner in each information diffusion step.

These algorithms are generally simple, light weight and robust for errors. They

have less overhead compared to deterministic algorithms [47], [52]. Gossip algo-

rithms are also used for distributed computation like taking average of numbers

stored at different nodes. These algorithms are suitable for computation of repu-

tation vector in peer-to-peer networks [22].

There are three types of gossip algorithms: push, pull and push-pull. In push

kind of algorithms, in every gossip step nodes randomly choose a node among its

neighbours and push their information to it. Whereas in pull algorithms, nodes
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take the information from the randomly selected neighbouring nodes. Both these

processes happen simultaneously in the push-pull based algorithms.

In [22], push gossip algorithm as given in [47] has been used. This algorithm

considers that network is a complete graph but in reality peer-to-peer networks

will be generally based on Preferential Attachment(PA) model [49], [50]. In networks

based on PA model, the nodes can be divided into two types [53] viz. power nodes

and low degree nodes. Power nodes are the nodes that have high degree (of order

of Nϵ). The degree of low degree node is of the order of log2(N). Low degree

nodes form a linear sub graph within the network with diameter of the order of

log2(N). Here N is the number of nodes in the network, and ϵ is a constant greater

than zero.

Chierichetti et.al. [53] stated that in PA model based networks, push or pull

alone cannot spread the information with a reasonably fast speed. If push model

is implemented and the information is with a power node, it will take many

rounds in pushing information to low degree nodes. If pull model is being used,

and the information is with low degree node, it will again take many rounds for

a power nodes to pull the information. This phenomenon will be more evident

in average computation using push gossip algorithm or pull gossip algorithm as

information with every node needs to be distributed to every other node.

To avoid this problem we propose differential push gossip algorithm. In this

algorithm, every node makes different number of pushes in a single gossiping

step. Here, we make three assumptions, i) every node has a unique identification

number known to every other node. So, if some node pushes some information
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about some other node, receiving node knows that this information is about which

particular node; ii) time is discrete; and iii) every node knows about the starting

time of gossip process.

All nodes that have some feedback about a single node, gossip their feedback

about that single node. All the nodes estimate the global reputation of the single

node based on the outcome of gossip. Let the feedback about the jth node by node

i be yi j. If it does not have any feed back about j it keeps the value of yi j as 0.

Every node that have feed back about node j assumes the gossip weight gi j as 1

and rest of the nodes assume the gossip weight as zero. It is done so because as

a result of gossip every node coverages to the ratio of summation of all gossiped

values and summation of all gossip weight, i.e.
∑

i yi j∑
i gi j

. If only one node will assume

gossip weight as 1 and rest will assume as 0, it is evident that nodes will converge

to summation of gossiped values.

Every node also pushes its degree to the neighbouring nodes. Thus all the

nodes can calculate the average degree of their neighbours. Every node has yi j

and gi j as information to be gossiped. Let us call this pair as gossip pair. The

ratio of gossip pair is tracked in every step to decide on convergence. Every node,

first calculates the ratio k of its degree and average degree of its neighbours. As

k will be a real number hence it is rounded off to nearest integer if k ≥ 1. For all

other cases k = 1. The node chooses k nodes randomly in its neighbourhood and

sends ( 1
k+1

yi j,
1

k+1
gi j) as gossip pair to all randomly selected k nodes and itself. In

this algorithm every node receives contribution from other nodes. In this process

node starts with no value and in every step receives contribution from some new

nodes and once it receives contribution from all the nodes in the network, it gets
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the aggregated value. By pushing to itself, node is retaining the contributions that

it has received till the start of current round. The node is also considered as one

of the neighbour of itself.

After receiving all gossip pairs from different nodes including itself, the node

sums up all the pairs. This summation now becomes new gossip pair. The ratio of

this gossip pair is the value that node has evolved in this step. If at least one gossip

pair has been received from a node other than itself, the condition of convergence

will be checked between the ratios of this step and last step with a predefined error

constant. If convergence condition is satisfied, it means a node need not run the

gossip process any more for its convergence. But once convergence is achieved by

a particular node, convergence of other nodes is not assured. Hence, if a node will

stop gossiping, convergence of its neighbours may suffer. To avoid this problem,

once a node gets converged, it will announce among all its neighbours that it

has achieved convergence. Every neighbour will note this announcement. When

a node will achieve convergence and listens about the convergence of all of its

neighbours it will stop gossiping.

When a round of gossiping starts it takes some time to complete. After gossip-

ing, nodes get a value that is used till the next new value is converged upon at

the end of next round. After the end of a round, next round of gossip will start

after some time. The time difference between two rounds will depend upon the

change in behaviour of nodes in the network and number of new nodes coming

in the network. For simplicity, this time difference has been taken as constant. In

reality, this should be dynamically adjusted.
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3.4.1.2 Differential Reputation Aggregation

When some node j requests resource from some node i, node i needs the reputation

of node j so that it can decide the quality of service to be offered to node j. There

are two possible conditions between node i and node j. First, node j may have

served node i earlier and hence node i has some trust value about node j. In this

case there is no problem for node i and node i will serve as per the reputation

available with it. Second, node i and node j are unknown to each other. In

this case node i needs general reputation about node j. For this, aggregation of

reputation is needed.

Aggregation of reputation should not be resource intensive and free from col-

lusion and whitewashing. We can have two kind of options for this. First by

gossiping, all the nodes can reach on consensus about the reputation of j [22].

Second all the nodes exchange their reputation tables about the nodes they have

interacted with and this process should always be running, like executing a rout-

ing protocol at network layer. First process is more vulnerable to collusion where

as second process is resource intensive. As we can see that unstructured peer-to-

peer network is very similar to human network. So observing human network

and identifying a solution from it will be a better idea. In human network when

we need the reputation value of some body we rely on personal experience with

him. If we don’t have any personal experience with him, we rely on two things.

First the general perception about him which we receive from gossip flowing

around and second the information given by our friends if they have any direct

interaction with him. We combine these two and act accordingly.
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Nodes follow the same kind of approach, in our proposed algorithm. The nodes

gather opinion of their neighbours and combine it with the opinion, obtained

from general gossip after weighing neighbours opinion according to confidence

in neighbours. In general it can be said that a node gives weight to every node

in the network. The nodes that have not interacted with it are given weight as 1

where as those which have interacted are given weight according to the confidence

in them (always ≥ 1).

Let us consider that there are N nodes in the network. Every node periodically

calculates the trust value of other node on the basis of quality of service provided

by that node against the requests made. Let us assume that ti j is the trust value

measured by node i for node j. Here ti j (1 ≤ i, j ≤ N) will always lie between 0

and 1 such that ti j = 1 will represent complete trust in node j whereas ti j = 0 will

represent no trust in node j.

If a node has not transacted with a node its trust value will also remain 0 with

that node. This value is taken as 0 to avoid the white washing attack. Initially this

value can be taken higher than zero and can be dynamically adjusted thereafter as

per the level of whitewashing in the network. In this work, we have not studied

this aspect.

We will discuss the algorithm in four different variations. In the first variation,

global reputation aggregation for a single node will be discussed. In the second

variation, we will discuss globally calibrated local reputation aggregation for

this single node. In third variation, global reputation aggregation for all the

nodes simultaneously will be discussed, and finally in fourth variation globally
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calibrated local reputation aggregation for all the nodes simultaneously will be

discussed.

In the first variation to keep things simple we are assuming that weights of

all nodes for every node are 1. This leads us to calculation of global reputation

(Rglobal) of a node. This can be equivalently represented using matrix vector

multiplication as follows,

Rglobal(n + 1) =
1

N
(tT(n) × 1N×1) (3.1)

Here n is the time instant and ri is global reputation of ith node and is also ith

element in Rglobal(n + 1) column vector. 1N×1 is a vector of N 1′s, i.e. [1111.......]T.

Differential Gossip algorithm is used for doing this computation in distributed

fashion. This process is shown in algorithm 1. Although each node considers

the average of feedback from every node in the network, it is desirable to assign

different weights to the direct feedback received from neighbour nodes. The direct

feedback from a node is based on the direct interaction which it has experienced.

The weights can be assigned by a node on the basis of number and quality of

transactions made with the node providing the feedback. The trust value of a

node is a good representation of quality and number of transactions. The weights

for different nodes can be derived on the basis of the trust values of these nodes.

Same idea is used in second variation of algorithm where nodes are calculating

globally calibrated local reputation vector. So in second variations, we propose

the weight wi j to be of the form:

wi j = a
bi j·ti j

i
. (3.2)

Here ai and bi j are two parameters that a node can decide on its own. First
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Algorithm 1 Global Reputation aggregation for a single node

Require: ti j (The reputation estimated by node i for node j only on the basis of
direct interaction) for 1 ≤ i ≤ N, gossip error tolerance ξ

Ensure: Global Reputation of node j (R j)
if i has some reputation value about j then

Assume weight gi j = 1, and yi j = ti j

else
Assume weight gi j = 0, and yi j = 0

end if
Push self degree to neighbouring node
Take the average of neighbour degree
Calculate the ratio of its degree and average of neighbour degree (ki �

degree o f i

average neighbour degree
)

Round off ki to nearest integer for ki ≥ 1 else take ki = 1
m � 1 {Initialise Gossip Step}

u � yi j

gi j
for nodes having gi j � 0.

repeat
(yrj, grj) are all pairs (of gossip weight and gossip value) received by the node
i in the previous step
yi j � ∑

r∈R
yrj; gi j � ∑

r∈R
grj {update gossip pairs}

{R is the set of nodes sending the gossip to i}
choose ki random nodes in its neighbourhood
send gossip pair ( 1

ki+1
yi j,

1
ki+1

gi j) to all ki nodes and also to itself
m � m + 1 {increment the gossip step}
if |R| > 1 then

if |
yi j

gi j
− u| ≤ ξ then

Inform all neighbours about self convergence
end if

end if
u � yi j

gi j

until Self convergence and all neighbours’ convergence has happened

output
yi j

gi j
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parameter can be adjusted according to the overall quality of service received by

the node from the network, whereas second parameter can be adjusted according

to the recommendation of a particular neighbour and quality of service from

the network. So the second parameter will be adjusted for every neighbour

independently. For this work, ai and bi j has been taken as constant for every node

for simplicity. This form of weight provides higher weight to the opinion of nodes

that have good relation with aggregating node. The level of discrimination among

the opinions are decided with the value of ai and bi j. These values are proposed to

be decided by the node on the basis of its experience. These kinds of weights also

ensure that every nodes opinion is taken into account with some weight.Salient

features of this scheme are as follows.

• Even if a node has no neighbourhood relation with the estimating node, its

feedback will still get some consideration.

• If a node has bad reputation with estimating node, its feedback will have

weight close to the node which have no neighbourhood relation with the

estimating node.

• Nodes with higher reputation will be given higher weights and it will help

in making better quality of service groups.

• Values of ai and bi j can be dynamically adjusted by nodes as per their re-

quirement. Though in this work, ai and bi j have been taken as constants.

• Collusion will be significantly reduced.

A weighted trust matrix, that is different at every node, is formed by multiplying
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trust values with weights i.e. for node I, the i j element in weighted matrix will be

WIi j such that,

WIi j = wIi × ti j. (3.3)

A node gives high weight to the feedback given by nodes according to the quality

of service provided by them. This leads to the calculation of globally calibrated

local reputation vector. It is a collection of the reputations of all the nodes in the

network according to received feedback about the node under consideration and

the weight of node giving the feedback to calculating node. It means if some node

I is calculating globally calibrated local reputation vector, the jth element of this

vector will be

RepI, j =

∑
i

WIi j

∑
i

wIi
. (3.4)

Now globally calibrated local reputation at node I, RI can be equivalently repre-

sented as the matrix vector multiplication

RI(n + 1) =
1

SI
(WT

I (n) × 1N×1). (3.5)

Here SI =
∑
i

wIi. It is interesting to see that if we consider the weights of all nodes

as 1 in (3.5), this equation degenerates to (3.1).

Each node will have four different kind of data about other nodes - first ti j i.e.

the trust value as result of direct interaction, second yi j, the intermediate variable

for gossiping and third gi j, gossiping weight. In the start of every gossiping round

yi j assume the value of ti j whereas gi j will be 1 only for one value of i, and 0 for

all others. This will happen for all i and j. Fourth value Repi j is obtained after

gossiping and consideration of neighbours opinion. It will also be maintained
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at every node. Apart from these four entities, we also wants to count the total

number of nodes opining about node j. For this purpose every node that have

opined about node j will assume counti j = 1 and others will assume counti j = 0

and hence in process of gossip these all 1’s will sum up and we will get the count.

Equation (3.4) can be alternatively represented as,

RepI, j =

∑
i∈NSi

WIi j +
∑

i�NSi

WIi j

∑
i∈NSi

wIi +
∑

i�NSi

wIi
,

=

∑
i∈NSi

wIi × ti j +
∑

i�NSi

wIi × ti j

∑
i∈NSi

wIi +
∑

i�NSi

wIi
,

=

∑
i∈NSi

(wIi − 1) × ti j +
∑

i�NSi

(wIi − 1) × ti j +
∑
i

ti j

∑
i∈NSi

(wIi − 1) +
∑

i�NSi

(wIi − 1) +
∑
i

1
.

Here NSi is the set of neighbours of node i. As neighbourhood between two

nodes is based upon the interaction between them so for non neighbour nodes

the weight will be 1. Using this fact,

RepI,i =

∑
i∈NSi

(wIi − 1) × ti j +
∑
i

ti j

∑
i∈NSi

(wIi − 1) +
∑
i

1
. (3.6)

As we want to compute at each node, the globally calibrated local reputation

of a node j, the reputation of node j from its neighbours on the basis of direct

interaction will be needed. Whereas in the gossip algorithm, after every step, the

value at the node keeps on changing as it gets added to the values pushed by

other nodes and is distributed after division to neighbours. So after few steps the

values converge when incoming and outgoing values statistically balance each
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other. Hence after first step of gossiping its difficult to get the value of ti j from a

neighbour for the nodes with whom it has direct interaction, by gossiping process.

If a node is participating in the process of gossip for the first time about node j or

reputation of node j at this node has changed considerably since start of previous

round of gossip, this node will inform the reputation to all of its neighbours before

the start of next gossiping round (figure 3.1). This will be done by all the nodes.

After this process every node has opinion of its neighbours about node j (If a

node does not inform reputation of j, the already available earlier value will be

considered). If node will not hear from a node since long, it will assume that this

node is no longer present and hence it will drop its feedback after some time.

Now these reputations will be multiplied by (WIi − 1) as required in equation

(3.6) and summed up as value ŷI j. Now normal gossip will be done as in algo-

rithm 1 with a difference that only one node will be given gossip weight 1 and

rest will be given 0 gossip weight and the nodes that have reputation informa-

tion about node under consideration will also push 1 so that these nodes can be

counted. This will lead to the summation of all reputation values available and

total number of nodes giving these reputation values. Now reputation can be

calculated using (3.6)[algorithm 2].

In third variation we want to aggregate the global reputation of all nodes

simultaneously. This algorithm is quite similar to algorithm 1 except few changes.

Unlike algorithm 1, node will push complete vector yi which consists of feedback

from node about all other nodes it has transacted with. Similarly, instead of single

gossip weight gi j, node will send vector gi. A node id will also be attached with
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Algorithm 2 Globally calibrated local Reputation aggregation for a single node

Require: Feedback matrix t, gossip error tolerance ξ.
Ensure: Globally calibrated local Reputation of node j (ri j)

Assume weight g1 = 1
Node i do
if i � 1 then

gi j = 0
end if
if i has some reputation value about j then

take counti j = 1, and yi j = ti j

else
take counti j = 0, and yi j = 0

end if
calculate w j for all neighbours of i by formula wi j = a

bi jti j

i

if Node i is participating first time in gossiping process then
Push feedback due to direct interaction about the node under consideration
to all neighbours

else
if Feedback about the node under consideration has changed by more than
some constant ∆ then

Push the new feedback to all the neighbours
end if

end if
Push self degree di to neighbouring nodes
for k=1 to di do

Calculate ŷi j � (wk − 1) × f eedback f rom node k about j
end for
Take the average of neighbour degree
Calculate the ratio of its degree and average of neighbour degree (ki �

degree o f i

average neighbour degree
)

Round off ki for ki ≥ 1 else take ki = 1
End do
m � 1 and u � yi j

gi j
{Initialise Gossip Step}

Algorithm Continued...
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Algorithm Algorithm 2 (continued)

repeat
Do for node i
u � yi j

gi j
and f count � counti

gi j

(yrj, grj, countrj) are all pairs of gossip weight, gossip value for reputation and
count received by node i in the previous step
yi j � ∑

r∈R
yrj; gi j � ∑

r∈R
grj; counti j � ∑

r∈R
countrj {update gossip pairs}

choose ki random nodes in its neighbourhood
send gossip pair ( 1

ki+1
yi j,

1
ki+1

gi j) to all ki nodes and itself
m � m + 1 {increment the gossip step}
if |R| > 1 then

if |
yi j

gi j
− u| ≤ ξ then

Inform all neighbours about self convergence
end if

end if
u � yi j

gi j

until Self convergence and all neighbours’ convergence has happened

Repi j �
ŷi j+

yij
gi j

∑
(wk−1)+

counti
gi j

output Repi j
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Figure 3.1: Process Diagram for computation of Globally Calibrated Local Repu-
tation

every pair of yi j and gi j so that receiving node can distinguish among gossip

pairs. So, in fact, node pushes gossip trio consisting of yi j, gi j and node id. The

convergence of algorithm is checked by the following condition:

∑

j

�����
yi j(n)

gi j(n)
− yi j(n − 1)

gi j(n − 1)

����� ≤ Nξ (3.7)

Where n is the time instant and ξ is the permissible error bound.

In the fourth variation we want to aggregate the globally calibrated local rep-

utation of all nodes simultaneously. This algorithm is quite similar to second

variation expect that we will use the third variation for gossiping process. More-

over in this variation nodes will push full vector ti, in place of only ti j for node
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j.

3.5 Analysis of Algorithm

3.5.1 Analysis of convergence of Gossip Algorithm

In this section we will study the time needed by nodes to converge the average of

local direct estimate values at different nodes. First, we will study the spreading of

gossip in power law network. Then, we will study the diffusion speed of gossip.

Based on these results, we will find the time of convergence.

Chierichetti et.al. [53] proved that in PA based graph, {Gm
N} for m ≥ 2 alone push

or alone pull will fail for spreading of gossip. They also proved that push-pull will

succeed in O((log2N)2) where low degree nodes push information to low degree

nodes and power nodes and pull information from power node.

But in a peer-to-peer networks its difficult to identify the power nodes. More-

over pulling the information is more expensive the pushing the information. So

we have proposed to use differential push gossip in place push pull gossip. In

the fallowing theorem we are proving that differential push gossip will take same

time as push pull gossip.

Theorem 3.5.1. Gossip will spread with high probability in a PA based graph, {Gm
N} for

m ≥ 2, within O((log2N)2) time using differential-push (by high probability we mean,

1 − o(1), where o(1) goes to zero as N increases).

Proof. Differential push means that every node will push its data to different
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number (ki) of nodes instead of one node. Here ki is the ratio of nodes degree and

average degree of all its neighbours.

Nodes in {Gm
N} can be classified into three types [53]. First type is high degree

nodes (i.e. power nodes); let us call this set of nodes as H. Second type is low

degree nodes (with degree O(log2N)) which joined in the first half of the process,

let us call this type as W and third type is low degree nodes which joined after W;

lets call this type as V.

Let us call the set {Gm
N} \ H as H’. H’ may be thought as the combination of

few finite connected components that are further connected with each other using

some node(s) from H.

Members of set H’ are low degree nodes with degree of the order of log2N and

diameter of each connected component will also be of the order of log2N [53]. It

can be seen that if gossip originates in one of these components, it will spread in

that component easily within O((log2N)2) [?] if normal push is used. In case of

differential push, it will be even faster.

Reaching from one component to another component using normal push may

take longer time as now it has to be pushed by a node from H having high degree.

Hence normal push will take longer time in spreading the gossip as high degree

nodes will also be making only one push to a node chosen uniformly at random

in one time slot [53].

Hence if a high degree node, i.e. the member of H makes pushes to ’k’ nodes

chosen uniformly at random in one time slot, where k may be the ratio of the
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degree of high degree node to the degree of nodes from H’, information will also

spread in H within O((log2N)2) steps.

Once information is reached to every node of H, it will reach to remaining

components of H’ and spread there in another O((log2N)2) steps. Therefore, it can

be seen that in a PA graph, information will spread within O((log2N)2) steps to all

nodes with high probability.

There are very few nodes which belong to H. Hence the nodes from set H will

have neighbours from H’ with high probability. Therefore k can be approximated

as the ratio of degree of node to the average degree of its neighbours.

�

In our case few nodes have information (reputation of a node) that has to

be averaged and this average has to be spread to all nodes. So we will prove

the convergence for the case where every node has information that has to be

averaged. Our case is a special case of this case.

Let at n = 0, each node has a number. For jth node this number is d0, j. So the

objective of gossip is to have

∑
j

d0, j

N
= davg at each node after some rounds of gossip.

The number of rounds needed should be least possible. For n = 0, the gossip

weight at each node will be unity. After n steps, let the node j have the evolved

number as dn, j and evolved gossip weight as gn, j.

To study the time taken in the convergence of algorithm we assume that each

node j maintains a vector cm
j

. The dimension of this vector will be 1 × N. This
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vector will record the contribution received from every node including itself about

the node m. So initially at n = 0 each node will have a vector in which (N − 1)

elements will be zero and one element that is for itself will be one. If in the process

of first step of gossiping, only the node i chooses node j for pushing the gossip

about m, then the contribution by i to j i.e. cm
n,i, j

will be recorded in the ith element of

contribution vector of node j. So after first step of gossip the contribution vector

of j will contain two non-zero elements one received from i and one pushed to

itself. We assume here that only push has been received by node j. In case of

l pushes being received the vector will have l + 1 non zero entries. Now node

j will choose some node o. Node j will push the complete contribution divided

by p + 1(if p push gossip is under consideration) to node o. Now node o will do

vector addition of all received vectors including the one received from itself. The

resultant vector will be the new contribution vector. This process will be repeated

at all the nodes.

So it can be said that dm
n, j
=
∑

i cm
n,i, j
· dm

0,i
such that gm

n, j
=
∑

i cm
n,i, j

. When a node

will receive same amount of contribution from all the node at that time the ratio

of evolved number (dm
n, j

) and evolved gossip weight (gm
n, j

) will be the average of

all the numbers.

Theorem 3.5.2. Uniform Gossip diffuses with differential push in PA based graph within

O((log2N)2 + log2
1
ξ
) time with high probability such that contributions at all nodes will

be ξ uniform after this amount of time, i.e. maxi|
cm

n,i, j

||cm
n,j
||1
− 1

N
| ≤ ξ ∀ j where ||cn,j||1 =

∑
i cn,i,j

We can see the property of mass conservation (proposition 3.5.3) [47] holds in

this case as well.
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Proposition 3.5.3. Under the differential Push protocol with Uniform Gossip, the sum

of all of ith node’s contributions at all nodes j is
∑

j cm
n,i, j
= 1 and hence the sum of all

weights is
∑

j gm
n, j
= N

proof of theorem 3.5.2. As we know when a node will get equal contribution from

every node it will reach the average value. Taking variance around the mean value

of the contributions from all the nodes at a particular node will give the level of

convergence at one node. If we sum these variances for all the nodes, we will get

the idea about the convergence of network. We are just referring to reputation

of node m in this proof, and super script m have not been explicitly shown. It

means cm
nij
= cnij and gm

nj
= gnj. The variance at node j will be E(cn,i, j − cn,i, j)

2 i.e.

1
N

∑
i

(cn,i, j − gn, j

N
)2. As this quantity is small, we can drop 1

N
. This will still give the

idea about the convergence. Further adding the variance at all the nodes gives us

the idea about further convergence in the whole network. We call this as potential

function ψn

ψn =
∑

j,i

(
cn,i, j −

gn, j

N

)2
(3.8)

Let us study ψ for p-push gossip, i.e. when every node is making p pushes to

p nodes. Here we are assuming that node chooses every node including itself for

push independently. Here f(k)=j means that a node k chooses a node j and pushes

gossip pair. The dn, j and gn, j are divided by (p + 1); one part is always retained by
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the node and remaining are used for p push.

cn+1,i, j =
1

p + 1
cn,i, j +

1

p + 1

∑

k: f (k)= j

cn,i,k. (3.9)

gn+1, j =
∑

i

cn+1,i, j (3.10)

=
∑

i

1

p + 1
cn,i, j +

∑

i

1

p + 1

∑

k: f (k)= j

cn,i,k

=
1

p + 1
gn, j +

1

p + 1

∑

k: f (k)= j

gn,k

As

ψn+1 =
∑

j,i

(
cn+1,i, j −

gn+1, j

N

)2
, (3.11)

substituting the values of cn+1,i, j and gn+1, j, we get

ψn+1 =
∑

j,i




1

p + 1

(
cn,i, j −

gn, j

N

)
+
∑

k: f (k)= j

1

p + 1

(
cn,i,k − gn,k

N

)

2

=
1

(p + 1)2

∑

j,i

(
cn,i, j −

gn, j

N

)2

+
1

(p + 1)2

∑

j,i

∑

k: f (k)= j

(
cn,i,k − gn,k

N

)2

+
2

(p + 1)2

∑

j,i

∑

k: f (k)= j

(
cn,i, j −

gn, j

N

) (
cn,i,k − gn,k

N

)

+
1

(p + 1)2

∑

j,i

∑

k̂

∑

k: f (k)= f (k̂)= j,k�k̂

(
cn,i,k − gn,k

N

)

(
cn, j,k̂ −

gn,k̂

N

)

As we know each node makes p copies (cn,i,k − gn,k

N
)2 and sends it to randomly

to itself and other neighbouring nodes. Each node j will get (cn,i,k − gn,k

N
)2 from
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neighbours. When seeing over j, this is the total contribution received. This

should be equal to total contribution distributed by all the nodes, i.e.
∑

j
contibution distributed by each node

=
∑

j
p · (cn,i, j − gn, j

N
)2

= p
∑

j
(cn,i, j − gn, j

N
)2

ψn+1 =
1

(p + 1)2

∑

j,i

(
cn,i, j −

gn, j

N

)2
+

p

(p + 1)2

∑

j,i

(
cn,i, j −

gn, j

N

)2

+
2

(p + 1)2

∑

j,i

∑

k: f (k)= j

(
cn,i, j −

gn, j

N

) (
cn,i,k − gn,k

N

)

+
2

(p + 1)2

∑

j,i

∑

k�k̂: f (k)= f (k̂)= j

(
cn,i,k − gn,k

N

) (
cn, j,k̂ −

gn,k̂

N

)

=
1

(p + 1)
ψn +

2

(p + 1)2

∑

j,i,k: f (k)= j

(
cn,i, j −

gn, j

N

) (
cn,i,k − gn,k

N

)
+

2

(p + 1)2

∑

j,i

∑

k̂

∑

k: f (k)= f (k̂),k̂�k

(
cn,i,k − gn,k

N

) (
cn,i,k̂ −

gn,k̂

N

)

Now we have to calculate the probability of a node being neighbour of another

node whose degree is dk. So first we calculate the number of groups possible

without fixing any neighbour and after that we fix one neighbour and calculate

the number of groups. By taking the ratio of these two things, we get the desired

probability.

We know that node will choose a node randomly among its neighbours. Let

us assume that the degree of said node is dk with probability Pdk
. If we form the

groups of dk nodes, total
(N

dk

)
groups can be formed. If we fix one node in groups
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i.e. j, total
(N−1

dk−1

)
. So the probability that j is neighbour of k is

(N−1
dk−1)
(N

dk
)
· Pdk

and the

probability to choose j by node k when j is neighbour of k will be 1

(dk
1 )

. So

P[ f (k) = j] =

(N−1
dk−1

)
(N

dk

) · Pdk
·

1
(dk

1

)

=
Pdk

N
(3.12)

Similarly (3.13)

P[k̂ � k, f (k) = f (k̂) = j] =
Pdk

N
·

Pdk̂

N
(3.14)

The Pdk
is the probability that a node has degree dk. For networks generated by

PA Model,

P(dk) ∼ d
−γ
k
.
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Here γ is network exponent. Hence,

E[ψn+1 | ψn] =
1

(p + 1)
ψn +

2

(p + 1)2

∑

j,k,i

(
cn,i, j −

gn, j

N

)

(
cn,i,k − gn,k

N

)
P[ f (k) = j]

+
1

(p + 1)2

∑

i, j

∑

k̂

∑

k:k̂�k

(
cn,i,k − gn,k

N

)

(
cn,i,k̂ −

gn,k̂

N

)
P[k̂ � k, f (k) = f (k̂) = j]

=
1

p + 1
ψn +

2

(p + 1)2

∑

j,k,i

(
cn,i, j −

gn, j

N

)

(
cn,i,k − gn,k

N

) Pdk

N
+

N

(p + 1)2

∑

i

∑

k̂

∑

k

(
cn,i,k − gn,k

N

) (
cn,i,k̂ −

gn,k̂

N

) Pdk

N

·
Pdk̂

N
− N

(p + 1)2

∑

i,k

(
cn,i,k − gn,k

N

)2 P2
dk

N2

=
1

p + 1
ψn +

2

(p + 1)2N

∑

i

∑

j

(
cn,i, j −

gn, j

N

)

∑

k

(
cn,i,k − gn,k

N

)
Pdk

+
1

(p + 1)2N

∑

i

∑

k

(
cn,i,k − gn,k

N

)
Pdk

∑

k̂

(
cn,i,k̂ −

gn,k̂

N

)
Pdk̂

− 1

(p + 1)2N

∑

k,i

(
cn,i,k − gn,k

N

)2
P2

dk

Let us assume that the maximum value of Pd is Pdmax and minimum value is Pdmin
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and the difference of Pdmax and Pdmin
is Kc, then

E[ψn+1 | ψn] ≤ 1

p + 1
ψn

+
2

(p + 1)2N

∑

i



∑

j

cn,i, j −
∑

j

gn, j

N




∑

k

(
cn,i,k − gn,k

N

)
Pdk

+
1

(p + 1)2N

∑

i



∑

k

cn,i,kPdmax −
∑

k

gn,k

N
Pdmin






∑

k̂

cn,i,k̂Pdmax −
∑

k̂

gn,k̂

N
Pdmin




− 1

(p + 1)2N

∑

i,k

(
cn,i,k − gn,k

N

)2
P2

dk

Applying mass conservation
∑

j
cn,i, j,

∑
k

cn,i,k,
∑

j

gn, j

N
and
∑
k

gn,k

N
will be equal to 1, so

the second term will become zero and third term will become N · k2
c . Forth term

is always non negative so removing this term will not affect the bound. So

E[ψn+1 | ψn] ≤ 1

p + 1
ψn +

1

(p + 1)2N
·N · K2

c

− 1

(p + 1)2N
P2

dk

∑

k,i

(
cn,i,k − gn,k

N

)2

≤ 1

p + 1
ψn +

K2
c

(p + 1)2
− 1

(p + 1)2N
P2

dk
ψn

≤ 1

p + 1
ψn +

K2
c

(p + 1)2

In the last line we use the fact that 1
(p+1)2N

P2
dk
ψn will always remain non negative.

We know that dmin is 2. If we consider the value of γ to be 2, maximum value of
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K2
c will be 1

16
considering Pdmax to be zero,

E[ψn+1 | ψn] ≤ 1

p + 1
ψn +

1

16 · (p + 1)2
(3.15)

Now we will calculate the value of ψ0. We know that initially the contribution

vector cj contains only single non-zero value i.e. contribution received from it self

and that value is 1, rest all N − 1 elements are 0. So

ψ0 =
∑

j,i

(
c0,i, j −

g0, j

N

)2

=
∑

j

[
(
c0,1, j −

g0, j

N

)2
+

(
c0,2, j −

g0, j

N

)2
+ ... +

(
c0, j, j −

g0, j

N

)2
+ ... +

(
c0,N, j −

g0, j

N

)2
]

=
∑

j

[
(
0 − 1

N

)2
+

(
0 − 1

N

)2
+ ... +

(
1 − 1

N

)2
+ ... +

(
0 − 1

N

)2
]

=
∑

j

[1 +
1

N2
− 2

N
+ (N − 1) ·

1

N2
]

=
∑

j

[1 − 1

N
] = N − 1 (3.16)

Now we will substitute the value of ψ0 in ( 3.15). This will give us the bound on
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ψn

E[ψ1 | ψ0] ≤ 1

p + 1
ψ0 +

1

16 · (p + 1)2
(3.17)

E[ψ1] ≤ 1

p + 1
(N − 1) +

1

16 · (p + 1)2

Similarly (3.18)

E[ψ2] ≤ 1

p + 1
(

1

p + 1
(N − 1) +

1

16 · (p + 1)2
)

+
1

16 · (p + 1)2

≤ N − 1

(p + 1)2
+

1

16(p + 1)3
+

1

16(p + 1)2

E[ψn] ≤ N − 1

(p + 1)n
+

1

16(p + 1)n+1

+
1

16(p + 1)n
+ ... +

1

16(p + 1)2

≤ (N − 1) · (p + 1)−n +
1

16 · (p + 1)p

− 1

16p(p + 1)n+1

≤ (N − 1) · (p + 1)−n +
1

16 · (p + 1)p

It can be seen that right hand side of the above equation is maximum when p=1.

It means potential function is decaying at the slowest rate for p=1. So time taken

in convergence for p=1 will be maximum. For normal push, algorithm will act as

upper bound for differential push algorithm i.e. combination of different values

of positive integer p’s. So taking p=1;

E[ψn] ≤ (N − 1) · 2−n +
1

32

≤ (N − 1) · 2−n · kd (3.19)
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Here Kd is an integer constant that is greater than the ratio of maximum value of

(N − 1) · 2−n and 1
32

. This can be seen that Kd will depend on the number of steps

required for convergence.

After gossiping for n = log2(N − 1) + log2kd + log2
1
ξ

steps,

E[ψn] ≤ (N − 1) · 2−(log2(N−1)) · 2−(log2(kd))

·2−(log2(ξ)) · kd

E[ψn] ≤ ξ (3.20)
∑

j,i

(
cn,i, j −

gn, j

N

)2
≤ ξ

If summation of some non-negative numbers are less than ξ than individually

each number must be less than ξ, i.e. |cn,i, j − gn, j

N
| ≤ ξ 1

2 for all nodes i.

If we consider weight as an information to be spread among the nodes, accord-

ing to theorem ( 3.5.1), information will reach to all nodes in a power law network

with high probability, in n = (log2)2N rounds. After these n rounds every node will

receive at least 2−n weight. So applying union bound [54] over weight spreading

and potential decay event (We have seen potential is decaying at every step) and

dividing with gn, j results that |
cn,i, j

gn, j
− 1

N
| ≤ ξ at steps O((log2N)2+log2N+log2kd+log2

1
ξ
)

i.e. within O(log2N + log 1
ξ
) steps with high probability. �

On the basis of these two theorems, it can be seen (as in [47]), that with high

probability relative error in average estimation and sum estimation (if only one

node is given weight one and others are given zero) will be bounded by ξ after

O((log2)2N + log2
1
ξ
) gossip steps.
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3.5.2 Analysis of Collusion

As we have said that in our proposed system a node may get trust values about a

node by three possible ways, first by direct interaction, second from neighbours

and third by gossiping. First can not be affected by collusion. We are assuming

that second will also not be affected by collusion as neighbours have a definite

level of trust for each other. We are considering the collusion because of the third

way.

For analysis of collusion, we will calculate the difference of real reputation and

estimated reputation of a node x by some node o in the presence of collusion using

our proposed method, we will compare it with the method proposed in [22]. Let

us assume that the network is formed by the member nodes of set N. There is

a subset C of set N such that member nodes of set C are involved in collusion.

The cordiality of sets N and N are assumed to be N and C respectively. We also

assume that members nodes of set C are colluding in groups with a group size of

G. By colluding in a group we mean that if some node is the member of that group

then group members of colluding group will report its reputation as 1. Whereas

for others nodes they will report the reputation value as 0. Let us say that real

reputation of a node x is Rx
real

, and estimated reputation is Rx
estc, if x is a colluding

node, Rx
estnc, if x is not a colluding node.

Rx
real =

∑
i∈N

txi

N
. (3.21)

Here txi is trust value of the node x at node i.
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If x is not a colluding node then,

Rx
estnc =

∑
i∈N\C

txi

N
. (3.22)

If x is a colluding node then,

Rx
estc =

∑
i∈N\C

txi + G

N
. (3.23)

So the expected value of reputation estimate (E[Rx
est]) will be

E[Rx
est] =

C

N




∑
i∈N\C

txi + G

N


 +
(
1 − C

N

)



∑
i∈N\C

txi

N




=
GC

N2
+

∑
i∈N\C

txi

N
(3.24)

So difference in real reputation and expected value of estimated reputation by

node o for node x (∆Rox
old

) will be,

∆Rox
old = −

GC

N2
+

∑
i
∈ Ctxi

N
. (3.25)

Now, we incorporate the trust based weighted opinion of neighbours. Lets us

assume that woi is the weight given to the opinion of node i by node o. It may be

noted woi ≥,∀i (equation 3.2) So the real reputation of node x for node o will be,

Rx
real =

∑
i
∈ Ntxi +

∑
i

∈ N(woi − 1)txi

N +
i∈N∑
i=1

(woi − 1)

. (3.26)

If x is not a colluding node then,

Rx
estnc =

∑
i∈N\C

txi +
∑
i∈N

(woi − 1)txi

N +
∑
i∈N

(woi − 1)
. (3.27)
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And if x is a colluding node then,

Rx
estc =

∑
i∈N\C

txi +
∑
i∈N

(woi − 1)txi + G

N +
∑
i∈N

(woi − 1)
. (3.28)

So the expected value of reputation estimate (E[Rx
est]) will be

E[Rx
est] =

C

N




∑
i∈N\C

txi +
∑
i∈N

(woi − 1)txi + G

N +
∑
i∈N

(woi − 1)




+

(
1 − C

N

)



∑
i∈N\C

txi +
∑
i∈N

(woi − 1)txi

N +
∑
i∈N

(woi − 1)




=
GC

N · (N +
∑
i∈N

(woi − 1))

+




∑
i∈N\C

txi +
∑
i∈N

(woi − 1)txi

N +
i∈N∑
i=1

(woi − 1)



. (3.29)

So difference in real reputation and expected value of estimated reputation by

node o for node x (∆Rox
new)will be,

∆Rox
new = − GC

N · (N +
N∑

i=1
(woi − 1))

+

C∑
i=N−C+1

txi

N +
N∑

i=1
(woi − 1)

=
N

(N +
N∑

i=1
(woi − 1))

·



−GC

N2
+

C∑
i=N−C+1

txi

N




=
N

(N +
N∑

i=1
(woi − 1))

· ∆Rox
old (3.30)
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3.5.3 Numerical Results

Performance of algorithm for reputation aggregation for peer to peer file sharing

is evaluated by simulation as well. A power law network has been built using

Preferential Attachment model.

The simulation experiments has been conducted for 100 to 50000 nodes. Per-

formance of differential algorithm has been evaluated in terms of number of

iterations (to assess the rate of convergence) required to converge within a par-

ticular degree of aggregation error. Number of packets per node per gossip step

that are required to be transmitted for convergence have also been calculated, so

that network overhead can be assessed. Algorithm is also tested against collusion

and node churn.

Figure 3.2 shows the number of gossip steps required for different error bounds

for different number of nodes. This is clearly evident that number of gossip steps

is increasing with a rate much less than O(log2N)2 i.e. said bound is followed for

all the cases.

Figure 3.3 and 3.4 are the simulation results against the problem of churn.

Figure 3.3 shows the number of gossip steps required with different packet loss

probability for 10000 nodes. Figure 3.4 shows the number of gossip steps required

with different number of nodes with ξ = 0.00001. Peer to peer networks operate

above TCP layer, i.e. these kind of networks assume a reliable bit pipe between

sender and receiver. So peer to peer network suffers by packet loss only when

some node leaves the network i.e. due to churning. Here the assumption is when
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a node leaves during gossip process, it hands over the gossip pair vectors to some

other node so mass conservation still applies. Whenever a node pushes gossip pair

to this absent node, the pushing node doesn’t receive any acknowledgement. It

implies that node has left the network and the pushed gossip pair got dropped. In

such cases pushing node pushes the gossip pair to itself so that mass conservation

still applies. We can see a small increment in the number of gossip steps with the

increase in the packet loss probability.

As in the case of packet loss, the gossip pair returns back to pushing node

itself, one step for this pair goes waste. Hence, we observe a small increment in

the number of gossip steps. We also did simulations for the case when node is

not handing over to any other node before leaving the network. In this case also,

network converges in almost same number of steps but on a different value. As

we have not studied it theoretically, we have not presented it in the thesis.

Figure 3.5 and 3.6 are the simulation results against the problem of collusion.

Figure 3.6 plots the average RMS error in estimated reputation with the variation

of percentage of users that are colluding individually i.e. they are not forming any

group Figure 3.5 plots the average RMS error in the estimated reputation with the

variation of group sizes of colluding users for different percentages of colluding

users in the network.

Here average RMS error is defined as follows,

Average RMS error =
1

N

∑

i

��∑
j
((ri j − r̂i j)/ri j)2

N
(3.31)

Here ri j is the reputation of node i at node j computed by differential gossip in
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Figure 3.2: Gossip step counts with different number of nodes (N) and different
error bounds ξ

presence of colluding nodes, whereas r̂i j is the computed reputation if colluding

nodes would not have been there. This is clearly evident that effect of collusion

on reputation computation by differential gossip is quite less even with very

high percentage of colluding users. The colluding group size is making a small

difference in differential gossip reputation computation.

Table 3.1 shows the number of message transfer required by a node in one gossip

step. It can be seen that this is decreasing slightly with the increase in number

of nodes. This is happening because as number of gossip steps increases the

overhead incurred in the beginning gets distributed and a node is less burdened

as the number of total nodes increases. Similar thing happens when a lower value

of ξ is chosen.
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Figure 3.3: Gossip step counts for N=10000 with different error bounds ξ for
different packet loss probability

3.6 Conclusion

In peer-to-peer networks, free riding is a major problem that can be overcome

by using reputation management system. A reputation management system

includes two processes, first estimation of reputation and second aggregation

of reputation. In this chapter we have proposed an aggregation technique by

modifying push gossip algorithm to differential push gossip algorithm.

The proposed aggregation technique aggregates the trust values from different

nodes in a power law network. This technique does not require the identifica-

tion of power nodes. As identification of power nodes in distributed setting is

hard, this makes algorithm implementable. This algorithm is also robust against
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Figure 3.4: Gossip step counts with different number of nodes(N) for ξ = 1.0e − 5
for different packet loss probability

churning as can be seen in figure 3.3 and 3.4. Proposed technique aggregates the

reputation in a differential manner. This is done by considering the feedback of

trusted nodes with a higher weight. This leads to robustness against collusion as

evident from figure 3.5 and 3.6.

Proposed algorithm is presented to avoid the problem of free riding but this can

also be used to avoid malicious users in the network just by change the method

of estimation of ai and bi j.
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Figure 3.5: Average RMS error with different size colluding groups for different
percentage of colluding peers

ξ=0.01 ξ = 0.001 ξ = 0.0001 ξ = 0.00001
N=100 1.212 1.203 1.195 1.188
N=500 1.199 1.194 1.189 1.183

N=1000 1.178 1.159 1.157 1.148
N=10000 1.156 1.139 1.124 1.122
N=50000 1.152 1.132 1.119 1.112

Table 3.1: Number of Message Per Node per Step Transmitted Due to Gossiping
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Figure 3.6: Average RMS error with individual peers for different percentage of
colluding peers



Chapter 4

Whitewashing in Unstructured
Peer-to-Peer Network

4.1 Introduction

On implementation of reputation management system, selfish users start white-

washing and colluding [55]. When a node has bad reputation in the network then

to avoid disincentives, it leaves the network and returns back with a new identity

as a new comer to the network. This is termed as whitewashing. Whitewashing

problem becomes more challenging as it is difficult to differentiate between a le-

gitimate newcomer and a whitewasher. This makes whitewashing a big problem

in peer-to-peer networks. Although the problem of whitewashing can be solved

using permanent identities, it may take away the right of anonymity for users.

Hence, any reputation system should be able to overcome these problems.

In this chapter we have analysed the pay-off and penalty for cooperative and

defector node respectively in a reputation management system. We have also
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proposed a novel algorithm to avoid this problem when network uses free tem-

porary identities. In this algorithm, the initial reputation is adjusted according to

the level of whitewashing in the network.

Remainder of this chapter is organised as follows. Section 4.2 discusses the

related work. Section 4.3 describes the system model. Section 4.4 computes the

pay-off in the reputation game. In section 4.5, the problem of whitewashing is

discussed along with an algorithm as its solution and its analysis, Section 4.6

presents the numerical results and section 4.7 concludes the chapter.

4.2 Related Work

Many authors have suggested that whitewashing can be totally removed if system

has permanent identities [27, 28]. Problem of whitewashing due to availability of

cheap or free identities was initially pointed out by Friedaman et.al. [29]. They

proved that considering every newcomer as defector is a better policy than any

other static stranger policy. Whereas Feldman et.al. [30] proved that newcomers

should only be punished if turnover rate is high. They also proved that a legitimate

user can only win from a whitewashing user if newcomer will be served well with

a very small probability [31]. Yang et.al. studied Maze file sharing system and

concluded that incentives promote whitewashing [32].

Lai et.al. suggested in [30, 17] that newcomers should be served as per the

behaviour shown by them at that time. But this is more prone to collusion and

moreover in a resource sharing network, nodes generally form a group where
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they serve more. In that case observing behaviour will not work well. Similar

kind of approaches are proposed for new service providers’ reputation among

consumers in on-line communities [56].

Anceaume et.al. [57] have suggested to charge an entry fee from every new-

comer in such a way that it should avoid whitewashing and should not discourage

newcomers. Chen et.al. claims that a whitewashing node will continue to have

same kind of habits even after whitewash so it should be identified and punished

on the basis of its habits [58]. Zuo et.al. suggested that newcomers should only be

allowed to access the resource from newcomers and low trust value nodes [59].

Yu et.al. [60] proposed that any user that has served even once should have a

higher value of reputation than a newcomer and it should rise faster initially and

slower later on as a result of cooperation.

4.3 System Model

In this chapter, we are studying a pure unstructured peer-to-peer network. Peers

in this network are connected by an access link followed by a backbone link and

then again by an access link to the second node. We are assuming that the network

is heavily loaded i.e. every peer has sufficient number of pending download

requests, hence these peers are contending for the available transmission capacity.

We also assume that every peer is paying the cost of access link as per the usage.

So, every peer wants to maximises its download and minimise its upload so that

it can get maximum utility for its money spend in access link.
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Considering nodes to be purely rational does not answer many questions about

nodes’ behaviour [30]. Feldman et.al. [30] proposed a model where rationality

depends upon the type of node or the level of generosity i.e. every node will free

ride or contribute as per its type. On the similar lines, we propose the level of

honesty regarding whitewashing behaviour of nodes. If hi be the honesty level of

ith node then i will whitewash provided,

Rini ≥ hi (4.1)

Here Rini is the initial reputation given to a newcomer node. This Equation states

that any node will only whitewash when it will get the initial reputation more than

its honesty level. It means any node i will only whitewash when Rini ≥ hi. In other

words, every node is a potential white washer as per its level of honesty. If pay-off

by whitewash is greater than its honesty level, then it will whitewash otherwise

it will remain an honest node. As network will contain all kind of nodes with

equal probability, honesty levels of nodes are assumed to be distributed uniformly

between 0 to 1.

Reputation can be measured in number of ways. We measure the reputation

of a node after a transaction as,

Reputation o f node i =
Resource provided by node i

Resource requestd to node i
. (4.2)

4.4 Pay-off in Reputation Game

In this section, we will see the pay-off of an agent in a network where a reputation

management system has been implemented with different type of identities viz.
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permanent identities and temporary identities. Permanent identities can also be

termed as∞ cost identities as these can not be changed. Social security number in

USA is one such example. Whereas temporary identities can be classified into two

types, finite cost identities and zero cost identities on the basis of cost of assigning

a new identity.

Here it is important to note that in an interaction even if cost incurred in serving

other nodes’ request and the value received from other nodes in response to its

request, are same, the node still gains by a small amount δ. This comes because

after every transaction the chance of survival satisfaction for a node increases.

4.4.1 Payoff of Agents with Permanent Identities

Let us assume that there are N nodes in the network. Reputation of these nodes

is distributed between 0 and 1 with some arbitrary distribution having mean µ.

When a new node joins the network, it is assigned an initial reputation value of

Rini. We are assuming that reputation aggregation is happening after every round

of transactions and in this process, the nodes that have transacted with the node

will jointly form a reputation that will be spread across the network. It means that

every node knows the reputation of other node after every round. For simplicity

we assume that every node requests for same amount of resource i.e. c. We also

assume that network is large and hence the mean reputation of the network will

not change considerably and probability of allocation against a node’s request

will be

P(allocation) ∝ (reputation)x
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Taking proportionality constant to be 1 for simplicity

P(allocation) = (reputation)x. (4.3)

As we have stated, the expected reputation of nodes will be µ. Any node can

ask for a resource from the entering node. The probability that a particular node

will ask for a resource is 1
N

assuming that all nodes are equally likely to ask for a

resource. Let us assume that every node can ask c amount of resource. So, if the

node receives one request, the expected service, it has to do, will be

E[Serv(1)] =
1

N
· µx · c +

1

N
· µx · c + ... +

1

N
· µx · c

= µx · c. (4.4)

Whereas the node will get service according to its reputation. So the expected

return for this node if it makes a single request will be

E[ret(1)] = c · (Rini)
x + δ. (4.5)

First we will see the pay-off of cooperative node. If a node serves m requests and

makes ḿ requests, the expected pay-off of this node at the end of the first round

will be

Ec[payo f f (1)] = −mµx · c + ḿc · (Rini)
x + δ. (4.6)

The expected reputation of an entering node after first round of transaction, if

reputation is measured using equation (4.2), is

Ec[R(1)] =
mµx · c

mc
,

= µx. (4.7)
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The reputation of a node i is estimated by few other nodes. The nodes with

whom interaction does not take place use Rini as the default reputation. When

aggregating the reputation [51], only the estimated reputations are aggregated,

not the default value Rini.

Similarly pay-off and reputation of this node at the end of second round will

be,

Ec[payo f f (2)] = −2mµx · c + ḿ · (µx)x · c

+ḿ · (Rini)
xc + 2δ

Ec[R(2)] =
µx + µx

2
= µx

Similarly, pay-off and reputation of this node at the end of kth round will be

Ec[payo f f (k)] = −kmµx · c + (k − 1)ḿ · (µx)x · c (4.8)

+ḿ · (Rini)
xc + kδ

Ec[R(k)] =
µx + ... + µx

k
= µx (4.9)

Now let’s consider defecting node. In the first round it will get service as per

Rini. But after that, it will not get any service because every body will know that

the node with this identity is not going to serve. It can not change its permanent

identity as this will cost him ∞. So the expected pay-off of defecting node, with

same request profile, after k rounds will be

Ed[payo f f (k)] = ḿ · (Rini)
xc + δ. (4.10)

If we take m = ḿ, as this should be the condition statistically, it can be seen that for

x ≥ 1, cooperative node will always remain in negative pay-off if it has a Rini less
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than µ. Moreover for any value of Rini with x ≥ 1, the defector node will always

remain in advantage. So value of x should be less than 1. Now let’s compare (4.8)

and (4.10) to get the number of rounds required after which cooperative node will

be in advantage over defector node.

ḿ · (Rini)
xc + δ ≤ −kmµx · c + (k − 1)ḿ · (µx)x · c + ḿ · (Rini)

xc + kδ

On solving, we get

k ≥ ḿ(µx)x + kδ
c

ḿ(µx)x + kδ
c
−mµx

. (4.11)

Considering δ to be small and minimizing the value of k with respect to x, it turns

out that for x = 1
2
, k will be minimum. So for x = 1

2
, k will be

k ≥ ḿµ
1
4

ḿµ
1
4 −mµ

1
2

(4.12)

Here it is interesting to note that ḿ = m (that should be the condition under

equilibrium) and µ = 1 value of k turns out to be ∞. This happens because now

newcomer node can not improve its reputation any more above µ = 1 and if node

is cooperative, every time its positive pay-off becomes equal to its negative pay-

off. Only δ gain is the gain that comes as an advantage to him over the defector.

Secondly if every body has reputation equal to 1 that means it’s an ideal system

and does not need any reputation management.

4.4.2 Payoff of Agents with Zero Cost Identities

In case of free identities, the pay-off for a cooperative node will remain same

as in the case of permanent identities i.e. (4.8). But for defector node, it will
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change because now defector node can white wash and change its identity. So

the defector’s expected pay-off after first round will be,

Ew[payo f f (1)] = ḿ · c · (Rini)
x + δ.

Its reputation will become 0 as it will not serve but it will change its identity as it

will not cost any thing for it. So its reputation will again become Rini. Pay-off of

defector after second round will be,

Ew[payo f f (2)] = ḿ · c · (Rini)
x + δ + ḿ · c · (Rini)

x + δ

= 2ḿ · c · (Rini)
x + 2δ.

Similarly pay-off after k rounds will be,

Ew[payo f f (k)] = kḿ · c · (Rini)
x + kδ. (4.13)

Comparing (4.8) and (4.13) to get the number of rounds required after which

cooperative node will be on advantage over defector node.

kḿ · (Rini)
xc + kδ ≤ −kmµx · c + (k − 1)ḿ · (µx)x · c + ḿ · (Rini)

xc + kδ

On solving we get,

k ≥ ḿ(µx)x − ḿ(Rini)
x

ḿ(µx)x −mµx − ḿ(Rini)x
. (4.14)

Fig 4.1 is showing the initial reputation that can be awarded to newcomer for

different values of x in such a way that node cannot whitewash. We want to

provide the maximum value of initial reputation For µ = 0.5 and m = ḿ, it seems

that the maximum possible value of Rini giving which ensures that a cooperative

node will win against a defector node is 0.036 at x = 0.75 (figure 4.1).
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Figure 4.1: Variation in Initial reputation, number of round and x

4.4.3 Payoff of Agents with Finite Cost Identities

Now we will consider an intermediate case where identities have a fixed finite

cost, i.e. z. It means that every time when a node will enter in the network with

a new identity, it will get a pay-off of −z. The expected pay-off of the cooperative

node in the end of first round will be

Ec[payo f f (1)] = −mµx · c + ḿc · (Rini)
x − z + δ. (4.15)

The expected reputation of entering node after first round of transaction if repu-

tation is measured using equation (4.2), is given by

Ec[R(1)] =
mµx · c

mc

= µx. (4.16)
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Similarly pay-off and reputation of this node at the end of second round will be

Ec[payo f f (2)] = −2mµx · c + ḿ · (µx)x · c

+ḿ · (Rini)
xc − z + 2δ

Ec[R(2)] =
ux + µx

2
= µx

Similarly pay-off and reputation of this node at the end of kth round will be,

Ec[payo f f (k)] = −kmµx · c + (k − 1)ḿ · (µx)x · c (4.17)

+ḿ · (Rini)
xc − z + kδ

Ec[R(k)] =
µx + ... + µx

k
= µx. (4.18)

The defector’s expected pay-off after first round will be,

Ew[payo f f (1)] = ḿ · c · (Rini)
x − z + δ.

Its reputation will become 0 as it will not serve but it will change its identity as it

will not cost any thing for it. So its reputation will again become Rini. Pay-off of

defector after second round will be,

Ew[payo f f (2)] = ḿ · c · (Rini)
x − z + ḿ · c · (Rini)

x − z + 2δ

= 2ḿ · c · (Rini)
x − 2z + 2δ.

Similarly pay-off after k rounds will be,

Ew[payo f f (k)] = kḿ · c · (Rini)
x − kz + kδ. (4.19)
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Comparing (4.17) and (4.19) to get the number of rounds required after which

cooperative node will be on advantage over defector node, we get

kḿ · c · (Rini)
x − kz+ kδ ≤ kmµx · c+ (k− 1)ḿ · (µx)x · c+ ḿ · (Rini)

xc− z+ kδ. (4.20)

k ≥ ḿ(µx)x − ḿ(Rini)
x + z

c

ḿ(µx)x −mµx − ḿ(Rini)x + z
c

. (4.21)

4.5 Problem of Whitewashing

When in a peer-to-peer network, a reputation management system is imple-

mented, selfish nodes start applying different strategies to counter the rules of

the system for their benefit. Whitewashing is one such strategy.

If cheap identities are available in the system, a rational node does not cooperate

i.e. it free rides and changes its identity when its reputation goes low. When a

normal node encounters such node, it thinks that this is a legitimate newcomer

and hence serves it according to that. Hence, a white washer utilizes the resources

of system even without cooperating.

Whitewashing can be totally avoided if we have permanent identities as men-

tioned in the previous section. But having such permanent identities implies

that nobody is anonymous [29]. One way to get permanent identities without

losing anonymity is to use Gossip-Based Computation of Aggregate Information.

This requires a trusted central certification authority and every user has to take a

signed certificate.

If permanent identities are not to be used, there is no way by which one can
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differentiate between legitimate newcomer and a whitewasher. Whitewashing

can be avoided by keeping a low initial reputation value Rini. But as we have seen

in the previous section, this leads to a very small value and discourages legitimate

new comers to join the system because of initial hardship in the system.

Keeping some cost of identities seems to be a good idea. But it is difficult

to decide the cost of an identity. If the cost is kept higher, the whitewashing

will be discouraged but on the other hand legitimate new comers will also be

discouraged. This will reduce the efficiency of the system. Moreover, distribution

of the earning due to the cost of identities among the existing users, will be

another problem. Alternatively a policy may be made that any newcomer will

not be served initially or will be served with poor quality of service. It will be

served properly only once it has earned some credit by serving some existing

nodes i.e. a newcomer will be provided small or 0 initial reputation. This will

lead to initial hardship to legitimate newcomers and hence will decrease system

performance.

We propose that when a new node joins the network, it should be given an

initial reputation value Rini. As it’s difficult to identify whether a new joining node

is a a whitewasher or legitimate newcomer, all we can do is to make decision on

the basis of level of whitewash in the network. So this initial value should keep

on changing on the basis of level of whitewashing in the network. It means

that if whitewashing level is low, the Rini value will be kept high; where as if

whitewashing level increases, Rini value will be decreased adaptively.

As whitewashing nodes can not be identified and hence can not be counted so
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we need to estimate the level of whitewashing on the basis of growth in network

at regular basis. For this, we need to follow an algorithm for estimation of

whitewashing level. In this algorithm, we count the number of nodes at regular

basis and find the increase in the size of network in distributed fashion. This can

be easily done using gossiping techniques. If reputation management system is

based on [51], gossiping is already happening at regular intervals. So there will

not be any additional overhead.

As we are considering network based on PA model [61], the newcomer node

will join the network preferably attaching to the existing nodes with high degree.

Hence, growth rate at different places within the network will be different.

Once a node finds the total number of nodes in the network at two consecutive

gossiping instances, it can locally calculate the overall growth rate of network.

This estimate of growth rate must be adjusted to get an estimate of local growth

rate due to the reason mentioned above. This can be done using,

Glocal,i =
dlocal,i

daverage
·

Nn

Nn−1
. (4.22)

Here Glocal,i is local growth rate of the network with respect to node i; daverage is

the average degree of complete network; dlocal,i is the local average degree with

respect to node i; and Nn, Nn−1 are the network size in current and previous

iteration respectively. Overall average degree of the network can be found out

using gossip. By adding one more parameter, i.e. self degree of node, to gossiping

will give the sum of degrees of nodes in the network and hence average degree

can be estimated by every node. As gossip is already happening, adding new

parameter in the gossip will not lead to too much increase in overhead. The local
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average degree can be computed by taking average of neighbours’ degree.

The nodes will also monitor the recently departed nodes. It will categorize

theses into two types on the basis of Expected initial reputation. Expected ini-

tial reputation is the average of maximum initial reputation and minimum initial

reputation. First type of nodes have higher or equal reputation than the expected

initial reputation. These nodes will be considered as legitimate departing nodes as

no node will whitewash if it already has a reputation higher than the expected ini-

tial reputation. Second type of nodes are with lower reputation than the expected

initial reputation. These will be considered as potential whitewasher nodes. A

node shares following information about its neighbourhood - number of nodes

at the end of previous iteration, number of departing nodes and newly arriv-

ing nodes since last iteration. If there is no whitewashing, then newly arriving

nodes (Ai) should be equal to sum of legitimate departing nodes (Li) and expected

localized growth, i.e.,

Ai = Li +Ni,n−1 · (Glocal,i − 1).

If whitewashing happens, then

Ai > Li +Ni,n−1 · (Glocal,i − 1).

The difference is expected to be number of whitewashing nodes ẃi. Thus

Ai − ẃi = Li +Ni,n−1 · (Glocal,i − 1).

We can define the level of whitewashing Ẃi,n by node i as

Ẃi,n =

∑
j∈NSi

A j −N j,n−1 · (Glocal, j − 1) − L j

∑
j∈NSi

N j,n
. (4.23)
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In this formula, Ni,n is the sum of degree of the neighbours of a node at the current

iteration and NSi is the set of neighbours of node i.

We assume that node will vary the value of initial reputation with respect to

level of whitewashing in quadratic fashion. Let Rini,i,max, Rini,i,n and Rini,i,min be the

initial reputation values at zero whitewashing, current whitewashing level (Ẃi,n)

and maximum possible whitewashing level at node i respectively. We propose

the initial reputation Rini,i,n as,

Rini,i,n =


R̃ini,i,n if R̃ini,i,n ≥ Rini,i,min.

Rini,i,min, otherwise.
(4.24)

where

R̃ini,i,n =

(

1 − Ẃi,n

Ẃi,max

)2

· Rini,i,max

The Ẃi,max is the maximum possible whitewashing level at the node i. Initially it

will be taken as the ratio of number of nodes that have honesty level between 0

and Rini,n,max and total nodes. Hence, it turns out to be (Rini,n,max ·N)/N = Rini,n,max.

Later on node will try to estimate it by taking the maximum whitewashing level

seen over last ń rounds such that

Ẃi,max = max
last ń rounds

Ẃi,n. (4.25)

The value of ń may be dynamically adjusted by the node as per the change

observed in whitewashing level. For this work, ń has been taken as constant for

every node for simplicity. The value of this constant has been taken as 10 for

simulation.

The value of Rini,i,min will be taken such that a cooperative user may win over

whitewashing user after few rounds. As evident from the figure 4.1, number of
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rounds required to win a cooperative user increases at a very high rate above a

certain Rini,i value. It may be taken as Rini,i,min.

The value of Rini,i,max will be decided on the basis of the cooperation received

from legitimate newcomers. A node will average the reputations of newcomers

nodes after every gossiping round. In this average computation, it will consider

the nodes that have seen three gossiping rounds. This average may be taken as

Rini,i,max.

Timing diagram of whole process that a node will undergo is described in figure

4.2. We can observe the following from this figure. Any node will periodically

allocate resource to the requesting nodes. In this process, a node will first reply to

the received queries, then on the basis of number of queries received and network

growth rate, it will estimate the level of whitewashing. After this estimation, node

will allocate resources to the requesting nodes. The new nodes that will join the

network after whitewash level estimation will be served resources after the next

whitewash level estimate. Nodes can estimate the growth rate by interpolating

the previous gossips until the next round of gossip is completed.

4.5.1 Example for Differential Gossip Algorithm

We will consider a network of 10 nodes. Figure 4.3 shows the topology of the

network. Let us assume that minimum initial reputation is 0.03 and maximum

initial reputation is 0.30. Let node number 7 and 8 be two nodes with honesty

level between .03 and .30 with honesty level 0.127 and 0.224 respectively. Table

4.3 shows the initial reputation offered in each round to both the nodes after every
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Figure 4.2: Timing Diagram

Figure 4.3: Topology of the example network

iteration at each node.
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Honesty level Rini Offered (1) Rini Offered (2)
Node 7 0.127 0.192 0.08
Node 8 0.224 0.192 0.08

Table 4.1: Rini Offered to whitewashing nodes

4.5.2 Analysis of Algorithm

While analysing the algorithm, we need to understand that a node has two choices,

first, to be cooperative and the second to be non-cooperative. While being non-

cooperative, a node have the choice to whitewash to maximize his gain. Usually

non-cooperative users will whitewash as that is the only way it can gain from

the system. A user will be non-cooperative and hence will also whitewash if

its honesty level is lesser than the current initial reputation allotted to any new-

comer node. As the current initial reputation level will always lie in between

the maximum initial reputation Rini,i,max and minimum initial reputation Rini,i,min,

we can state the following. All nodes having honesty level higher than Rini,i,max,

will never whitewash and thus will be always be cooperative. All nodes having

honesty level lesser than Rini,i,min will always whitewash. All the nodes having

honesty level between Rini,i,max and Rini,i,min will choose to be either cooperative or

non cooperative (thus be whitewasher) depending on expected current value of

initial reputation.

If in the system, the current value of initial reputation is maintained such that

the nodes who are whitewashing in every round will certainly loose to cooperative

nodes, the nodes will have no choice but to be cooperative.

The nodes who choose to be non-cooperative, have a choice of whitewashing
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B
Do whitewash Don’t whitewash

A Do whitewash (Rini,i,min, Rini,i,min) (Ŕ, 0)

Don’t whitewash (0, Ŕ) (0, 0)

Table 4.2: Payoff of a whitewasher - pure strategy

or not. In case whitewashing nodes are less, the whitewashing level will be less

and thus Rini,i,n will be set to higher value and vice-versa. Let us understand,

what should be natural choice of non-cooperative node - to whitewash or not to

whitewash.

To understand the process that is happening with the nodes, we will start

with the simple case when only two players have their honesty level below the

maximum initial reputation and above the minimum initial reputation. There are

three possibilities in this case. First, no node whitewashes, second, one of the

nodes whitewash and third when both nodes whitewash. Here, the maximum

whitewash level is 2
N

. Hence, in first case Rini,i,n will be Rini,i,max, in second case, it

will be
Rini,i,max

4
and in third case, it will be Rini,i,min according to (4.24). Therefore the

game matrix will be as follows, Here Ŕ =
Rini,i,max

4
. By this matrix, it is evident that

{Do whitewash, Do whitewash} is the weakly dominant strategy and hence both

players will enter in every round and will get a payoff of Rini,i,min.

Rini,i,min is a payoff that is too low to whitewash as explained earlier, hence

it remains no more lucrative option for such users. Consequently they do not

whitewash and their payoff becomes zero.

This zero payoff discourages their non-cooperative, whitewashing tendency
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and consequently forces them for cooperation. Similar thing will occur in κ

player game, i.e. when κ players have their honesty level below the maximum

initial reputation. In that case, game will be as follows.

Player set P={nodes with honesty level below maximum initial reputation}

Actions∈{S1, S2, ..., Sκ}

here Si={Do whitewash, Don’t whitewash} ∀i ∈ {1, 2, 3, ...,κ}

Payo f f = ui((v1, ..., vκ))

=



1 −

∑
j

v j

κ




2

· Rini,n,maxif Rini,i,n ≥ hi.

Nodes will not whitewash if Rini,n < hi. Here ui is the pay-off of ith player and v j is

the action performed by jth player such that, v j = 1 if player does the whitewash

and 0 otherwise. In this case also, it is evident that the weakly dominant strategy

for all the players is to whitewash. This leads to a payoff of Rini,i,min. As said earlier

Rini,i,min is a payoff that is too low to whitewash and it remains no more lucrative

option for these users. Consequently they do not whitewash and their payoff

becomes zero. This zero payoff discourages their non-cooperative, whitewashing

tendency and consequently forces them for cooperation.
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B
Round 1, (p) Round 2, (1-p)

A Round 1, (q) (0,0) (Ŕ, Ŕ)

Round 2, (1-q) (Ŕ, Ŕ) (0,0)

Table 4.3: Payoff of a whitewasher - mixed strategy

Users may also randomize their whitewashing action in each period, i.e. they

may whitewash in a period with a particular probability. It is easy to observe

that if there are κ players then they will randomized over utmost κ rounds to

maximize their randomization benefit. Let’s examine a two player case when

both are randomizing over two periods. The game matrix will be as follows.

Here, when both the players are whitewashing simultaneously, their payoff will

become Rini,i,min and that will become zero because of reason that both the nodes

will find whitewashing non-lucrative and will decide not to whitewash. Let us

compute the payoff for player A for whitewashing in round 1 when player B is

whitewashing in round 1 and round 2 with probabilities p and 1 − p respectively,

payo f f (A, 1) = p · 0 + (1 − p) · Ŕ. (4.26)

Similarly for entering in round 2,

payo f f (A, 2) = (p) · Ŕ + (1 − p) · 0. (4.27)

As player A is randomizing, pay-off in both the round should be same, so on

equating both the equation we get p = 1
2

and in similar fashion q = 1
2
. So the

equilibrium probability distribution for p and q both is {1
2
, 1

2
}.

Now let us examine a three player (A,B,C) case. There are two possibilities –

when players are randomizing over two rounds and when players are random-

izing for three rounds. Let us assume that, the initial reputations given in some
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round when 1, 2 or 3 players are entering are Ŕ1, Ŕ2 and Ŕ3 respectively such that

Ŕ1 > Ŕ2 > Ŕ3. The exact values of Ŕ1, Ŕ2 and Ŕ3 can be calculated using (4.24),

Ŕ1 =

(
1 − 1

3

)2
· Rini,i,max =

4

9
Rini,i,max (4.28a)

Ŕ2 =

(
1 − 2

3

)2
· Rini,i,max =

1

9
Rini,i,max (4.28b)

Ŕ3 =

(
1 − 3

3

)2
· Rini,i,max = Rini,i,min (4.28c)

As we know that players have different level of honesty, we assume that A has

highest level of honesty and will only whitewash for Ŕ1, B will whitewash for Ŕ1

and Ŕ2 and C will whitewash for all values of initial reputation.

Lets us first consider randomization over three rounds. Probabilities for white-

washing in round 1, 2 and 3 are pA, qA, rA; pB, qB, rB and pC, qC, rC for players A,B

and C respectively.

Equating the pay-off of player A for whitewashing in round 1, 2 or 3,

(1 − pB)(1 − pC)Ŕ1 = (1 − qB)(1 − qC)Ŕ1 = (1 − rB)(1 − rC)Ŕ1 (4.29)

Here it may be noted that player A will only whitewash when neither B nor C are

whitewashing. Similarly for player B

(1 − pA)pCŔ2 + (1 − pC)pAŔ2 + (1 − pA)(1 − pC)Ŕ1 =

(1 − qA)qCŔ2 + (1 − qC)qAŔ2 + (1 − qA)(1 − qC)Ŕ1 =

(1 − rA)rCŔ2 + (1 − rC)rAŔ2 + (1 − rA)(1 − rC)Ŕ1 (4.30)

Here it may be noted that player B will only whitewash when only one more or

no player is whitewashing.
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Similarly for player C

Ŕ3pBpA + (1 − pB)pAŔ2 + (1 − pA)pBŔ2 +

(1 − pB)(1 − pA)Ŕ1 = Ŕ3qBqA + (1 − qB)qAŔ2 +

(1 − qA)qBŔ2 + (1 − qB)(1 − qA)Ŕ1 = Ŕ3rBrA +

(1 − rB)rAŔ2 + (1 − rA)rBŔ2 + (1 − rB)(1 − rA)Ŕ1 (4.31)

Here it may be noted that player C will whitewash in all conditions. And

pA + qA + rA = pB + qB + rB = pC + qC + rC = 1 (4.32)

Solving above set of equations we get pA = pB = pC = qA = qB = qC = rA = rB =

rC =
1
3
. Hence, when randomizing over 3 rounds,the payoff of player A will be

( 4
9
Ŕ1), for player B the payoff will be (4

9
Ŕ1 +

4
9
Ŕ2), and for player C the payoff will

be ( 4
9
Ŕ1+

2
9
Ŕ2+

1
9
Ŕ2). Using equation (4.28), the value of payoff for A, B and C will

be ( 16
81

Rini,i,max), ( 20
81

Rini,i,max) and ( 18
81

Rini,i,max +
1
9
Rini,i,min) respectively.

Similarly if these three players will randomize over two periods with prob-

abilities pA, qA, pB, qB, pC, qC respectively, the probabilities will turn out to be 1
2
.

Hence, when randomizing over 2 rounds, the payoff of player A will be (1
4
Ŕ1),

for player B the payoff will be (1
4
Ŕ1 +

1
2
Ŕ2) and for player C the payoff will be

( 1
4
Ŕ1 +

1
2
Ŕ2 +

1
4
Ŕ2). Using equation (4.28), the value of payoff for A, B and C will

be ( 4
36

Rini,i,max), ( 6
36

Rini,i,max) and ( 6
36

Rini,i,max +
1
4
Rini,i,min) respectively.

It is evident from payoffs shown above that players will prefer to randomize

over three rounds and not less than three.

Now let us examine for κ players (A1,A2, ...,Aκ) randomizing over κ́ rounds.
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Let us assume that, the initial reputations given in some round when 1 to κ

players are entering are Ŕ1 to Ŕκ respectively such that Ŕ1 > Ŕ2 > ... > Ŕκ. The

exact values of Ŕ1, Ŕ2 etc. can be calculated using (4.24). As we know that players

have different level of honesty, we assume that A1 has highest level of honesty

and will only accept Ŕ1, and Aκ will accept all values of initial reputation.

Let us assume that probability for whitewashing in ith round by A j is p ji. Equat-

ing the pay-off of player A1 for entering in all κ́ rounds,

(1 − p21)(1 − p31)...(1 − pκ1) · Ŕ1

= (1 − p22)(1 − p32)...(1 − pκ2) · Ŕ1

= ... = (1 − p2κ́)(1 − p3κ́)...(1 − pκκ́) · Ŕ1 (4.33)

Similarly for player A2

Ŕ2 · [(p11)(1 − p31)...(1 − pκ1) + (1 − p11)(p31)...(1 − pκ1)

+... + (1 − p11)(1 − p31)...(pκ1)] + Ŕ1 · (1 − p11)(1 − p31)

...(1 − pκ1)

= Ŕ2 · [(p12)(1 − p32)...(1 − pκ2) + (1 − p12)(p32)...(1 − pκ2) + ... +

(1 − p12)(1 − p32)...(pκ2)] + Ŕ1 · (1 − p12)(1 − p32)...(1 − pκ2)

= ... = Ŕ2 · [(p1κ́)(1 − p3κ́)...(1 − pκκ́) + (1 − p1κ́)(p3κ́)...(1 − pκκ́)Ŕ2

+... + (1 − p1κ́)(1 − p3κ́)...(pκκ́)] +

Ŕ1 · (1 − p1κ́)(1 − p3κ́)...(1 − pκκ́) (4.34)
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and for player Aκ

Ŕκ · (p11)(p21)...(p(κ−1)1) + ´Rκ−1 · [(1 − p11)(p21)...(p(κ−1)1) +

(p11)(1 − p21)...(p(κ−1)1) + (p11)(p21)...(1 − p(κ−1)1)] + ... +

Ŕ2 · [(p11)(1 − p21)...(1 − p(κ−1)1) + (1 − p11)(p21)...

(1 − p(κ−1)1) + ... + (1 − p11)(1 − p21)...(p(κ−1)1)] +

Ŕ1 · (1 − p11)(1 − p21)...(1 − p(κ−1)1)

= Ŕκ · (p12)(p22)...(p(κ−1)2) + ´Rκ−1 · [(1 − p12)(p22)...(p(κ−1)2)

+(p12)(1 − p22)...(p(κ−1)2) + (p12)(p22)...(1 − p(κ−1)2)]

+Ŕ2 · [(p12)(1 − p22)...(1 − p(κ−1)2) + (1 − p12)(p22)...(1 − p(κ−1)2)

+... + (1 − p12)(1 − p22)...(p(κ−1)2)]

+Ŕ1 · (1 − p12)(1 − p22)...(1 − p(κ−1)2)

= ... = Ŕκ · (p1κ́)(p2κ́)...(p(κ−1)κ́) + ´Rκ−1 · [(1 − p1κ́)(p2κ́)...(p(κ−1)κ́)

+(p1κ́)(1 − p2κ́)...(p(κ−1)κ́) + (p11)(p21)...(1 − p(κ−1)1)]

+... + Ŕ2 · [(p1κ́)(1 − p2κ́)...(1 − p(κ−1)κ́)

+(1 − p1κ́)(p2κ́)...(1 − p(κ−1)κ́) + ... +

(1 − p1κ́)(1 − p2κ́)...(p(κ−1)κ́)] +

Ŕ1 · (1 − p1κ́)(1 − p2κ́)...(1 − p(κ−1)κ́) (4.35)

We will also have,

κ́∑

i=1

p ji = 1; ∀ j. (4.36)

Solving above set of equations i.e. (4.33,4.34,4.35,4.36), it turns out that ∀ j, i; p ji =

1
κ́ . Applying similar logic as with three player case we can see that it is optimal
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for every player to randomize on κ rounds.

This kind of randomization is only possible when whitewashing users white-

wash in a coordinated manner. Coordination is required because otherwise the

value of κ will remain unknown to whitewashing users. If they whitewash in

such a way, the whitewashing level will be reduced κ times.

It is interesting to note that when all users randomize over κ́ rounds, a node can

unilaterally increase its pay-off by decreasing the number of rounds, it is going to

randomize. It will get maximum pay-off when every other node will randomize

over κ́ rounds and it will whitewash in every period. As every node is interested

in its own pay-off, every node will adapt the strategy to whitewash in every round

and hence all will get zero pay-off as shown earlier and consequently they will be

discouraged for whitewashing.

In figure 4.8, we have plotted simultaneously, the fraction of users having

honesty level below Nw

N
and initial reputation as function of whitewashing level

Nw

N
. The intersection of these two graphs gives the stable operating point.

As our algorithm periodically estimates maximum whitewashing level, once

system attains stability, the minimum reputation whitewashing level will be re-

duced. This gives new stable operating point Y (as shown in figure 4.8(b)) point.

This process will be repeated again and again and over the time, the operating

point adjusted to keep the whitewashing level to a negligible value.
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Figure 4.4: Average Initial reputation offered to newcomer nodes

4.6 Numerical Results

Performance evaluation of the proposed method to avoid whitewash has been

done for different kind of networks, viz. growing scale-free network based on BA

model starting with 1000 nodes with growth rate of 0% per 10 iteration, 2% per 10

iteration, 5% per 10 iteration, 8% per 10 iteration and regular network with 1000,

5000 and 10000 nodes. By growing network, we mean in such a network after

every 10 iterations some percentage of new nodes join the network.

We have considered the discrete time instants for the purpose of measurement

and estimation in the simulations. Every slot is termed as an iteration. Value of

Rini,i,max and Rini,i,min for all nodes has been taken as 0.5 and 0.03 respectively. Thus,
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Figure 4.5: The fraction of nodes that whitewash

50% of the nodes are taken to be potential whitewasher initially.

In the first iteration, all potential whitewasher nodes attempt to whitewash

to randomly chosen nodes. Every node calculates the level of whitewash and

according to that it offers the initial reputation. Nodes, that attempt for whitewash,

go for it as per their honesty level and offered initial reputation. From next round

onwards, potential whitewashing nodes attempt for whitewash probabilistically

and the probability for attempting whitewash for a node depends on the number

of times that node is able to whitewash, i.e.,

Pwa =
number o f times nodes was able to whitewash

total number o f times node attempted f or whitewash
. (4.37)

Here Pwa is the probability by which a node will attempt whitewash. This process

is repeated again and again up to 500 iteration.
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Figure 4.6: Average Initial reputation offered to newcomer nodes

Figure 4.5 and figure 4.7 present the fraction of nodes that could whitewash in

every iteration for growing scale-free network and regular networks respectively.

Figure 4.4 and figure 4.6 present the average initial reputation offered by nodes in

every iteration for growing scale-free network and regular networks respectively.

It is evident in figures that after some iterations, very few nodes could white

wash in spite of a reasonable initial reputation being offered to newcomer nodes.

This can also be observed from figures that proposed method works for different

kind of networks.

In figure 4.8, we have plotted simultaneously, the fraction of users having

honesty level below Nw

N
and initial reputation as function of whitewashing level

Nw

N
. The intersection of these two graphs gives the stable operating point. The
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Figure 4.7: The fraction of nodes that whitewash

(a) (b)

Figure 4.8: Change in Maximum whitewashing level

reduction in whitewashing level with time can be explained as follows. As shown

in figure 4.8(a), the system will operate at NW

N
where the two curves cross each

other. As all the nodes periodically estimate the maximum whitewashing level
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based on an observation window. The new estimates will be lesser than the earlier

ones. This is indicated by the solid line curve towards the left of earlier Rini, i,n vs.

NW

N
graph (figure 4.8(b)). Thus the operating point moves towards left with time.

This keeps on happening till the whitewashing level reaches to negligible value.

It may be noted that minimum reputation is 0.03, so all users having honesty level

less than 0.03 will always whitewash. Thus whitewashing level will never be less

than 0.03.

4.7 Conclusion

Whitewashing tendency of selfish users is a big problem in implementation of

reputation management system in peer-to-peer networks. In this chapter, we have

proposed a method to avoid the problem of whitewashing. This method adjusts

initial reputation value as per the level of whitewash. It is proved theoretically

and by simulation that the proposed method is able to avoid whitewash.



Chapter 5

Probabilistic Resource Allocation in
Peer-to-Peer Networks

5.1 Introduction

In previous chapters, we have proposed a reputation management system. This

system computes the reputation of different nodes in the network so that white-

washing and collusion can be avoided. The reputation of a node is computed on

the basis of trust values of the node as reported by different nodes that had direct

interaction with it. We have also proposed a method to consider the uncertainties

involved in measurement of trust.

The reputation computation should be such that it gives enough credit to the

nodes those are contributing more to the network. If some node is requested for

smaller size resource, it should not be at loss. We are proposing a probabilistic

resource allocation method in this chapter. It uses reputation of users while

allocating the resources. This kind of allocation ensures that a node with low
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reputation gets resources with some small finite probability. This will avoid the

disconnect between two nodes that have low reputation for each other. This is

important when resources are distributed in the network.

The incentive systems proposed in literature do not consider the interests of

peers i.e. the neighbourhood of a peer is not made up on the basis of its interests.

Although, gnutella servant keeps few last query replying peers in the cache but

it is limited to that only. This system is rather inefficient because two nodes

may have many interests in common while not being neighbours. Whereas two

neighbour nodes may have very few common interests. Hence, the better option

is to make neighbourhood on the basis of similarity of interests and reputation.

In this chapter, we have proposed an algorithm for the optimization of shared

capacity of a node (section 5.3), a method to compute the reputation (section 5.4),

probabilistic resource allocation based on reputation (section 5.4) and server selec-

tion according to interests of node and reputation (section 5.5). Finally numerical

results are given to verify the hypotheses (section 5.6).

5.2 Related Work

Various groups have suggested different techniques for resource allocation in

peer-to-peer networks. Kung et.al. [16] proposed selection of a peer for allocation

of resource according to its contribution to the network and usage of resources.

In the same context, Feldman et.al. [55] proposed a new term – generosity of the

node. It is estimated as the ratio of the service provided by the node to the service
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received by the node. Nodes will be served as per their estimated generosity.

Banerjee et.al. in [44] proposed that a node will calculate the expected utility

function for requesting node and on that basis it will decide if service has to

be provided or not. In [62, 63] the resource allocation algorithm for single link

limited capacity systems has been proposed. These papers considers network as

a market and proposes that second price auction leads to optimality. [62] assumes

that resource is available everywhere except at the requesting node. Thus, a node

is not required to have interaction with many nodes. Ma et.al. [64] proposed

progressive water filling algorithm on the basis of marginal utility for allocation

of resources among different requesting nodes. The base of bucket for water filling

is proposed to be varying according to the contribution of requesting node. Ma

et.al. [65] proposed to allocate the resource to requesting node on the basis of their

contribution and requirement of bandwidth. Yan et.al. in [40] proposed a ranking

based resource allocation scheme. Resource allocation is done according to utility

and ranking of requesting peer to ensure max-min fairness.

Social networks are formed on the basis of interests of users. This fact is been

capitalised to improve query search as well as recommendation network in peer-

to-peer networks [66, 67, 68, 69]. In [66] BitTorrent traces are studied and it is

concluded that interest based grouping of peers results in an efficient system. It

also proposes a DHT based system to implement this kind of group formation.

Wang et.al. [68] proposed interest based online social communities that are headed

by super nodes and nodes join the communities according to their interests. These

communities will have a trust relationship among its members. In [69] a friend

network is proposed on the basis of similarity of interests.
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5.3 Capacity Sharing

As every node in the network is rational, hence it will try to share minimum

amount of resource to increase its pay-off. If there is a reputation management

system implemented in the network, nodes are compelled to share the resources

to get the quality of service from the network. Nodes, being rational, will try

to optimize the amount of shared resources. We propose a method for nodes to

optimize the shared capacity to get the required quality of service from network.

In this method, nodes will initially share some amount of resource. This amount

of shared resource will be periodically reviewed and adjusted for optimality.

Initially a node will share the capacity as per its perceived download require-

ment. By perceived download requirement, we mean a rough estimate of its

average download requirement. This need not to be accurate as it will be updated

later on. But, it should neither be too low to ruin the reputation of a newcomer

node nor be too high to cause a cost penalty. If no estimate is available, initially

half of total download capacity can be shared.

Node will tweak the value of its shared capacity by periodically increasing

and decreasing it by some amount δ to get the optimal point where it will get

maximum advantage. While doing so, node will follow the following method.

1. If decrease in sharing capacity does not decrease significant average down-

load, it implies that node is sharing more than required resource and hence

it should decrease it.

2. If increase in sharing capacity increases significant average download, it
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implies that node is sharing less than required resource and hence it should

increase it.

3. If decrease in sharing capacity decreases significant average download, it

implies that either node was on optimal point (if it was preceded by an

increase) so it should get back to that point or is now sharing even lesser

than what it should have shared.

4. If increase in sharing capacity does not increases significant average down-

load, it implies that either node was on optimal point (if it was preceded by

an decrease) or is now sharing even more than what is required.

This process is shown in algorithm 4.

ϵ is a parameter that is kept for overcoming the effect of demand variation in

the network. When node observes high variation of the demand in the network,

value of ϵwill be increased.

5.4 Reputation Based System

Network is only meaningful if nodes are interacting with each other and con-

tributing to each others’ interest. We have a network of nodes that are rational

in nature. Such nodes contribute in the network only when they have some in-

centive for doing so. To avoid this problem, a reputation based incentive system

can be used. In such a system nodes keep the record of behaviour o f other nodes

observed by itself or on the basis of recommendation of different nodes. This kind
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Algorithm 4 Shared upload capacity adjustment of a node

k = 0; and A(k) = −1 {k is the instant when node reviews its sharing capacity
and A(k) is the indicator variable which shows the action taken at a particular
k}
repeat

Dk � average data download for kT to (k + 1)T
Us = Us + δ · A(k) {Us is shared capacity of the node}
if |Dk −Dk−1| ≤ ϵ then

if A(k) = A(k − 1) or A(k)=0 then
A(k + 1) � −1

else
if A(k) = 1 && A(k − 1) = −1 then

A(k + 1) � 0
end if

end if
else

if A(k) = −1 && A(k − 1) = 1 && Dk < Dk−1 then

A(k + 1) � 1
end if
if Dk > Dk−1 then

A(k + 1) � 1
end if

end if
k � mod 5(k + 1)

until Node is in the network
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of system forces rational nodes to contribute to the network. To implement this

kind of a system, we need to formulate a way for estimation of reputation and a

way for allocation of resource according to the estimated reputation.

5.4.1 Reputation Management System

Ideally, reputation should be the measure of cooperative behaviour of a node

which is an abstract quantity and it is a private information of a node. So, it is

difficult to measure the cooperative behaviour of a node and we can only measure

its implications with some degree of uncertainty. However, it can be estimated

with certain accuracy on the basis of behaviour observed by a node.

There could be a number of ways to observe the behaviour of a node. One

such method may be to use the ratio of received data rate to requested data rate.

The advantage of such technique is that if some node is asking for less amount

of data, the serving node will not earn a bad reputation. Moreover this kind of

reputation remains between 0 and 1 as given in 2.3, [70], i.e.,

ti j =

(

qa, ji

min(qi j,ay, q f , ji)

)1−ηi

×
q̂w, ji

qr, ji
, (5.1)

hence it is easy to handle. Here ti j is the reputation of node j for node i, qr,i j,

q̂w, ji, qa, ji, q f , ji and qay, ji are the requested, estimated willing, actual, feasible and

accepted service rates respectively. The disadvantage of this kind of system is

that it does not takes into account the amount of request. It means that if a node

is asking for less amount of resource from a node and more amount of resource

from another node and both are fulfilling node’s demand, both will get similar

gain in reputation. However, the node that was requested more resource, had to
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pay more in comparison to the other one.

This problem can be taken care of by giving different weights to different

transactions as per the amount of resource requested by that node. Weights

should be such that these should range between 0 to 1 and biggest service request

should get maximum weight. Requesting node has a fixed download capacity

that is generally the maximum of its download requirement.

A node can calculate the reputation of a node with following formulation,

ti j =

(

qa, ji

min(qi j,ay, q f , ji)

)1−ηi

×
q̂w, ji

qr, ji
×

qr, ji

qr,i,d
. (5.2)

Here qr,i,d is the download capacity of node i. It may be noted that we have

multiplied the factor
qr, ji

qr,i,d
to the ti j as estimated by equation 2.8 in chapter 2.

Keeping the download capacity (qr,i,d) instead of requested resource (qr, ji) in

denominator, we can overcome the above mentioned problem. However, qr,i,d is

quite large compared to qr, ji, this will make reputation values very low. Apart

from it, every node has a different value for qr,i,d and it will be a problem for

aggregation because a node having same kind of behaviour with two nodes of

different download capacities will have different value for the ti j. To over come

these problems nodes will multiply their reputation table with (qr,i,d/Qr,d). Here

Qr,d is the universal scaling factor known by all the nodes.

However, this will only work well if a node is only interested in resources

that have size of same order. If some node ’A’ is rich with resources that are

small in size, this node will have a very small value of reputation for a node that

is requesting for all size of resources because ’A’ would have been asked only
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for small amount of resource. Consequently, when ’A’ asks for small amount of

resource, it will get the resource with a very small probability. This issue will be

further investigated in next subsection.

5.4.2 Probabilistic Resource Allocation

In probabilistic resource allocation, node probabilistically decides if it will provide

the resource to requesting node or not. It means, when a node ’A’ requests

for resource from node ’B’, node ’B’ checks the reputation table and converts

reputation of ’A’ to its effective reputation. Here, by effective reputation we

mean reputation that is adjusted according to the requested amount of resource.

To calculate this value, node multiplies the reputation value with ratio of its

download capacity to requested amount of resource, i.e.

ti j,e f f ective = ti j ×
qr,i,d

qr,i j
. (5.3)

Now in the proposed system, if a node is asking similar amount of resource as it

supplied, it will be given same quality of service. If it asks for smaller resource

than it supplied, it gets even better quality of service whereas if opposite happens,

it gets a poor quality of resource.

Once node i gets the effective reputation of a node j, it selects the node j with

probability proportional to its reputation. It means node i generates a random

number. If this generated number is smaller than the reputation of requesting

node i.e. node j here, multiplied by a constant (νi), requesting node is selected to

provide the resource. νi is the constant that ensures the requirement of selected

nodes remains around the shared capacity so that it can be optimally utilised.
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Mathematically,

Pallocation,i, j =


Ṕallo if Ṕallo < 1.

1, otherwise.
(5.4)

Where,

Ṕallo = (ti j,e f f ective)
x · νi

Here Pallocation,i, j is the probability by which j will be allocated the resource. Node

will be selected for resource allocation if,

rand ≤ Pallocation,i, j (5.5)

Here rand is the random number generated by the node and x is the reputation

exponent. It is used because a low reputation node can only increase its reputation

if it serves with x < 1. Its value has been calculated in [71].

Nodes will dynamically and periodically adjust the value of νi to get the op-

timality. To do so, node will measure the utilised part of its shared capacity and

fulfilment level of demand of selected nodes. If it is not able to utilise its shared

capacity regularly, it increases the value of νi and if demand of selected node is

not fulfilled over the time, value of νi is decreased.

After the selection of nodes, the shared capacity is distributed among selected

nodes. If the total demand of requesting nodes is less than the shared capacity

of serving node, every node is allocated resource as per their requirement. If this

total demand is greater than the shared capacity, node needs to use some kind of

allocation algorithm such that, the serving node can get maximum advantage and

nodes can not play game by asking for resources greater than their requirement.
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A node will be maximum benefited when it has highest chance of getting

selected for resource allocation i.e. by maximizing its Pallocation for a future time

when it will need some resource, according to equation (5.2). If serving node is

doing this calculation, it can be assumed that qa,i j = min(q ji,ay, q f ,i j). Hence equation

reduces to,

t ji,e f f ective =
q̂w,i j

qr,i j
×

qr,i j

qr, ji
. (5.6)

q̂w,i j can be replaced by qo,i j as we are discussing about allocation in a particular

round where number of nodes, their demands and shared capacity has already

been fixed. Hence equation (5.6) reduces to,

t ji,e f f ective =
qo,i j

qr, ji
. (5.7)

qr, ji can only be predicted statistically. We can observe that if a node ’A’ is asking

less amount of resource to node ’B’ then ’B’ can only get less amount of resource

because if it will demand for bigger resource, its effective reputation will come

down and hence it will not be selected for service by node ’A’. Hence if A is asking

lesser resource from B, that implies B is asking lesser resource from A.

For simplicity ν can be taken as 1. Therefore, the optimisation problem a node

needs to solve becomes,

max
∑

j

(t ji,e f f ective)
x =⇒ max

∑

j

(

qo,i j

qr,i j

)x

. (5.8)
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Such that

∑

j

qo,i j = Us,i

qo,i j ≤ qr,i j; ∀ j
∑

j

qr, ji > Us,i

Here x is a constant. Its value lies between 0 and 1. For our case its value is 0.75.

This is a difficult optimisation problem. For that, we need to observe the

function ax. Here a varies from 0 to some finite value and x is a constant between 0

and 1 as mentioned above. Two facts are easy to observe, first it is a monotonically

increasing function and second its rate of change is monotonically decreasing

function. Therefore it is evident that initially our objective function will get the

maximum increment if resource is allocated to node that corresponds to smallest

qr,i j. After some allocation, increase in the value of objective function will decrease

and now it will be more for any other node that has requested more data than

first one. Now it will be beneficial to allocate data to this second node. After

some allocation, any other node may result in more increment and this process

continues till the resource allocation is complete.

On the basis of reason mentioned above, we propose an algorithm for alloca-

tion. First a node i decides about the minimum unit of allocation. Let us call this

∆i. On the basis of ∆i and the amount of total resource shared (Us,i), i calculates

the total number of allocation units (Usu,i) such that Usu,i =
Us,i

∆i
. Now, i constructs

an allocation array Usua that has the dimension of Usu,i × Ń. Here Ń is the number
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of nodes selected for data allocation by equation (5.5) such that

Usua(k, j) = ((k)x − (k − 1)x) ·

(

∆i

qr,i j

)x

. (5.9)

Here k and j are row and column indices of Usua. Elements of Usua are sorted

and indices of top Usu,i element are stored in a vector of dimension 1 ×Usu,i. The

number of times any particular node comes in this vector will be allocated the

same number of units.

In this kind of allocation, nodes asking for less amount of data will be given

data first. Hence if a node asks for more data than its requirement, it loses the

allocation part. This kind of allocation will also fulfil our second requirement.

As requests will be coming temporally in arbitrary fashion, it is necessary to

define a policy followed by a node for provisioning the service. If node will

serve the request as and when it comes, node will always remain busy in doing

so. Moreover, nodes that has got the bandwidth, will get allocation again and

again. If node will service the requests periodically, there is a chance with finite

probability that a low reputation node will get the service while a high reputation

node may keep on waiting.

Hence, a node should have a dynamic policy about serving instants. It means

that when total reputation of requesting nodes crosses a certain threshold, node

will serve the accumulated requests. If over a certain period of time total reputa-

tion of requesting nodes does not cross the threshold, node will serve the requests

accumulated by this time. While summing up the reputation of requesting nodes,

it is ensured that high reputation nodes get preferred to the nodes of lower rep-

utation. Whenever, a node serves new requests, node will first do the selection
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process for newcomer nodes and then it will redistribute the resources among

newly selected nodes and already existing nodes.

5.5 Server Selection

5.5.1 Common Interest Groups

In peer-to-peer file sharing network, different users have common interests. For a

user, it is beneficial to make neighbours that share interests with him and ready to

serve him. Therefore, a node should adopt a strategy to form its neighbourhood

according to similar interests with good reputation nodes.

Interest is an abstract notion so classification of nodes on the basis of interest

is difficult. Even if it is done, this will be a very large set that will be difficult

to handle. Therefore, interest group should be formed on the basis of files,

users requested or provided. However, users with different interests may request

same file. For example, a song may be liked for different reasons like music,

singer or lyrics. But, if two users are requesting for more and more similar files,

probably they may have some common interests. As the number of similar files

grows, probability of two peers choosing file due to same interest increases while

choosing it for different interests decreases.

Therefore, we propose that a node will compute the similarity coefficient of

the other nodes in the network. The similarity coefficient (χi j) of node j will be
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calculated by node i using

χi j =


vi j · logbasei

(Ωi j + 1) if Ωi j < basei.

vi j, otherwise.
(5.10)

Here Ωi j is the number of times node i has queried to node j or vice-versa, vi j is

the ratio of answered queries to total queries between node i and node j. basei will

be dynamically adjusted periodically as per the accuracy of similarity coefficient

of the node. It means if the selected neighbours can not answer sufficient number

of requests, value of basei will be increased.

5.5.2 Inclusion of Reputation in Neighbourhood Formation

As discussed earlier, for server selection, a node need to form its neighbourhood

using interests and reputation. This can be done by combining reputation (ti j) and

similarity coefficient (χi j) for node j. The combined score can be used to rank the

other nodes in the network. This rank can be used to select the server i.e. where

to send queries.

The combining can be done as follows.

scorei j = α · χi j + (1 − α) · ti j. (5.11)

Here α is a combination coefficient between 0 and 1. Value of αwill depend upon

the stability of common interest network. If a node has newly joined the network,

it has to build the interest network hence α will be taken high. Once it has a

stable interest network, value of αwill be decreased to have more contribution of

reputation in the score.
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Figure 5.1: Average data received per node within the same network. Different
graphs show nodes with different shared capacities

5.6 Numerical Results

We have done performance evaluation of reputation system and resource alloca-

tion system for a network of 200 nodes. We have also evaluated interest based

group formation algorithm for a network of 1000 nodes. We have considered

the discrete time instants for the purpose of measurement and estimation in the

simulations. Every slot is termed as an iteration. First 50 iterations have been

taken as an acquaintance period i.e. a node will allocate their bandwidth without

referring to the reputation table.

Figure 5.1 presents the average data received by nodes sharing different amount

of resource to the network. Here, it is evident from figure that the node that is
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Figure 5.2: System performance with different percentage of free riders.

sharing more data, is getting better quality of service. Figure 5.2 shows the

performance of system in presence of different percentage of free riders. We

can see in figure that from 5% to 10% decay in system performance is almost

negligible. After that, system performance decreases by small amount. So we can

say that system performance does not deteriorate much due to free riders.

Figure 5.3 shows the data received by peers asking for different amount of data

in the network. Here, BS represents the nodes that request for the amount of

resource as per its requirement whereas GS1 and GS2 represents the nodes that

requests the amount of resource multiple time to their requirement. GS2 requests

more times than GS1. Here it can be seen that nodes making request as per their

requirement are getting better quality of service whereas nodes that are trying to

exploit network by making requests multiple times are not getting that kind of
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Figure 5.3: Data received by nodes with different strategies

quality of service. This discourages the tendency of exploitation of by making

multiple time requests.

Figure 5.4 shows the average number of nodes queried required for resolution

of query in interest based and non-interest based network. Here, it can be seen

that, if node forms interest groups, its query gets resolved in much lesser number

of hops than number of hops in other case.

5.7 Conclusion

In this chapter, we have discussed allocation of resource by node on the basis

of reputation. Allocation has been done probabilistically, i.e., requesting node
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Figure 5.4: Average number of nodes queried required for query resolution

has been offered resource with a probability proportional to its reputation. If

total demand of selected nodes is more than offering node’s shared capacity,

allocation will be done to optimise the gain in reputation of offering node. An

algorithm has been proposed for the same. This algorithm also ensures that nodes

do not request more than their actual demand. An algorithm for formation of

common interest group and shared capacity optimisation has also been proposed.

Numerical results show that proposed algorithms work as per the requirement.



Chapter 6

Conclusions and Future Works

6.1 General Conclusions

Good scalability and absence of single point of failure has made peer-to-peer

architecture very attractive for system designers. But, distributed nature of peer-

to-peer networks poses many challenges. Free riding is one such challenge.

Designing a mechanism which provides incentives to non free riders and disin-

centives to free riders is a solution to this problem and this incentive mechanism

should be based on reputation of a peer. Reputation management systems are

used to maintain such reputations. On implementation of such system free rid-

ers start deceiving the system by activities like collusion and whitewashing. In

this thesis a reputation management system was proposed that can overcome the

problem of free riding, whitewash and collusion. This chapter discusses the major

conclusions of the work presented in the thesis.
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6.2 Estimation of Trust

Generally measurement of trust value involves uncertanities that are not consid-

ered by existing reputation management systems. These uncertanities include,

congestion effect, non consideration of offers that were made but not accepted and

varying allocations by serving node because of variation in load. This chapter

takes care these uncertanities and proposes a estimator based on BLUE.

Simulation results show that taking care of uncertanities by proposed esti-

mation algorithm leads to better estimation of trust and greater utilisation of

resources.

6.3 Aggregation of Trust

Distributed nature of peer-to-peer networks and their large size make aggregation

process complex and resource consuming. This chapter describes a variation of

gossip algorithm i.e. differential gossip algorithm that aggregates the information

at different nodes in scale-free network based on PA model in (log2N)2 time. Here

N is the number of nodes in the network. The said algorithm also gives different

weights to opinion of nodes in the network on the basis of their relationship with

aggregating node. This avoids collusion in the reputation management.

The said bound has been proved theoretically and numerical results vindicate

it. Analysis of collusion has also been done and numerical results show the

reduction in collusion.
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6.4 Avoiding Whitewashing

Implementation of reputation management system to discourage free riding in-

duces non cooperative users to whitewash so that they can exploit the system.

This chapter describes an algorithm to avoid whitewashing tendency of non co-

operative users. In this algorithm initial reputation is proposed to vary as per the

level of whitewash in the network. Theoretical analysis of algorithm suggests that

it can discourage the whitewashing tendency of users substantially. Numerical

results confirm the same thing for different kind of networks.

6.5 Resource Allocation

This chapter describes a resource allocation system that allocates probabilistically

on the basis of reputation of a node. The proposed system also ensures that if some

node is serving large resource it should get more credit for it. At the same time if

some node is serving small resource and asking for small resource, it should also be

taken care of. Algorithm also discourages the nodes for making unnecessarily big

requests, greater than their requirement. This chapter also proposes an algorithm

for forming common interest groups so that query of nodes can be resolved in

less number of hops. Shared capacity optimisation for a node is also proposed in

this chapter. Further, numerical results are presented that verify the performance

of algorithm.
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6.6 Future Works

This thesis mainly concentrate on design of reputation management system for

peer-to-peer networks to avoid the problem of free riding. Reputation manage-

ment system for peer-to-peer networks involves many issues. In this thesis, we

have selected few of them. Rest of the issues can be a part of further study. In

specific, following issues can be further explored.

(1) While estimating trust, we are not aware of probability distribution that uncer-

tainty will follow so we have used BLUE. The probability distribution of uncer-

tainty can be modelled by observing real system and consequently a better trust

estimator can be obtained.

(2) Weights given to different nodes while aggregation are wi j such that wi j = a
bi j·ti j

i
.

Here the values of ai and bi j are taken as constant in this work. The dynamic

evaluation and adjustment of a and b on the basis of quality of service received by

node from network can further improve the algorithm, and could be investigated.

(3) In gossiping it is assumed that nodes know the start of gossip. This is difficult

to ensure. The proposed algorithm may also work for asynchronous case with

minor modifications. These modifications and a theoretical proof for the algo-

rithms can be pursued further.

(4) More efficient techniques for gossiping can be designed like push-then-pull

gossip. This may improve the efficiency of the system.

(5) It is assumed that no peer is behind proxy. But generally this is not the case. To

avoid this problem few peers that are not behind proxy must act as reflector. This

will lead to some cost penalty to these peers. Hence there should be an incentive

mechanism for peer acting like reflectors as well.
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(6) Verification of the proposed reputation management system in the real life

network is important. This can be taken up to test the system performance on dif-

ferent size of networks. If the observed behaviour does not match the theoretical

prediction, further theoretical study will be needed.

(7) Pay-off analysis of cooperative and non cooperative peers in more general

setting can also be done.
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