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A mobile ad hoc network (MANET) is a multihop infrastructureless network that

consists of a collection of nodes which communicate among themselves via single or

multi-hop wireless links. The nodes in a MANET can directly communicate if they

lie in each other’s communication range. While for the nodes that lie beyond the

communication range of a node, an indirect communication is preferred. For an indirect

communication, intermediate nodes will act as routers and relay packets generated by

the other nodes. Each individual node needs to be identified uniquely in the network.

The unique identity allows each node to communicate with the desired nodes in the

network without ambiguity. In infrastructure networks, the unique identity to each node

is provided by a centralized server e.g. dynamic host configuration protocol (DHCP)

server. The unique identity provided by DHCP servers is in the form of IP address

given to each new node at the time of joining the network. While in MANETs, no
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such centralized server exists to provide an IP address to the nodes. Thus, in adhoc

networks, an auto-configuration protocol is needed that can automatically assign an

unique IP address to each of the unconfigured nodes. Although, each network interface

of a node has an associated medium access control (MAC) address, but this address

cannot act as a unique address for the node specially if a node has multiple interfaces.

1. The length of the MAC address is fixed, generally 48 bits, but a smaller size of a

node’s address in a MANET will be sufficient and also more efficient.

2. The MAC addresses are allocated by the hardware manufacturers, thus they may

not be from a contiguous block for the whole MANET. This will be problematic

if the aggregation of routes is announced to the outside world.

Thus, we need to suggest an address assignment solution that ensures the address

uniqueness for each of the nodes in the MANET. The address assignment solution in

MANETs is defined as address auto-configuration protocol (AAP). The job of an address

auto-configuration protocol is to automatically assign an unique network address to an

un-configured node in the network. The address auto-configuration protocol needs to

be fast enough and also it should consume less overhead for configuring a new node i.e.

each node needs to be configured with a minimum delay and least number of signalling

packet transmissions.

Moreover in the MANETs, due to random mobility of the mobile nodes, there is a

high probability that nodes can split into multiple partitions or different networks may

merge. So, it is also important for AAP to efficiently detect the network mergers and

partitions. Apart from detecting the network partition and merger, the address auto-

configuration protocol must also be robust enough to handle the network partitioning as
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well as the network mergers that occur frequently in mobile adhoc networks (MANETs)

to retain the uniqueness of the node addresses. The amount of overhead involved in

handling the network mergers and partitions should be as low as possible. The other

objective of AAP is to detect merger and partition as early as possible, and resolve the

duplicate addresses in the least possible time.

Our reseach work focusses on performing auto-configuration of mobile nodes in

mobile adhoc networks, i.e. how nodes will configure automatically when they wish to

join the network. Most of the existing auto-configuration protocols in the literature

use different methods to detect the network partition. These protocols involve periodic

broadcast of Hello packet from each of the nodes in order to make their presence known

to the other nodes in the network. Nodes in the network periodically transmit their

partition number to the neighboring nodes. This generates a lot of control overhead in

the network.

The existing auto-configuration protocols also have some drawbacks, such as they

are not scalable. So, as the number of nodes participating in the network increase,

the average communication overhead also increases almost linearly. Moreover, most of

the existing protocols use stateful approach which means maintaining data structures

such as address allocation tables. As the number of nodes increase, the entries in

the allocation tables also increase. This results in more memory space requirement to

store these data structures and thereby creating memory constraint as well as power

constraint in the mobile nodes.

In our research work, we have designed stateful as well as stateless address auto-

configuration protocols for MANETs. We have also modified one of the existing state-

ful auto-configuration protocols named as MANETconf. In this thesis, we have also
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computed and compared the message complexity for the existing auto-configuration

protocols in the worst case scenario, with the proposed protocols.

The thesis has been organized in the following seven chapters.

Chapter 1, defines the basic introduction to the mobile adhoc networks and ad-

dress auto-configuration protocols. This chapter also covers the objectives of an auto-

configuration protocol.

In chapter 2, we have reviewed most of the existing stateful as well as stateless

auto-configuration protocols in MANETs. We have also discussed the advantages as

well as the disadvantages of some of the protocols. Moreover, we have also suggested

possible changes to improve some of them.

In chapter 3, we have proposed a stateless address auto-configuration protocol

for MANETs, which is named as Scalable Hierarchical Distributive Auto-Configuration

Protocol (SHDACP). We have proposed two different versions of SHDACP protocol i.e.

SHDACP-IPv6 and SHDACP-IPv4. The SHDACP is used for the configuration and

management of the IP addresses in large and highly mobile adhoc networks. The main

aim of both the versions of SHDACP is to reduce the message overhead as well as the

address allocation latency involved in configuring a new incoming node. The SHDACP-

IPv4 protocol is compared with the existing protocols on the basis of different metrics

such as communication overhead, address allocation latency, percentage of configured

nodes and percentage of cluster head nodes. The simulation is done using OMNeT++

Network Simulation Framework.

In chapter 4, we have calculated the message complexity for configuring a new node

using the existing auto-configuration protocols (MANETconf and AIPAC). The results
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are then compared with one of our proposed protocol Scalable Hierarchical Distributive

Auto-configuration protocol (SHDACP-IPv6). The other objective focussed in this

chapter is to calculate the upper bound on the message overhead required to handle

the network partitions as well as mergers. These bounds are very useful in different

applications such as military scenarios, intelligent transport system (ITS) context where

mobility is very high and this leads to frequent network partitions and mergers.

In chapter 5, we have proposed a new stateful address auto-configuration protocol.

The main aim of this protocol is to allow each node to obtain a unique IP address in a

single attempt only. Moreover, this protocol also allows each node to generate a set of

addresses for configuring the new incoming nodes. Further, the proposed protocol also

has an address reclaimation policy that allows the IP address of the outgoing node to

be reused by the other nodes with the minimum overhead. The proposed protocol is

simple to implement and also performs efficiently (in terms of latency and overhead)

during mergers as well as partitions.

In chapter 6, we have proposed an improved auto-configuration protocol variation

by improvising MANETconf. The metric used for improvisation of MANETconf is the

communication overhead required for configuring a new node. We have also investigated

and compared the message complexity involved in configuring the new nodes for different

stateful protocols. For message complexity analysis, we have calculated the upper bound

on the message overhead for configuring the new nodes for most of the existing stateful

address auto-configuration protocols.

The last chapter of the thesis presents the conclusions of the work done. Some of

the possible future research directions are also suggested.
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Chapter 1

Introduction

1.1 Introduction

The wireless networks are divided into two broad categories: infrastructured net-

works and infrastructureless network. The infrastructured networks need a build up

infrastructure before they are in operation e.g. the telephone system, cellular network,

and the infrastructureless networks need no pre-defined infrastructure for their opera-

tion. The examples of infrastructureless networks include mobile adhoc networks, sensor

networks.

The mobile adhoc networks (MANETs) [1] are self-organizing wireless networks,

in which nodes are free to move randomly and can communicate within the limited

transmission range. These networks do not rely on the pre-existing infrastructure and

moreover no centralized server exists in them. In MANETs, any pair of nodes can

communicate directly (i.e. single hop) with each other if they lie within each other’s

transmission range. However, in order to facilitate multi-hop communication between

the nodes, the intermediate nodes will act as routers and relay packets generated by the

other nodes. Each individual packet contains the identity of the sender node as well as
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the destination node. Thus, in order to initiate communication between the nodes, each

node in the network must have a unique identity. The address-configuration for each

node in infrastructure networks is provided by a centralized server such as a dynamic

host configuration protocol (DHCP) server [2], but in MANETs, no such centralized

server exists. So, the fundamental challenges in MANETs are:

• Who will provide identity in the form of addresses to new incoming nodes?

• How to provide addresses?

• How to maintain the uniqueness of addresses?

• How to reclaim the addresses when nodes leave the network?

In order to investigate the above questions we have focussed in auto-configuration of

MANETs in the current research work. In MANETs the address auto-configuration

protocols (AAPs) are used to provide the node identity to each node. In the literature,

the authors have often assumed that nodes are already configured in the network. This

assumption is very strong assumption. Apart from this, when two or more networks

combine (or merge) together to form a single network, then how to maintain the address

uniqueness among the nodes, is important. Also the same is true when a network

splits into smaller partitions. These questions motivated us to investigate the auto-

configuration protocols.

The main job of AAP is to automatically assign an unique network address to each

un-configured node in the network so that they can communicate with the other config-

ured nodes in the network via multihop wireless links. The address auto-configuration

protocol needs to be fast enough and also it should consume less overhead for configur-

ing a new node i.e. each node needs to be configured with a minimum delay and least
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number of signalling packets. Also, the nodes in MANETs are free to move randomly,

and it results in frequent network mergers as well as splits. So, the AAP also needs to

maintain the address uniqueness of each node during the network mergers and when the

network splits. Thus, apart from configuring a new node, the address auto-configuration

protocol must be robust enough to handle the network partitioning as well as the net-

work mergers that occur frequently in the mobile adhoc networks (MANETs) due to the

node mobility. If a node leaves the network, then its address should be reused. Thus,

the AAP also needs to have an address reclaimation policy that allows the available

address space to be utilized more efficiently.

1.2 Problem Definition and Organization of Thesis

In this dissertation, our focus is to minimize the message overhead required by a

new node to perform auto-configuration process. Apart from the message overhead,

the other objective is to reduce the latency in the address allocation procedure. In

order to fulfil these objectives, we have proposed stateless as well as stateful address

auto-configuration protocols for MANETs.

The other research objective that we have focussed on, is to maintain the uniqueness

of IP address for each mobile node, irrespective of the nodes’ mobility. Apart from

maintaining the address uniqueness, our research also focusses on reducing the overhead

involved in partitioning as well as in merging. This is important for different applications

such as military scenarios, intelligent transport system (ITS) context where mobility is

very high and it leads to frequent network partitions and mergers.

In chapter 2, we have reviewed most of the existing stateful as well as stateless auto-
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configuration protocols in MANETs. We have also discussed the advantages as well as

the disadvantages of some of the protocols. Moreover, we have also suggested possible

changes to improve some of them.

In chapter 3, we have proposed a stateless address auto-configuration protocol for

MANETs, which is named as Scalable Hierarchical Distributive Auto-Configuration

Protocol (SHDACP). We have proposed two different versions of SHDACP protocol i.e.

SHDACP-IPv6 and SHDACP-IPv4. The SHDACP is used for the configuration and

management of the IP addresses in large and highly mobile adhoc networks. The main

aim of both the versions of SHDACP is to reduce the message overhead as well as the

address allocation latency involved in configuring a new incoming node. The SHDACP-

IPv4 protocol is compared with the existing protocols on the basis of different metrics

such as communication overhead, address allocation latency, percentage of configured

nodes and percentage of cluster head nodes. The simulation is done using OMNeT++

Network Simulation Framework.

In chapter 4, we have calculated the message complexity for configuring a new node

using the existing auto-configuration protocols (MANETconf and AIPAC). The results

are then compared with one of our proposed protocol Scalable Hierarchical Distributive

Auto-configuration protocol (SHDACP-IPv6). The other objective focussed in this

chapter is to calculate the upper bound on the message overhead required to handle the

network partitions as well as the mergers.

In chapter 5, we have proposed a new stateful address auto-configuration protocol.

The main aim of this protocol is to allow each node to obtain a unique IP address in

one attempt only. Moreover, this protocol also allows each node to generate a set of

addresses for configuring the new incoming nodes. Further, the proposed protocol also
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has an address reclaimation policy that allows the IP address of the outgoing node to

be reused by the other nodes with the minimum overhead. The proposed protocol is

simple to implement and also performs efficiently (in terms of latency and overhead)

during mergers as well as partitions.

In chapter 6, we have proposed an improved auto-configuration protocol variation

by improvising MANETconf. The metric used for improvisation of MANETconf is the

communication overhead required for configuring a new node. We have also investigated

and compared the message complexity involved in configuring the new nodes for different

stateful protocols. For message complexity analysis, we have calculated the upper bound

on the message overhead for configuring the new nodes for most of the existing stateful

address auto-configuration protocols.

The last chapter (i.e. chapter 7) of the thesis presents the conclusions and some of

the possible future research directions.



Chapter 2

Existing Address
Auto-Configuration Protocols for
MANETs : A Study

2.1 Introduction

The address auto-configuration is defined as the job of automatically assigning the IP

addresses to every node in the network, so that each new node can communicate with

the other configured nodes via single hop or multihop wireless links. The protocol that

is used to perform address auto-configuration for the nodes in mobile adhoc networks

(MANETs) is known as address auto-configuration protocol (AAP). The AAP acts

as a backbone for the MANETs, due to the absence of centralized servers, such as

Dynamic host configuration protocol servers etc in the MANETs. Apart from the

address configuration of the incoming nodes, the AAPs are also responsible to maintain

the address uniqueness of the already configured nodes, during the network mergers as

well as the splits. These mergers and splits are very frequent in MANETs due to the

random movement of the nodes. Moreover, when a node leaves the network then its

address should be reclaimed and reused. Thus, the AAP also needs to have an address
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reclaimation mechanism that allows the available address space to be utilized more

efficiently.

In the literature [3][4][5][6][7][8][9][10][11][12][13][14] the address auto-configuration

protocols in MANETs are broadly classified into two distinct categories [15] namely

stateless and stateful auto-configuration protocols. Some protocols with the charac-

teristics of both the categories are also being developed under the umbrella term of

hybrid auto-configuration protocols. Fig 2.1 shows the classification of the address

auto-configuration protocols for MANETs.

Figure 2.1: Classification of Address auto-configuration protocols for MANETs.

The main objectives of an address auto-configuration protocol are

• to assign unique IP addresses to each and every node,

• to minimize the communication overhead,

• to minimize the address allocation latency,

• to maintain the unique IP addresses during the network partitioning and mergers,
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• to detect and resolve the duplicate addresses during mergers and

• to reclaim the address efficiently for an effective utilization of the available address

space.

In this chapter, we have reviewed the existing stateful as well as the stateless auto-

configuration protocols in MANETs. We have also discussed the advantages as well as

the disadvantages of some of the protocols. Moreover, we have also suggested possible

changes to improve some of them.

2.2 Stateful auto-configuration Protocols

In the stateful auto-configuration protocol, each node will maintain a table corre-

sponding to the IP addresses of the other nodes. These protocols are also known as

conflict free protocols, as the addresses used for the allocation to the nodes, are known to

be free. Some of the existing stateful address auto-configuration protocols are MANET-

conf [16], Prophet Address Allocation for large scale MANETs [17], Enhanced MANET

auto-configuration Protocol (EMAP) [18], RSVconf [19], Logical Hierarchical Address-

ing (LHA) [20], Enhanced Logical Hierarchical Addressing (ELHA) [21], Distributed

Dynamic Host Configuration Protocol (D2HCP) [22] and One step addressing (OSA)

[23].

2.2.1 MANETconf (Nesaragi et al., 2002)

The MANETconf [16] is one of the existing stateful auto-configuration protocol for

the MANETs. Here, each configured node will maintain two tables, the Allocated table
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and the Allocate pending table. The Allocated table of a node contains all the IP ad-

dresses that are allocated in the network as per its knowledge and the Allocate pending

table contains those IP addresses for which the address allocation has been initiated but

not yet completed. In this protocol, when a new node (i.e. a requester) wishes to join

the network, it will broadcast a neighbor query message. After that the requester will

wait till the expiry of the neighbor reply timer to receive the neighbor reply messages

from the already configured nodes. If no reply is received before the expiry of neigh-

bor reply timer, then it will rebroadcast the neighbor query message. This process is

repeated for q (a threshold) number of times. If all the attempts fail, then the requester

concludes itself to be the only node in the network and will configure itself with an IP

address. In case the requester receives a neighbor reply message before the expiry of

the neighbor reply timer, then the requester will select one of the responders as its ini-

tiator (say node j) and send the requester request message to it. The requester request

message confirms the responder node j that it is selected as an initiator node. It will

then select an address (say x) for the requester, which is neither present in its Allocated

table nor in its Allocate pending table. The initiator node j then puts the address x in

its Allocate pendingj table and then floods the network with the initiator request mes-

sage. This is done in order to seek permission to grant the address x to the requester.

The recepients of this message will send a positive reply if none of their tables contain

any entry for address x, otherwise they will send a negative reply. The initiator waits

till the requester reply timer expires to receive responses from all the nodes that are

present in its Allocatedj table. If the initiator receives all the positive replies from the

configured nodes then it will assign address x to the requester, update its Allocatedj

table and then broadcast this information so that the other nodes can also add address

x in their Allocated tables. It also removes x from the Allocate pendingj table. In case

the initiator node receives even a single negative reply, then it will remove the address
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x from the Allocate pending table and choose another address which is again flooded in

another initiator request message. This process is repeated for initiator request retry

number of times. If all the attempts fail then it sends an abort message to the requester

which indicates that it is not possible to configure the requester. The flowchart of the

MANETconf is shown in figure 2.2 .

Possible Suggestions for improvement

There are some shortcomings in the MANETconf protocol such as very high mes-

sage overhead required for allocating an address for a new node. This is because the

initiator node expects positive responses from all the configured nodes before allocating

an address to the requester. In case the initiator node receives even a single negative

response, then it will again repeat the process. The number of messages can be reduced

if the initiator node broadcasts Initiator request message and only the nodes that al-

ready have the requested address in their tables should respond back to the initiator

with the negative reply instead of the initiator receiving replies (possitive and negative

both) from all the nodes. The initiator should wait for the expiry of the timer to re-

ceive the negative responses, from the configured nodes. This variation will eventually

reduce the message complexity of the MANETconf drastically. Moreover, the initia-

tor node should record all the addresses for which it receives negative reply from the

configured nodes. The initiator node will then avoid using these addresses for further

allocations. This reduces the unnecessary flow of messages in the network. Another

possible variation in the MANETconf protocol could be on the basis of the selection

criteria of the initiator node; presently it is done randomly by the requester based on

the responses it receives for the neighbor query message. The better option could be

that the requester should select one of the responder nodes with the maximum signal
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Figure 2.2: Flowchart of MANETconf protocol.
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strength as its initiator. The above variation will help in reducing the time required for

performing the auto-configuration of a new node.

2.2.2 Prophet Address Allocation for large scale MANETs
(Zhou et al., 2003)

In Prophet address allocation protocol [17], each node maintains a 2-tuple i.e. an IP

address and a state of a predefined function f(n). The new IP addresses are generated

with the help of the current IP address and a predefined function f(n) using its current

state. When the first node enters the network, it chooses a random IP address as well

as a random seed for its function f(n). This node will act as a prophet for the MANET,

as it knows well in advance about all the IP addresses that are going to be allocated.

When a new node (say i) comes in the network, it will approach one of the configured

node (say j) and request an IP address from it. The configured node j then uses its

current IP address and f(n) with the current state to generate the IP address and the

new state. The configured node j then provides the new IP address and a new state

value to the incoming node. The node j also updates its own state to the new state

value. The incoming node will use the state value as a seed for the next IP address

generation. In this protocol, each node is able to assign an IP address to the incoming

nodes. The communication between the new node and configured node is accomplished

via one hop broadcast. This protocol allows the node to be configured with low latency

as well as low message overhead.
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2.2.3 Enhanced Manet Autoconf Protocol (EMAP) (Perkins
et al., 2006)

In EMAP [18] protocol, each new node generates a pair of IP addresses known as

temporary and tentative IP addresses as shown in figure 2.3 . These addresses are se-

lected from two different set of ranges. The temporary IP address is used only for the

time till the new node is finally configured with the tentative address as regular address.

The tentative IP address is the one being requested by the new node as regular IP ad-

dress. The new node broadcasts DAD REQ message in which the tentative address is

encapsulated. The DAD REQ message also contains a P-bit and if this bit is set then

it allows the intermediate nodes to respond with DAD REP message, if they know that

the requested address is being used by any other node. The new node waits for the ex-

piry of DAD REQ TIMEOUT seconds to receive DAD REP message. In case no reply

is received within the DAD REQ TIMEOUT seconds, then the new node assumes that

the tentative address is unique and will assign the tentative address to its interface as

regular address and deallocates the temporary address. The temporary address is now

available to be used by the other incoming nodes. If the reply is received before the ex-

piry of the DAD REQ TIMEOUT seconds, then it will select another tentative address

(while keeping the same temporary address) and again broadcast DAD REQ message.

This process is repeated until the new node succeeds or its DAD MAX RETRIES are

reached. Each configured node maintains a DAD REQ CACHE that contains the en-

tries of originator address and the corresponding responder address. Thus, when a

node receives a DAD REQ message, then it checks whether there exist an entry in the

DAD REQ CACHE with the originator’s address and the corresponding requested ad-

dress. If entry exists then that message must be discarded being a duplicate, otherwise

a new entry is made in DAD REQ CACHE with a timeout.
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Figure 2.3: New node joining a network in EMAP protocol.

2.2.4 RSVconf (Bredy et al., 2006)

The RSVconf [19] node auto-configuration protocol for MANETs is designed to sup-

port auto-configuration in high mobility scenarios. This protocol includes four phases:

Proxy Selection, Reservation, Configuration and Merger. Fig 2.4 shows the working of

RSVconf protocol.

When a new node wishes to join the network, it chooses a random address from

a specific range and broadcasts a proxy request (PREQ) in order to search for the

neighboring proxy node that can assign an IP address to it. If the new node receives

multiple replies then it will select a proxy node, whose reply came first and it sends a

proxy acknowledgement to it. In case the new node does not receive any reply then it
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will assign an IP address to itself and also generate a network ID (NID) for the new

network initialized by it.

Figure 2.4: New node joining a network in RSVconf protocol.

When the proxy node receives proxy acknowledgement then it will select a free IP

address from its IP data base (IPDB) and broadcast a reservation (RSV) message to all

the nodes in the network. This RSV message is used to get the confirmation regarding

the availability of the selected address from the other existing proxy nodes. Each node

will check its IPDB for the existence of IP address contained in RSV message and in

case a conflict of the IP address is detected, then that node will broadcast a response

(REP) packet. In case no address conflict is detected then the proxy will register that

IP in its IPDB as allocated. The proxy node then sends an address assignment message

containing the available IP address and the copy of IPDB of the proxy node to the new

node. In case, the available address in address assignment message is NULL, then the

new node needs to restart the configuration process after a timeout. The authors of

[19] have not clarified the case when a proxy node receives a REP packet, i.e. when a

neighboring node detects an IP address conflict. The proxy node can either make more
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attempts (say k times) by selecting a new IP address in each attempt or it can respond

to the new node with a NULL address. The new node can either configure itself or

again initiate the initialization procedure by broadcasting the PREQ message.

Each IP address is associated with a timeout, so each node needs to renew it peri-

odically by broadcasting RSV message before the expiry of the timer. In this protocol,

each node also broadcasts detect merger (DM) message, within its one hop for detecting

the merger. The DM message contains the network ID (NID) and the hash computed

on the list of the IP addresses present in the local database. In case the node receives

DM message with different NID or a different hash value, then it starts the merger

procedure. The two nodes (i.e. the node which broadcasts DM and the node which

detects the merger) will communicate and exchange their databases to search for the

duplicate IP addresses. Later on the authors discussed the merger as follows. The node

that receives DM message will then send its database through MERHI (MERger HI)

message to the sender node of the DM message. When a node receives MERHI message,

then it will compute a new network database and new NID, only for the case when it

is not a remerger. This node will send a RES message that contains the new database

and new NID throughout the network. Each node will then refresh its database. The

protocol can lead to unnecessary updates and traffic if a single new node sends MERHI

to a node in a larger network. Further, this protocol does not allow multiple networks

to merge simultaneously. At one point of time, only two networks are allowed to merge.

Thus, the protocol in its existing form has a room for further improvements.

Possible Suggestions for improvement

In the proposed protocol, the new node makes only a single attempt for broadcasting

the PREQ message, if no reply is received then it assigns an IP address to itself and
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generates a single node network. Thus, if more number of new nodes do not receive

reply to their respective PREQ message, then they will also form single node networks.

This increases in single node networks result in higher amount of merger overhead.

Moreover, the time involved in merging them will also increase as this protocol allows

only two networks to merge at a time. So, in order to reduce the formation of single

node networks, each new node should atleast attempt to find proxy by broadcasting

PREQ for q (threshold) number of times, before assigning itself an IP address. This

suggestion will increase some message overhead for the configuration of the node but it

will substantially reduce the time and message overhead required during the mergers.

Another shortcoming of this protocol is that when two networks merge then the NID’s

of both the networks will change. Instead, a better option could be to check the number

of nodes associated with each of the networks before merging. The NID for the network

after merging should be same as of the network that has a larger number of nodes before

merging.

2.2.5 Logical Hierarchical Addressing (LHA) (Yousef et al.,
2007)

The main idea of LHA protocol for MANETs [20] is to logically divide the IPv4

address space (32 bits) into three parts : MANET ID (16 bits), Extended MANET ID

(6 bits) and HOST ID (10 bits). Any node in the network can act as an address agent

(AA) and can assign one of the free addresses to the requester node. In this protocol,

the AA node that assigns an address to the requester node is termed as a predecessor

node and the requester node is termed as a successor node. Each predecessor node

can have k successor nodes whereas every node can have only one predecessor. Each

node maintains a hierarchy table that contains the information about the addresses and
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parameters of its predecessor and successors. The detailed functioning of LHA is shown

in figure 2.5.

When a requester wishes to join the network, it will first sense the medium for beacon

messages from the other nodes. If no beacon message is received before the expiry of

a timer, then it will assume that it is the first node in the network and will configure

itself as a root node. The new node configures itself with the first available address (also

known as root address) from the address space. The first node has to define the network

ID (NetID) derived from its MAC address. In case, the requester node listens to one

or more beacon messages before the expiry of timer, it broadcasts an address agent

solicitation (AA sol) message to its neighbors and will wait for AA rep message. Each

node that receives an AA sol message will respond with AA rep message. This AA rep

contains the number of currently available free addresses (AfA) with the respective

AA node. The requester then selects one of the responders as its AA. The selection

criteria depends on whether AfA>0 (i.e. the responder node has addresses available for

allocation). In case, two or more responder nodes have AfA>0, then the requester will

select the node with the smallest address as its AA. If the AfA parameters for all the

responders are zero then also, the requester chooses the node with the smallest address

as its AA node. The requester then sends an AA sel message to the selected AA. When

a node receives an AA sel message and if AfA>0, then it will send one of the free

addresses to the requester using AA conf message. If AfA=0, then the selected AA will

broadcast an address agent address request (AA A req) message to all of its neighbors.

The recepient nodes of AA A req message will respond with AA A rep message if their

AfA>0. When AA node receives AA A rep message then it will send AA A sel message

to the selected node. The selected node will send AA conf message to AA. The AA

node will then forward the same to the new node. If the recepient node of AA A req
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Figure 2.5: Flowchart of LHA protocol.
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message has AfA=0, it will forward the AA A req message to all its neighbors. In case,

the selected AA node fails to obtain an IP address within a prescribed time interval,

then it will send a new root construct (New Root Con) message to the new node. When

the new node receives New Root Con message then it has to configure itself as a root

node for a new network. It also saves the extended MANETID, NetID, and the root

address of the already existing network and will not use them.

Possible Suggestions for improvement

When a configured node receives AA sol message, then it should respond only if its

AfA > 0. This reduces the unnecessary delay as well as the message overhead, required

for configuring a new node. So, when a new node broadcasts AA sol message after

listening to a beacon message from the other nodes, then it will receive AA rep only

from those nodes that have AfA > 0. If no reply is recieved, then the requester will

assume that none of its neighbor have any available free address. So, the requester will

configure itself as a root node for a new network while avoiding the use of the already

used MANETID and NETID. The proposed suggestion may create small networks but

when all the responders have AfA=0. Thus, it increases the merger overhead but the

configuration overhead and latency are reduced.

2.2.6 Enhanced Logical Hierarchical Addressing (Yousef et al.,
2009)

The ELHA protocol is an extension of the LHA protocol discussed in the previous

subsection. In this protocol, the authors have reduced the number of signaling messages

required to perform the auto-configuration of a new node. When a new node enters the

network, it broadcasts an address solicitation message (AA Sol) to its neighbors. All
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Figure 2.6: Flowchart of ELHA protocol.
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the neighboring nodes which listen to this message, will respond back with address reply

(AA Rep) message. The AA Rep contains two parameters i.e. the available number

of free addresses (nfree add) and a sequence number (Seq) selected for this new node.

The Seq number allows the requester node to generate its IP address and also to build

a hierarchy table. The new node compares nfree add parameters of all the responders

and will select one of the responder as its AA. If more number of responders have

nfree add >0, then it will select the responder with the smallest address as its AA.

The requester then sends an address selection (New Node) message to all the nodes

in the network. This message informs the specific AA node that its address is used

by the requester. The specific AA node then updates its assignment table. Here, the

protocol is unnecessarily broadcasting the New Node message to all the nodes. Instead,

the requester should only communicate the New Node message to the specific AA node

(the response of which has been used to generate the new address). Also, each responder

node should maintain a timeout for receiving the New Node message and in case no

message is received before timeout then they will not wait any further.

But, if all the responders have nfree add = 0 then also, the requester chooses the node

with the smallest address as its AA. It then sends the AA Sel message to the selected

AA. The selected AA on receipt of AA Sel message will send an address agent address

request (AA A Req) message further to all of its neighbors. All the recepients of this

message will respond back with an address agent reply (AA A Rep) message if their

AfA > 0. Otherwise they will further forward the AA A Req message to all of their

neighbors and so on. When the AA node receives a reply, it sends AA Conf message

containing sequence number to be used for generating a new IP to the requester. The

requester then builds its table and broadcasts New node message containing a new IP

and AA to all the nodes in the network. The AA on receipt of this broadcast will
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update its table. The flowchart of this protocol is shown in figure 2.6 .

Possible Suggestions for improvement

If the requester receives AA Rep messages from all the nodes with nfree add = 0, then

instead of selecting one of them as its AA node, it should configure itself as a root node

for a new network. This reduces the number of forwarded messages required to search

for the AA node, with nfree add 6= 0. Moreover, it will also save the time required for

the new node to perform the auto-configuration.

2.2.7 Distributed Dynamic Host Configuration Protocol (D2HCP)
(Villalba et al., 2011)

The main idea of the distributed dynamic host configuration protocol [22] is that all

of the configured nodes should collaborate among themselves distributively, in order to

provide a unique and correct IP address to each of the incoming nodes. Here, all the

configured nodes have similar functionality i.e. there is no special type of node. The

distributed nature of this protocol allows the incoming nodes to configure quickly.

When a new node (client node) wishes to join the network, it will broadcast SERVER

DISCOVERY message by using its MAC address. This message also contains a count

field that indicates the number of attempts made by the client node to perform the auto-

configuration process. After receiving SERVER DISCOVERY message, the configured

nodes (server nodes) will reply with SERVER OFFER message depending on the value

of the count field. The SERVER OFFER contains two fields: R (ready) and L (local),

if R is set to 1 then it indicates that the server can configure the client node at this

moment and if L field is set to 1 then it indicates that the IP address offered is from
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the server’s own block. The client node will listen to the different SERVER OFFER

messages for a certain listening time. The client node will sort the received messages

based on the values of R and L fields contained in it. The client node first discards all

the messages with R=0, and then the first priority is given to L=1 messages i.e. the

IP addresses that are local to the server and server is also ready to configure the client.

Finally, the priority is organised in such a way that the offered addresses are ranked

from the highest to the lowest. The client node then sends the SERVER POLL message

to the server with the highest IP addresses. When the server receives SERVER POLL

message, it will check whether it has any free IP address. If the server has free IP address

then it will send an IP ASSIGNED message to the client node directly. However,

if the server doesn’t have a free address (L=0, R=1) then the server node requests

the other nodes with IP RANGE REQUEST message. One of the other nodes may

respond with IP RANGE RETURN message, that authorizes the node that sent the

IP RANGE REQUEST to assign the free IP block contained in return message to the

client node. This message contains a free address block that is assigned to the client

node and also it includes the FREE IP Blocks table that represents the current network

state. When the client node receives IP ASSIGNED message then it will configure itself

with the first free IP address in the block and remaining can be used to configure other

new incoming nodes.

2.2.8 One step addressing (OSA) (Al-Mahdi et al., 2013)

In OSA protocol, each node generates m different IP addresses and stores them in

its address table. These IPs are used for the configuration of the new incoming nodes.

Apart from the address table, each node also maintains two records, one is the parameter

record and other is the borrowed address record. When a new node wishes to join the
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network, it first senses the medium for the beacon messages from the other existing

nodes. In case, no beacon message is received before the expiry of the timer then the

new node repeats the process again till T attempts have been made. In case, the new

node fails to sense a beacon message in all the T attempts then it will set itself with

the first IP in the address space. The flowchart for OSA protocol is shown in figure 2.7

.

Each node maintains two state variables which govern the address space that can

be allocated to its children. During the address allocation, the state variables of the

children are assigned in such a way that no two nodes will have same combination.

This leads to a disjoint address space assignment to the nodes for further allocation.

A new node on sensing a beacon message will broadcast an Add Req message upto

F attempts to get an Add Rep from the existing nodes. The Add Rep contains the

number of unused IPs that are availabe with the responder node. The new node selects

a responder node with the largest available number of IP’s as its agent node and unicasts

Add Sel message to it. When the selected agent receives Add Sel message, then it copies

an unused IP address from its address table to Add conf message and sends the same

to the new node. In case, the agent node does not have an unused IP address then it

copies the address from its borrowed address record. Once all the m IP addresses of an

agent node are consumed then it will start borrowing an address from the node which is

granted the last address. Each node periodically checks the existence of the IP’s in its

address table. Here, when a node leaves the MANET, its IP should be reclaimed by the

agent which has granted it to that node. If the reclaimed IP is that of an agent which

has assigned a number of IPs to other nodes, then there is a chance of the address

duplication if this reclaimed IP is used by a new node. To avoid this problem, the

new nodes should check if the IPs in their address table are already in use in MANET
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Figure 2.7: Flowchart of OSA protocol.
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before allocating them to the new nodes. In case, the new node finds all the addresses

in address table are in use, then it will not act as an agent node till the time any of its

IP becomes available again.

2.3 Stateless Auto-configuration Protocols

In the stateless auto-configuration protocols, nodes will not record any IP address

allocation information and will manage only their own IP address. These protocols are

also known as conflict detection protocols. This is because the approach used in these

protocols follows a trial and error method to identify a unique IP address for a new

node. The node randomly chooses an address and performs duplicate address detection

(DAD) to avoid duplicacy of the IP address.

This category of address auto-configuration protocols is further categorised into two

parts, based on the fact whether the MAC address is known to the node or not.

2.3.1 Stateless Auto-configuration Protocols without MAC ad-

dress

In these protocols, a node is not aware of its MAC address, it randomly chooses an

address, performs duplicate address detection (DAD) to detect and avoid the duplicacy

of the IP address. Some of these protocols are Simple DAD [24], Address Reservation

and Optimistic Duplicated Address Detection (AROD) [25], Automatic IP address auto-

configuration (AIPAC) [26] and Agent based Passive Autoconf (APAC) [27].
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2.3.1.1 Simple DAD (Perkins et al., 2001)

In simple DAD [24] protocol, when a new node wishes to join the network, it will

randomly select two IP addresses : temporary address and the actual address that a

node wishes to use. The new node then broadcasts an address request (AREQ) for a

randomly selected address and waits till the expiry of the Address Discovery timer. All

the nodes that receive the AREQ will check their buffered list that contains a list of

the message identifiers (originator’s address and requested address) of AREQ message.

If the node has already received the request from the same originator’s address then it

Figure 2.8: New node configuration in simple DAD

will discard the request packet. If the AREQ is the first packet, then the nodes compare
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their own address with that of the requested address. If a match is detected then they

will send an address reply (AREP) message to the sender of the AREQ message. If

no match is detected then that node will add the address in the buffer list and further

broadcast the request to all of its neighbors. If the new node receives any address reply

(AREP) within the timer interval, then it means that some other node is using that

selected address. The new node then chooses another random IP address and repeats

the same procedure till it receives no reply. If the new node receives no reply before

the expiry of the timer, then the new node retries AREQ upto AREQ RETRIES times.

If no reply is received for all the AREQ RETRIES, then the node assumes that the

selected address is not in use and gets configured with it.

2.3.1.2 Address Reservation and Optimistic Duplicated Address Detection
(AROD) (Kim et al., 2007)

In AROD [25] scheme, the authors attempt to reduce the communication overhead

as well as the latency for allocating an IP address to the new node. This is done by

reserving an IP address in advance by each of the nodes in the network. Thus, when

a new node wishes to join the network then it will select a nearby agent node for an

IP address. If the selected agent node has a reserved address (i.e. it is type 1 node),

then it will immediately allocate its reserved address to the new node. Further, if the

selected agent node has no reserved address (i.e. it is type 2 node), then it will borrow

an address from a nearby type 1 node.

After allocating an IP address, the agent node randomly chooses two IP addresses

and performs DAD to identify the uniqueness of the choosen addresses. If both the IP

addresses are unique then the agent node and new node are considered as type 1 nodes.

But, if the agent node succeeds in getting only one IP address then the agent node will
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Figure 2.9: New node joining a network in AROD stateless protocol.

become type 1 node and the new node will become type 2 node. Lastly, if both the IP

addresses are not unique then the agent node as well as the new node will become type

2 nodes.
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2.3.1.3 Automatic IP address auto-configuration (AIPAC) (Fazio et al.,
2006)

AIPAC [28] is one of the existing stateless auto-configuration protocols in MANETs.

This protocol has been designed to avoid the wastage of the available resources of the

nodes and the communication channels. In AIPAC protocol, a new node requires at

least one neighbor node to get configured. This neighbor node may be an already

configured node or a new node which is still unconfigured. When a new node enters

the network, it chooses randomly a 4-byte Host Identifier (HID) and periodically sends

a GetConfig message until a reply is received from any one of the neighbor nodes. If

the neighbor node is an unconfigured node, then the node with the higher HID will

start the Network Initialization process. It will select a NetID for the new network,

and choose the IP addresses both for itself and the second node. The higher HID node

sends the Initialization message containing the NetID and the IP address allocated, to

the second node. Alternatively, if the neighbouring node is already configured, it acts

as an initiator for the unconfigured node. The initiator chooses an address at random

and broadcasts the Search IP message to all the configured nodes in the network. Any

node receiving this message checks whether the IP address is already in use. If there

is an address clash then it responds with the Used IP response to the initiator. If the

initiator receives Used IP response, it chooses another address randomly and then the

process of initialization starts again. If the Search IP timer expires and there is no

response, then the initiator resends the Search IP packet. If no reply is received again

then it assumes that the selected IP address is not in use. The initiator then sends the

NetID and the selected IP address to the requester.

In order to detect the network partitioning, AIPAC manages the addresses on the

assumption that each adhoc network has a different NetID. Each node in the network
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Figure 2.10: New node joining a network in AIPAC protocol

maintains a Neighbor Table and also updates it periodically by sending the Hello pack-

ets. Whenever a node m receives a Hello packet from its neighbor n, then n will be

inserted in the m,s Neighbor Table. Whenever a node decides to disconnect from the

network, it broadcasts a goodbye packet. The nodes that receives the goodbye packet

will delete the entry corresponding to that node from their Neighbor Table. If a node

m does not receive any Hello packet from its neighbor p in the Timer Neighbors period,
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this means that the node p has either swithched off or moved away. Node m sets 1 to

a specific flag in the p’s entry of its Neighbor table. Each node periodically checks the

flag values for all of its neighbors and if atleast one of the flags is set to 1, it decides to

start the procedure to detect the partitions. The node m that has detected the absence

of its neighbor p, sends a check partition packet to p, and waits for the reply through a

verify partition packet. If node m receives a reply before the expiry of the timer then

the node m deletes the entry of the node p from its neighbor table. Alternatively, if the

node m receives no reply before the expiry of timer then the Change Netid procedure

is activated. This allows the node that has detected the partition, to select a new Netid

for the partition it belongs to. It broadcasts the new NetID to all the other nodes in the

same subnetwork. This mechanism can also create an unnecessary traffic when a node

switches off without informing, as the NetID need not be changed in this case. This

is a lacuna in this proposal. Moreover, a similar situation can also arise when a node

or a group of nodes leave the network, resulting in a change of their NetID apart from

the already existing set of nodes which would also change their NetIDs. Ideally, it is

enough even if one of the two partitions choose a different NetID to avoid unnecessary

traffic.

On the other hand, if the nodes in the two networks come closer, AIPAC allows

them to merge. AIPAC protocol follows Gradual Merging process which focuses on

creating a single network. Gradual Merging allows a heterogeneous system to become

more uniform, decreasing the number of different networks. Each node knows about

its neighbors from the Neighbor Table, so it knows the number of neighbor nodes be-

longing to its own network (mine nbor), and the number of nodes belonging to the

other networks (other nbor). As long as the number of links with the nodes of its own

network (mine nbor) are higher than the number of links with the nodes of the different
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networks (other nbor), the node keeps its own NetID. If the number of links with the

other network are higher than the number of links with the nodes of its own network,

the node switches over to the other network. A much finer criterion could be

(other nbor)− (mine nbor)

(other nbor) + (mine nbor)
> igm. (2.3.1)

The parameter igm, is called the Gradual Merge Index which acts as threshold for

the nodes to switch over from one network to other. Each node verifies the threshold

condition in every Timer Gradual Merging seconds. If the above condition is true for

a node n then it will follow the sequence of steps as given below.

1. The node n switches to the requester state i.e. it will start the neighbor search

into this new partition.

2. The node n will reset all the previous network parameters.

3. It will choose a neighbor that belongs to the network in which it wants to switchover,

as its initiator sends a Send Requst message to the initiator.

2.3.1.4 Agent based Passive Autoconf (APAC) (Li et al., 2007)

In an Agent based Passive Auto-configuration (APAC) [27] protocol, some nodes

are selected as address agent (AA) nodes that will assign address to themselves and

are responsible for assigning addresses to the incoming nodes. When a node wishes

to join the network, it will broadcast neighbor request (NbReq) message and will wait

for the neighbor response (NbRes) from atleast one of the Address Agent (AA) nodes

available within one hop distance. If no message is received after the predefined number
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of attempts, then the requester concludes that there is no AA node available in its

neighborhood and will configure itself as an AA by specifying its agentID randomly

with the help of an algorithm and the hostID is set to be zero.

Figure 2.11: New node joining the network in APAC protocol.

But, if the requesting node receives multiple AA replies then it will record them in
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a Variable list and select the first responding AA as its AA. The requester node then

sends an address request (AddrReq) to the chosen AA and starts an AddrReqTime

timer. The choosen AA then updates its address table and responds with an address

assignment message (AddrAssign) containing the assigned IP address. In case, the

requester fails to get an address assignment message within the AddrReqTime then it

will select the next AA from the variable list and repeat the same process. In case

a node fails to receive an address after attempting with all the AA’s present in the

variable list, it will configure itself as an AA.

2.3.2 Stateless Auto-configuration Protocols with MAC ad-
dress

In this category of auto-configuration protocols, all the nodes are aware of their

MAC addresses, but none of them is maintaining any record of the address information

of neighboring nodes. Some of these protocols are IPv6 auto-configuration for large

scale MANETs [29], IPv6 Stateless Address Autoconf (SAA) [30], ND++ an extended

IPv6 Neighbor Discovery Protocol for enhanced stateless address auto-configuration in

MANETs [31].

2.3.2.1 IPv6 auto-configuration for large scale MANETs (Weniger et al.,
2002)

In IPv6 auto-configuration for large scale MANETs [29], each new node performs

three steps for obtaining an IP address as shown in figure 2.12. Firstly, the new node

constructs link local address (tentative address) using its MAC address, then it performs

duplicate address detection and finally constructs a site local address. The tentative ad-

dress consists of two fields : interface identifier and link local prefix. The new node then
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performs duplicate address detection (DAD) to check the uniqueness of the tentative

address.

Figure 2.12: Steps involved for configuring a new node in IPv6 auto-configuration for
large scale MANETs.

The DAD process is performed by broadcasting the network solicitation (NS) mes-

sage. The source IP address of NS message is the tentative address constructed by the

new node and the destination address is solicited-node multicast address. The solicited

multicast address is created by taking last 24 bits of the tentative address and append-

ing them into the solicited node-multicast address prefix (ff02:0:0:0:0:1:ff00::/104) as

shown in figure 2.12. If the tentative address is already in use, then that node will

respond via network advertisement (NA) message.

In order to facilitate multi-hop communication each node needs to construct a site-

local address. The site-local address will be constructed if the new node receives router

advertisements containing a subnet ID. The router advertisement messages are issued
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by special nodes (known as leader nodes) which configure a group of nodes within its

scope (upto rs hops). These leader nodes (or routers) are pre-requiste for IPv6 stateless

address auto-configuration in multiple broadcast links. The value of rs limits the flow

of broadcast messages associated with each node. The new node constructs site local

address using standard EUI-64 (Extended Unique Identifier) and site-local prefix.

2.3.2.2 IPv6 Stateless Address Autoconf (SAA) (Narten et al., 2007)

In IPv6 stateless address autoconf protocol [30], each new node in the network needs

to generate a link local address by appending an interface identifier to the link local

prefix (FE80::0). Each node needs to verify whether the selected link local address (ten-

tative address) is unique or not. For checking the uniqueness of the tentative address,

the new node broadcasts neighbor solicitation message that contains the tentative ad-

dress as the target address. All the nodes that receive neighbor solicitation message

need to respond only if their own address is similar to the requested address in the

neighbor solicitation message.

If the new node receives neighbor advertisement message, then the new node un-

derstands that the tentative address is not unique. In that case, instead of auto-

configuration, manual configuration of interface is required. The node’s administrator

needs to provide a new identifier for the interface. The node will retransmit the neigh-

bor solicitation message after node’s administrator has configured the node. In case

the new node does not receive any neighbor advertisement within the scheduled time

then it will assume that the tentative address is unique and it will assign the tentative

address to its interface.
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Figure 2.13: Stateless Address Auto-configuration protocol
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2.3.2.3 ND++ an extended IPv6 Neighbor Discovery Protocol for en-
hanced stateless address auto-configuration in MANETs (Grajzer
et al., 2013)

The ND++ protocol [31] is an extension of the IPv6 neighbor discovery protocol, for

stateless address auto-configuration (SAA) in MANETs. Here, the authors enhance the

range of neighbor discovery protocol for SAA and also optimize the amount of flooding

needed. In the basic SAA protocol, the new node first constructs an address using MAC

address and then performs the duplicate address detection (DAD) locally to ascertain its

uniqueness within its one hop neighbors. In the ND++ protocol, the authors reduces

the chance of duplicacy by enhancing the coverage of the network nodes while they

are performing DAD operation i.e. the new node will perform n-hop DAD (n-DAD)

instead of single hop DAD. Thus, the uniqueness of the address is checked throughout

the network before allocating it to the new node. However, the number of messages

involved in performing n-DAD will be high if each node forwards the packet to all its

neighbors. Thus, to optimize the amount of flooding the authors introduce the concept

of multipoint relay (MPR). The MPR of a node x is the node that retransmits all the

broadcast messages (not the duplicate messages) of x to all its neighbors. Each node

will decide its own MPR from its one hop neighbors. Thus, only MPRs are responsible

for broadcasting the packets to all its neighbors.

When a new node wishes to join the network, it will construct a link local address

(tentative) using link local prefix. Then, the new node will perform DAD by sending

neighbor solicitation (NS) message to all its one-hop neighbors. The NS message con-

tains the tentative address in the target address field. If any of its one hop neighbor

is using the address as specified in the target address field of NS message, then it will

respond back with neighbor advertisement (NA) message. If the new node receives NA
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message, then it figures out that the selected address is already in use. On the other

hand, if no reply is received, then the new node assumes that the selected address is

unique. Now, the new node selects some of its one hop neighbor nodes that are willing

to forward the packets on its behalf as the MPRs. These MPRs are responsible for

further broadcasting the packets and are selected in such a way that they cover all

the two hop neighbors of the new node with the minimum overhead. Now, the new

node forwards the multihop NS (mNS) to its MPRs. The use of MPRs allows to check

the uniqueness of the selected address throughout the MANET (n-hops). If any of the

nodes is using the same address as specified in the target address field of mNS message

then that node will respond with mNA message.

2.4 Conclusion

The address auto-configuration of the mobile nodes is of prime importance as far as

correct communication is concerned. Due to lack of the centralized servers in MANETs,

the auto-configuration process is very challenging. Moreover, the selection of auto-

configuration protocol for a network purely depends upon the type of application for

which the network is deployed. In this chapter, we have presented a comprehensive

review of most of the existing stateful and stateless auto-configuration protocols for the

MANETs.



Chapter 3

Scalable Hierarchical Distributive
Auto-Configuration Protocol

In this chapter, we have proposed a stateless address auto-configuration protocol

for MANETs, which is named as Scalable Hierarchical Distributive Auto-Configuration

Protocol (SHDACP-IPv6) 1 that deals with IPv6 address space. We have also proposed

an IPv4 version of SHDACP2 . The SHDACP-IPv6 as well as SHDACP-IPv4 are used

for the configuration and management of the IP addresses in large and highly mobile

adhoc networks. The main idea of both the versions of SHDACP is to logically divide

the address space into three parts: partition id, cluster id and node id. The objective

of both the versions of SHDACP protocol is to reduce the message overhead as well

as the address allocation latency involved in configuring a new incoming node. The

proposed protocols are then compared with the existing protocols on the basis of dif-

ferent metrics such as communication overhead, address allocation latency, percentage

1Amit Munjal, Yatindra Nath Singh, AKrishna Phaneendra and A. Roy “Scalable Hierarchi-
cal Distributive Auto-Configuration Protocol for MANETs,” International Conference on Signal-
Image Technology and Internet-Based Systems (SITIS), Kyoto, Japan 2013, pp. 699-705,
doi:10.1109/SITIS.2013.114.

2Amit Munjal, Yatindra Nath Singh, AKrishna Phaneendra and A. Roy “IPv4 based Hierarchi-
cal Distributive Auto-Configuration Protocol for MANETs,” in IEEE TENCON 2014, Bangkok,
Thailand, 22-25 Oct 2014.
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of configured nodes and percentage of the cluster head nodes. The simulation is done

using OMNeT++ Network Simulation Framework.

3.1 Problem Description

The existing auto-configuration protocols [16][26][28][32] have some drawbacks such

as they are not scalable with the number of nodes, require high message overhead as

well as higher latency in configuring a new node. Also, most of the existing protocols

use stateful approach which require maintainence of the additional data structures such

as the address allocation tables. The size of these tables increases gradually with an

increase in the number of nodes. This results in more memory requirement for each

node to store these data structures and thereby creating the problems of memory as

well as power constraint in the mobile nodes. Here, we present the Scalable Hierarchi-

cal Distributive Auto-Configuration protocol (SHDACP) for Mobile Ad-hoc Networks

(MANETs) as a solution for improving the auto-configuration performance metrics.

The objectives of this new auto-configuration protocol are as follows-

• best effort allocation scheme,

• scalable with the number of nodes,

• stateless approach,

• resilient to message losses,

• simple implementation and

• efficient performance.
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The best effort allocation means a node assigns address on its own without involving

any other node in the network.

3.2 SHDACP-IPv6 Operation

3.2.1 Address Space

The SHDACP-IPv6 protocol makes use of IPv6 local unicast address as shown in Fig.

3.1 [33] with a little modification. This IPv6 addresses have 128 bits. Each address

has four fields including prefix (7 bits), global ID (41 bits), subnet ID (16 bits) and

interface ID (64 bits). In our protocol, we split the interface ID further into two parts

Figure 3.1: IPv6 local unicast address

as shown in Fig. 3.2 i.e. cluster ID (48 bits) and node ID (16 bits). Also, the subnet

ID (16 bits) is renamed as partition ID (16 bits) in our protocol.

Figure 3.2: The address format for SHDACP-IPv6.
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3.2.2 Network Formation

When the first node enters in the network, it broadcasts Neighbor Query message in

order to search for neighbors in the network. After broadcasting the Neighbor Query

message, a new node (i.e. requester) will wait for a Neighbor Reply message from

atleast one of the configured nodes. The requester will wait till the expiry of the

Neighbor Reply Timer to receive the Neighbor Reply message. If it does not receive

any Neighbor Reply message before the expiry of the timer, then it rebroadcasts the

Neighbor Query message. The requester repeats this process for a threshold (q) number

of times or till it receives a Neighbor Reply message. If no Neighbor Reply message is

received, then the requester realizes itself to be the only node in the network and

configures itself as a cluster head (CH) by randomly selecting a partition number, a

random cluster number and assigns node id 1 to itself. Now, this CH will participate

in the address allocation for the new nodes arriving in its vicinity. When this CH

receives an address request, then it will allocate the addresses sequentially from node id

2 onwards, while the partition id and cluster id of the addresses allocated will remain

the same as that of the CH. In this protocol, only the CH nodes can allocate the IP

addresses to the incoming nodes. The configured nodes need to store their hop distance

from their respective cluster heads as learnt from time to time. Fig. 3.3 shows the steps

involved in configuring a new node.

When nth node (requester) enters the network, it broadcasts a Neighbor Query mes-

sage. All the configured nodes that receive the Neighbor Query message, will respond

back with a Neighbor Reply message. Each Neighbor Reply message contains copies

of the three fields maintained by the responder node, i.e. the hop distance to its CH,

hmax, and its partition id. Only the nodes whose hop distance is less than hmax hops



3.2 SHDACP-IPv6 Operation 46

Figure 3.3: Steps involved in configuring a new node.

from its respective CH can participate in the address allocation for the requester. The

value of hmax is decided initially when a node becomes a cluster head. When a node is

allocated an address, it will also store hmax of its cluster head as passed to him by the

initiator node. If the requester receives more than one Neighbor Reply messages, then

it will choose a neighbor with the least number of hops to its respective cluster head.
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The selected neighbor is then referred to as an initiator. The requester node sends an

Address Request message to the initiator node. The initiator node forwards the same

to its cluster head. When the cluster head receives the Address Request message, then

it chooses an IP address for the requester and sends an Address Allocate message to the

initiator. During this process all the nodes which pass the Address Allocate message

also update their hop distance to CH node record. The initiator then forwards the

Address Allocate message to the requester alongwith the updated hop distance to CH.

The requester will configure itself with the allocated address and becomes a configured

node of the network. If the requester does not receive an Address Allocate message

before the expiry of the Address Allocated timer then it will configure itself as a CH by

choosing the same partition number as present in the Neighbor Reply message and ran-

domly select a cluster number while avoiding those which were identified in the received

Neighbor Reply messages. It then floods the entire network with a New Cluster mes-

sage. Any CH with the same cluster number will reply with a NewCluster NegAck to

the sender of the New Cluster message. If the new CH receives any NewCluster NegAck

then it will randomly choose another different cluster number and again flood the net-

work with the New Cluster message. This protocol is a modified version of the work

reported in [34]. As we are using 48 bits for the cluster ID, the probability of choosing

the same cluster number is very low. In the subsequent section, it is proved that for a

network with 1000 nodes, the probability of the address duplication is of the order of

10−9.

3.2.3 Probability Calculation for the Worst Case Scenario

Let us consider a large scale MANET [35] [36] with n number of nodes such that

100 < n < 1000. The worst case scenario for our protocol is that all the n nodes will
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configure themselves as CH and choose a random cluster number. The cluster number is

to be selected using 48 bit address. Let P (A) denote the probability of event A in which

atleast two CH choose the same cluster number, then P (A) denotes the probability that

no two CH choose the same cluster number.

P (A) = 1− P (A). (3.2.1)

Let P (Ei) denote the probability of the event Ei in which newly arriving ith node

chooses a cluster number without any clash. Hence P (Ei) is given as

P (Ei) =
248 − i− 1

248
. (3.2.2)

The probability P(A) with n nodes in the network can be calculated as

P (A) = P (E1) ∗ P (E2) ∗ ....... ∗ P (En). (3.2.3)

P (A) =
248

248
∗
248 − 1

248
∗
248 − 2

248
∗ .... ∗

248 − n+ 1

248
. (3.2.4)

P (A) =
(248)n−1 −

�
i ∗ (248)n−2 + higher order terms

(248)n−1
. (3.2.5)

If we neglect the higher order terms then the above equation can be approximated as

P (A) ∼ 1−
n2

249
. (3.2.6)

If the network consists of 1000 nodes, then the probability that atleast two CH nodes

choose a same cluster number will be

P (A) =
n2

249
=

10002

249
= 0.000000002. (3.2.7)

Hence, even under the worst case scenario, the probability that atleast two nodes will

select the same cluster number is very low. Moreover, as the size of network increases,

this probability will increase.
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3.2.4 Network Partitioning

In MANETs due to random mobility of the mobile nodes, there is a high probability

that network can split into multiple partitions. The network partitioning occurs when

some of the nodes move out of the range of the parent partition and form another

small partition (child partition) as shown in Fig. 3.4 . Most of the existing auto-

Figure 3.4: Network partioning due to nodes mobility

configuration protocols [16] [28] in the literature use different methods to detect the

network partitioning. These protocols involve periodic broadcast of the Hello packet

from each of the nodes in order to keep track of alive nodes in the network. When a Hello

packet is not received by a node from a neighbor listed in local table, the node assumes

that either the node is dead or it has moved away forming its own new partition. This

generates a lot of control overhead in the network.

In our protocol, when a node gets configured then the partition id of that node is

embedded in the IP address. Further if a node moves to a different partition, it will
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not change its partition id. In SHDACP-IPv6 protocol, we have not incorporated any

method to detect the network partitioning because all the route entries in the routing

table will have an expiry timer associated with them. These entries will be purged out

from the routing table after the timer expiry. Thus, the entries for the nodes which

move away are purged on their own.

Now, we will discuss the four different cases when a configured node moves to a

different partition. The configured node may be a CH node or a normal node.

3.2.4.1 Case 1

The outgoing node is a normal node and moves to a different partition as shown in

Fig. 3.5. Most likely, this node will not experience any IP address conflict with the

nodes present in that partition. This is because the partition id’s of the two partitions

will be different with a high probability. Even if the partition id’s are same, there

wouldn’t be any address conflict as the uniqueness of the cluster id’s are assured with

a high probability as discussed in the section 3.2.3. This normal node can respond

to the Neighbor Query messages in new partition also. However, it will respond with

the parameters (partition id and cluster id) same as of its original partition, where

it was configured. In case, it is selected as an initiator by the requester, then it will

not be able to provide an address as it has moved away from its CH. It will also

update hop distance from its CH as ∞ in this process. The requester will wait for the

expiry of the Address Allocated Timer to receive an Address Allocated message. If no

Address Allocate message is received, then the requester will configure itself as a cluster

head while using the partition id as told by initiator node.
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Figure 3.5: Normal node moves from one partition to the other partition

3.2.4.2 Case 2

The outgoing node is a cluster head node and moves to a different partition as shown

Figure 3.6: Cluster Head node moves from one partition to the other partition

in Fig. 3.6. The CH node can configure the incoming nodes even if it moves to the

other partition. When the CH receives a Neighbor Query message in new partition,

then it will respond with the Neighbor Reply message with its own partition id. The
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requester will send an Address Request to the CH. The CH will provide the IP address

via Address Allocate message to the requester.

3.2.4.3 Case 3

The outgoing node is a normal node and moves to an isolated area as shown in Fig.

3.7 . Now, if it receives a Neighbor Query message, then it will respond with its original

Figure 3.7: Normal node moves to an isolated area

partition id. The requester then sends an Address Request to this responder node only.

Moreover, the requester node will be unable to receive Address Allocate message, as the

responder node has moved away from its CH. Thus, the requester configures itself as the

cluster head by selecting the same partition number as present in the Neighbor Reply

and also randomly selects a cluster id.

3.2.4.4 Case 4

The outgoing node is a cluster head node and moves to an isolated area as shown in

Fig. 3.8. The CH can configure the new incoming nodes as the members of its cluster.
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Figure 3.8: Cluster Head node moves to an isolated area

The CH will provide the IP address (with its original partition id as well as cluster id)

to the requester node.

3.2.5 Network Merging

The merging of different networks is very common in MANETs due to random node

mobility. When merging takes place then two or more small partitions merge together

to form a larger partition. Most of the existing auto-configuration protocols [16] [28]

change the partition number of one of the two networks (involved in merging) to that

of other one. This creates a lot of communication overhead in the network. Moreover,

we need to detect and resolve the address conflicts between the nodes when different

networks merge together. The IP address of all but one of the conflicting nodes need

to be reconfigured. Thus, it increases both the average communication overhead and

average address allocation latency.

In our protocol, when merging is detected, there is no need to change the partition

number of the nodes. The nodes involved in merging (i.e. bridge nodes) will exchange
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Figure 3.9: Network Merging

their routing tables so that the two MANETs will be connected. The bridge nodes

will first initiate communication by sending the Exchange Rtable message containing

all its routing table entries. Then, the bridge nodes will flood their respective partitions

with Rtable Flood message containing the routing table entries of the other partition

members addresses. Any node receiving Rtable Flood message creates new routing table

entries for the nodes in the other partition. We have proposed two solutions to detect

the merging of the networks; they are named as weak merging and strong merging.

3.2.5.1 Weak Merging

In this approach, broadcast message transmissions at regular intervals by each node in

the network are not done. Each node after receiving messages from the other nodes will

verify whether these nodes are already present in its routing table. If the sender of the

message is not present in its routing table then the network merging is detected by that

node. Thus, we can reduce the communication overhead in the network substantially.
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3.2.5.2 Strong Merging

In strong merging approach, each node in the network periodically broadcasts Hello

messages to its neighbors. After receiving a message from the neighbor node, each node

will check whether the sender of this message is present in its routing table or not. If

the node does not have an entry corresponding to the sender of the message then the

network merging is detected. In addition to the periodic broadcast messages, each node

also uses other kind of messages from the nodes to detect the network merging. Thus,

most of the network merging scenarios can be detected in strong merging as compared

to the weak merging. However, due to the periodic Hello messages, communication

overhead increases.

The proposed SHDACP protocol is a new version of an existing protocol [34] and has

been presented in detail alongwith logical explainations and justifications. It has been

refined in terms of various parameters e.g. the timer associated with messages, address

allocation, and its operation. The results were found to be almost the same as in [34].

3.2.6 Simulation Results

In this section, we have compared the existing protocols such as MANETconf and

AIPAC with our proposed SHDACP-IPv6 (with weak merging) and SHDACP-IPv6

(with strong merging). The metric used for comparison is the average communication

overhead per node, and average address allocation latency. We have used OMNeT++

simulator for performing the simulations of a Mobile Ad-hoc Network (MANET). We

have considered n number of nodes that are moving randomly in a 1000m X 1000m

area. Every node in the network chooses a random initial position, chooses a random

speed and a random direction with which it moves through out the simulation time
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period. Random direction and speed is updated periodically after every 1 second. The

inter arrival time of the nodes is uniformly distributed in the range 0-10s. If any node

tries to move out of the simulation area, then it is assumed to be reflected back into

the simulation area by the boundary. Thus, all the nodes will be within the simulation

area during the simulation period. We have performed simulations for 50 runs, each

time with different seeds for random number generators, and an average of all the runs

was taken for obtaining more accurate results. The parameters used for simulation are

given in the table 3.1 :

Table 3.1: Simulation Parameters

Number of Nodes 50 to 500
Simulation Area 1000m X 1000m
Maximum Speed 5 m/s

Transmission Power 100 milli Watts
Minimum Detectable power -54 dBm

Mobility Module update interval 1 sec
Routing Protocol AODV
MAC Protocol 802.11 CSMA/CA

3.2.6.1 Communication Overhead

We have simulated the communication overhead required for configuring a new

node for the existing auto-configuration protocols (AIPAC and MANETconf) and then

we compared the results with our SHDACP-IPv6 protocol. We have observed that

SHDACP-IPv6 with weak merging support generates lowest communication overhead

as shown in Fig. 3.10. The SHDACP-IPv6 protocol with strong merging support per-

forms much better than MANETconf and AIPAC protocols because there is no overhead
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Figure 3.10: Average Communication Overhead

for partitioning, also less flooding is required during the address allocation procedure.

The overhead generated in MANETconf is due to the excessive flooding of the initia-

tor request message that is required for seeking permission from all the nodes to grant

an address to the requester. The AIPAC protocol performance degrades with an in-

crease in the number of nodes. This is possibly because of its gradual merging method

and its procedure to deal with the network partitions. As the number of nodes increase,

more nodes get involved in merging and partitioning, hence the overhead generated by

AIPAC protocol is more than that of the MANETconf after reaching a certain network

density.

3.2.6.2 Address Allocation Latency

The address allocation latency is defined as the time taken by a node to get configured

in the network. We have compared different auto-configuration protocols (MANETconf

and AIPAC) with our protocol, on the basis of their average address allocation latencies
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as shown in Fig. 3.11. Using the address allocation latency for all the nodes configured

for, we compute the average address allocation latency. We observe that the perfor-
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Figure 3.11: Average Address Allocation Latency

mance of SHDACP-IPv6 with strong merging support and SHDACP-IPv6 with weak

merging support is almost the same. The only difference between the strong and the

weak merging support is the transmission of the periodic Hello messages which affects

the average communication overhead but not the average address allocation latency. We

observe that for a fixed number of nodes, the address allocation latency of SHDACP-

IPv6 protocol is less than that of the MANETconf protocol. In MANETconf protocol

[16], the address allocation latency is high as the initiator needs to wait for the responses

from all the nodes before allocating an address to the requester. While in SHDACP-

IPv6 protocol, the cluster head node directly allocates the address, thus reducing the

address allocation latency. In AIPAC protocol [28], it is necessary for an unconfigured

node to be in the neighborhood of the already configured or another unconfigured node,

thus avoiding the formation of single node networks. On the other hand, if the num-

ber of nodes are less, then it becomes difficult for a node to find another node in its



3.2 SHDACP-IPv6 Operation 59

neighborhood. This increases the average address allocation latency. However, as the

number of nodes increase, all such unconfigured isolated nodes are configured, possibly

because the new nodes arrive in their neighborhood. However, we observe that after

reaching a certain network density, the average allocation latency of AIPAC protocol

increases again. This is possibly because of the gradual merging procedure, which re-

quires a node to be reconfigured again. As the number of nodes increase further, the

nodes involved in this gradual merging procedure increase, thus increasing the average

address allocation latency.

3.2.6.3 Comparing SHDACP-IPv6 Strong and Weak Merging Supports

We have already discussed that SHDACP-IPv6 protocol with a strong merging sup-

port is able to detect more merging scenarios in comparison to that of the SHDACP-
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Figure 3.12: Comparing merging scenarios detection

IPv6 with a weak merging support because it employs periodic Hello messages. Thus,

there is a trade off between the communication overhead and merging scenario detec-

tion. In simulations, we observe that the percentage of the nodes involved in merging
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for SHDACP-IPv6 with strong merging support is much higher than that of the weak

merging support as shown in Fig. 3.12 . However, as the number of nodes increase, the

merging scenario detection in both the versions becomes almost the same.

3.3 SHDACP-IPv4 Operation

3.3.1 Address Space

The proposed SHDACP-IPv4 version deals with IPv4 address space. Here, we have

considered a private IPv4 addresses block (10.0.0.0 - 10.255.255.255) for addressing the

nodes in a MANET. The IPv4 address space of 32 bits is split into four fields i.e. prefix

(8 bits), partition ID (10 bits), cluster ID (10 bits), and node ID (4 bits) as shown in

Fig. 3.13 .

Figure 3.13: Hierarchical Distributive Address Version

In the SHDACP-IPv4 version, each node will maintain a Cluster id table. This table

contains the existing cluster id’s within a partition. This table helps to avoid the cluster

id duplicacy within a partition. The entries in this table are updated on the basis of

the headers in the received messages from the other nodes. When a node receives a

message then it will update its Cluster id table by adding the cluster id of the received

message in its own table if the message is from some node of the same partition. The

address for new nodes are allocated by CH sequentially. In this protocol, each node

will store its hop distance from its respective cluster head. The algorithm by which the

SHDACP-IPv4 works is as follows.
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3.3.2 Network Formation

When a new node (i.e. requester) enters the network, it will broadcast Neigh-

bor Query message and will wait for a Neighbor Reply message from the configured

nodes. All the configured nodes that receive the Neighbor Query message, will respond

back with the Neighbor Reply message. The Neighbor Reply message will contain two

fields of the responder node i.e. the hop distance from its cluster head (CH) and its

partition id. In case, the requester does not receive any Neighbor Reply before the

expiry of the timer, then it will rebroadcast the Neighbor Query message. This process

will be repeated for q (threshold) number of times or till it receives Neighbor Reply

message. If the requester does not receive even a single Neighbor Reply message after

q attempts, then it will assume itself to be the only node present in the network and

will configure itself as a cluster head (CH) by randomly selecting a partition number, a

random cluster number and the node id 1. However if the requester receives more than

one Neighbor Reply messages, then it will choose a responder (as initiator) with the

least number of hops from the respective cluster head. The requester node will send an

Address Request message to the selected initiator node. The initiator will forward the

received Address Request to its CH. The CH will choose an IP address for the requester

and send an Address Allocate message to the initiator, which then forwards the same

to the requester. When Address Allocate message is sent, the initiator also updates

the record of hop distance from CH. The requester will then configure itself with the

allocated address and become a configured node of the network. If the requester does

not receive an Address Allocate message before the expiry of Address Allotted timer

then the requester will configure itself as a new CH, by choosing a partition number

as present in one of the earlier received Neighbor Reply messages and randomly select-

ing a cluster id. The new CH will then flood the entire network with a New Cluster
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message. Each node will check its Cluster id table, in case a node detects a cluster

id match then it will discard the message. If it is not there in the table, then it is

added to the table. The CH with the same cluster number will respond with a New-

Cluster NegAck to the sender of the New Cluster message. If the new CH receives a

NewCluster NegAck, it will again initiate the address allocation process. The address

duplication of two nodes in this protocol is possible only when the partition number,

cluster number and node id in the cluster of both the nodes are same. If the new CH

receives Address Allocate message for its previous sent Address Request message, then

it will send the Address Reject message back to the CH which has sent Address Allocate

message. The detailed flowchart of SHDACP-IPv4 version is shown in Fig. 3.14 .

3.3.3 Simulation Setup and Results

The simulation setup used for performing simulations on a Mobile Ad-hoc Network

(MANET) using OMNeT++ simulator is same as that in Section 3.2.6.. The parameters

used for simulation are same as given in the Table 3.1.

3.3.3.1 Communication Overhead

The communication overhead refers to the amount of overhead (in terms of number of

messages) required by a node to perform auto-configuration. Here, we have compared

the simulation results of SHDACP-IPv6 and SHDACP-IPv4 with the other existing

protocol in terms of average communication overhead per node. As shown in Fig. 3.15,

if the number of nodes are relatively low (200 nodes), then SHDACP-IPv4 protocol

generates slightly more overhead than the SHDACP-IPv6 [37] protocol because there are

more unconfigured nodes in the network and they keep on transmitting Neighbor Query
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Figure 3.14: SHDACP-IPv4 version
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messages.

Figure 3.15: Communication Overhead Comparison

However, as the number of nodes increase (400 nodes), the overhead generated for

both the protocols is almost the same. This may be because of more unconfigured nodes

that are getting configured as the number of nodes increase.

3.3.3.2 Address Allocation Latency

The address allocation latency is defined as the time required to configure a new

node. In this section, we have calculated and compared the address allocation latency

of SHDACP-IPv4 protocol with that of SHDACP-IPv6 protocol. While computing

address allocation latency, there is a possibility that some of the nodes in the network

are unconfigured. In our computation of address allocation latency, we have excluded

the nodes that are unconfigured. From Fig. 3.16 , we observe that the address allocation

latency of SHDACP-IPv4 protocol is almost the same as that of the SHDACP-IPv6 [37].

However, as the number of nodes increase (300 nodes), the SHDACP-IPv6 [37] performs
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slightly better than SHDACP-IPv4 protocol. This is due to the fact that the number of

cluster head nodes in the proposed protocol are less as address space is of 32 bits, while

the SHDACP-IPv6 has an address space of 128 bits. Hence, in the proposed protocol

the number of hops from the unconfigured node to cluster head are relatively more,

thus a higher latency is observed.

Figure 3.16: Address Allocation Latency Comparison

3.3.3.3 Configured nodes

When the network starts functioning in a given area, not all the incoming nodes will

get configured. When the number of nodes in the given area is less, it is expected that

some of the nodes will remain isolated from the other nodes. Most of the time the

isolated nodes will remain unconfigured, especially in AIPAC protocol, where configu-

ration of a new node involves the presence of atleast one neighbor node. Thus, there

is a high tendency that in AIPAC protocol, more number of nodes will remain isolated

and unconfigured, if the network size is low. As the network grows, the nodes have
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higher chances to be in reach of all the other nodes by single hop or multiple hops.

Thus, we expect that a higher fraction of the nodes will get configured as the network

size increases. If there are no arrivals and departures, we expect 100% of the nodes

being configured. Further, due to the new arrivals as well as departures, even for a

fixed population size, we may have less than 100% nodes in a configured state.

In order to verify the above, we have simulated the percentage of configured nodes to

that of the total number of nodes existing in the network. The percentage of configured

nodes in our protocol are then compared with that of AIPAC [26] as shown in Fig 3.17.

When the number of nodes are relatively low (50 nodes), it is found that less than 50 %

of the nodes are configured in AIPAC protocol, whereas in our protocol they are found

to be more than 95 %. This is mainly because AIPAC protocol does not allow the

formation of a single node network. The performance of the AIPAC protocol improves

as the number of nodes increase, while the performance of our protocol is consistent but

slowly reduces at the end. The slight reduction is due to the fact that in our protocol,

address allocation is done by CH only. The number of hops required to obtain address

allocation will depend on the hop distance of the initiator node from the cluster head.

3.3.3.4 Cluster Head Nodes

We have plotted the percentage of nodes that are configured as cluster head to the

total number of nodes existing in the network. As shown in Fig 3.18 , when the number

of nodes in the network is relatively low (50 nodes) then most of the configured nodes

are cluster head nodes because these nodes are scattered throughout the network and

most of them form a single node network. However, as the number of nodes increase, the

percentage of cluster head nodes decrease accordingly. This is mainly because when a

new incoming node enters the dense network, it will be configured by its nearest cluster



3.4 Conclusions 67

Figure 3.17: Percentage of Configured Nodes

head node. In SHDACP-IPv4 protocol, some of the nodes are forced to remain as normal

nodes, if they receive negative acknowledgement message for their New Cluster message.

Thus, for a fixed number of nodes, percentage of cluster head nodes in SHDACP-IPv4

protocol is less than that of the SHDACP-IPv6 protocol.

3.4 Conclusions

In this chapter, we have proposed a scalable hierarchical distributive auto-configuration

protocol (SHDACP) for the mobile adhoc networks. The SHDACP protocol is pro-

posed with two versions i.e. SHDACP-IPv6 and SHDACP-IPv4. In both the versions

of SHDACP, some nodes are termed as cluster heads that are responsible for configuring

the mobile nodes in the network. The main idea of SHDACP is to logically divide the

address space into three fields termed as partition number, cluster number and node

id. The address duplication of the two nodes is possible if the partition number, cluster

number and node id in the cluster of both the nodes are same. The SHDACP-IPv6
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Figure 3.18: Percentage of Cluster Head Nodes

protocol has two types of merging support, one with strong merging support and an

another one with a weak merging support.

We have developed a custom simulator using OMNET++ framework for simulating

the protocol. The results obtained through simulation show that SHDACP-IPv6 per-

forms significantly better than the MANETconf and AIPAC protocols. The SHDACP-

IPv6 also reduces the communication overhead in the network substantially, thus mak-

ing it an ideal choice for large scale MANETs. The SHDACP-IPv6 also reduces the

address allocation latency for configuring a new node, as compared to the other proto-

cols in the literature. When the number of nodes are relatively low, then SHDACP-IPv6

with a strong merging support will detect more merging scenarios than the SHDACP-

IPv6 with a weak merging support.

We have also simulated the SHDACP-IPv4 version and result shows that the percent-

age of configured nodes in our protocol is much higher than that of AIPAC [26] protocol,

when the number of nodes are less. Moreover, as the number of nodes increases (50 to
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500 nodes), the percentage of configured nodes remains almost the same for SHDACP-

IPv4 irrespective of the number of nodes. The amount of communication overhead in

SHDACP-IPv4 is comparable with that of SHDACP-IPv6 protocol for more number of

nodes (500 nodes), but SHDACP-IPv4 protocol generates slightly more overhead for a

lesser number of nodes. The percentage of cluster heads in the proposed SHDACP-IPv4

protocol is slightly less in comparison to that of SHDACP-IPv6 protocol. The address

allocation latency is almost the same as that of SHDACP-IPv6 protocol, but as the

number of nodes increases (300 nodes), SHDACP-IPv6 version performs slightly better

than the SHDACP-IPv4 protocol.



Chapter 4

Message complexity of
auto-configuration Protocols

In this chapter, we analyze the message complexity1 for configuring a new node using

the existing auto-configuration protocols (MANETconf and AIPAC). The results are

then compared with one of our proposed protocol Scalable Hierarchical Distributive

Auto-configuration protocol (SHDACP) [37][38]. The other objective of this chapter is

to calculate the upper bound on the message overhead required to handle the network

partitions as well as the mergers. These bounds will be very useful in the designing

of different applications in the context of military scenarios and intelligent transport

system (ITS) where mobility is very high and this leads to frequent network partitions

and mergers.

1Amit Munjal and Yatindra Nath Singh “Message Complexity Analysis of Address auto-
configuration Protocols in MANETs,” in IEEE TENCON 2014, Bangkok, Thailand, 22-25 Oct
2014.
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4.1 Message Overhead for configuring a new node

In this section, we have calculated the upper bound on the message complexity for

configuring a new node using different auto-configuration protocols such as MANET-

conf and AIPAC. The results are compared with our proposed SHDACP-IPv6 auto-

configuration protocol.

4.2 MANETconf Protocol

4.2.1 Overhead for configuring the new node

Suppose n nodes are already configured in a partition of MANET. When (n+1)st

node enters this partition, it will try to configure itself with the minimum overhead.

Here, we have assumed that all the nodes can reach each other in single hop. In

MANETconf protocol [16], as shown in Fig. 4.1 the new node (i.e. the requester)

first broadcasts Neighbor Query message and will wait for tnq seconds to receive reply

messages from the already configured nodes. However, if it doesn’t recieve reply message

then it will rebroadcast the Neighbor Query message. This process is repeated for q

(threshold) number of times or till it receives reply from any one of the configured nodes

in the network. In the worst case scenario, the requester will receive n Neighbor Reply

messages in its last attempt (q) of Neighbor Query message. The requester will choose

one of the responder nodes as an initiator and send the Requester Request message

to it. The initiator now chooses a new address randomly and floods the network with

the Initiator Request message containing the choosen address. If the initiator receives

even a single negative reply then it will randomly select another address and again

flood the network with the Initiator Request message. In the worst case, an initiator
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Figure 4.1: Steps involved in configuring a (n + 1)st node in MANETconf protocol.

receives all the positive replies in its last attempt (say r). Here, r corresponds to the

maximum number of attempts that an initiator makes, failing which the requester will

send an abort message to the requester. The total number of Positive Ack messages

in the worst case will be r ∗ (n − 2) + 1 and correspondingly the total number of

Negative Ack messages will be (r − 1). After receiving all the positive replies, the

initiator node will allocate the choosen address to the requester node. The initiator node

then updates its Allocated and Allocate pending tables, and also floods the network

with the Address Allot message. Thus, the total number of messages that are required
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to be transmitted in the network for the configuration of (n + 1)st node in the worst

case scenario can be calculated as:

• q Neighbor Query messages,

• n Neighbor Reply messages,

• 1 Requester Request message,

• r Initiator Request messages,

• r *(n - 2) + 1 Positive Ack messages,

• r - 1 Negative reply messages,

• 1 Address Allot messages.

Hence, the upper bound on the communication overhead for configuring the (n+1)st

node in MANETconf is q+(r+1)n+2.

Now, we will calculate the message overhead for configuring a node using MANET-

conf protocol in multihop scenario. Suppose n nodes are configured linearly in a network

as shown in Fig. 4.2. When (n+1)st node enters this partition, it will broadcast Neigh-

bor Query message and will wait for tnq seconds to receive reply messages from the

already configured nodes. In worst case, requester will rebroadcast the Neighbor Query

message for q times. In its last attempt, it will receive reply from one of the configured

node. The requester will choose the responder node as an initiator and send the Re-

quester Request message to it. The initiator now chooses a new address randomly and

floods the network with the Initiator Request message containing the choosen address.

In multihop scenario as shown in Fig. 4.2, if a node receives the Initiator Request, it
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Figure 4.2: Multihop Analysis of configuring (n + 1)st node in MANETconf protocol.

will first check its tables and in case there is an address conflict with the requested

address, it will respond back with a negative reply. On the other hand if a node does

not detect an address conflict then it will simply forward the Initiator Request to its

next hop. In the worst case, an initiator makes r number of attempts and it receives

all the positive replies in its last attempt. Thus, the sum (Sp) of Positive Ack messages

consumed in configuration for this scenario will be calculated as follows.

Sp = [1 + (1 + 2) + (1 + 2 + 3) + ...........(1 + 2 + 3 + .....+ (r − 1))] + r

= [

r−1�

i=1

i ∗ (i+ 1)

2
] + r
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= [
r−1�

i=1

i2

2
+

r−1�

i=1

i

2
] + r

=
1

2
[
r−1�

n=1

i2 +
r−1�

n=1

i] + r

=
1

2
[
(r − 1)r(2r − 1)

6
+

(r − 1)r

2
] + r

=
(r − 1)r(r + 1)

6
+ r

The sum (Sn) of the Negative Acks will be given as follows.

Sn = 1 + 2 + ......... + (r − 1)

Sn =
r(r − 1)

2

After receiving all the positive replies, the initiator node will allocate the choosen

address to the requester node. The initiator node then updates its Allocated and

Allocate pending tables, and also floods the network with the Address Allot message.

Thus, the total number of messages that are required to be transmitted in the multi-

hop network for the configuration of (n + 1)st node in the worst case scenario can be

calculated as:

• q Neighbor Query messages,

• 1 Neighbor Reply messages,

• 1 Requester Request message,

•
r(r − 1)

2
Initiator Request messages,

• Sp Positive Ack messages,

• Sn Negative reply messages,
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• n− 1 Address Allot messages.

Hence, the upper bound on the communication overhead for configuring the (n+1)st

node in linear topology MANETconf is q + n+ r(
(r2 + 6r − 1)

6
).

4.2.2 Partitioning Overhead

In MANETconf, each partition is associated with 2-tuple partition identity. The first

element of partition identity is the lowest IP address in use and second element is the

universal unique identifier (UUID) proposed by the lowest IP address node. Every node

in the partition knows its partition identity. Suppose a network splits into two partitions

parent partition Pp and a child partition Pc as shown in Fig 4.3. Let the number of

nodes with child partition and parent partition are nc and np respectively. The parent

partition is the one that contains the node with the lowest IP address and identity

of this partition will remain unchanged. In this partition, the network partitioning is

detected at the time of the next IP address allocation. During the address allocation, the

initiator node will receive the responses from the np nodes only and hence the initiator

node will figure out that nc nodes left the network. The initiator node will broadcast

nc Address Cleanup messages so that each node in the parent partition should remove

the IP addresses of the nc nodes from their allocated table. Thus, the total number of

Address Cleanup messages in the parent partition will be nc.

In MANETconf, the lowest IP address node in the partition needs to periodically

broadcast a beacon message in order to advertise its presence in the partition. Thus, if

a node fails to receive the beacon message then it detects network partitioning. In child

partition, each of the node will not be able to receive periodic broadcast from the lowest

IP address node. Thus, all the nc nodes will broadcast a partition message. The total
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Figure 4.3: Network Partitioning

number of partition messages in child partition will be nc. When the nodes in child

partition receive the partition messages, they will update their allocated tables. After

updating the tables, each node will compare its IP address with all other IP addresses

in its updated table. If its address is lowest, then it will choose a random partition

number and periodically broadcast a beacon message containing its own IP address and

partition number. The following messages are transmitted in the network when the

partition occurs.

• nc Address Cleanup messages in the parent partition,

• nc partition messages in the child partition.

• 1 partition number configuration message broadcasted in child partition. Hence,

the upper bound on the partition overhead in MANETconf is equal to 2 ∗ nc+1.

4.2.3 Merging Overhead

In MANETconf [16], when two different partitions merge, each node will find other

partition identity during broadcasts. In case the partition identities are different, the

nodes in both the partitions will detect the merger. Each node in both the partitions

will broadcast its allocated tables if not done by some other node. Thus, each node will
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know the allocated tables and partition ids from both the partitions. Fig. 4.4 shows

the merger of two partitions The partition with the higher partition id Ph, changes its

Figure 4.4: Network Merging

partition number to that of the lower partition id Pl. This will be done by all the nodes

belonging to the partition Ph. Let there be nh number of nodes in partition Ph and nl

number of nodes in the partition Pl . As the network is merging, it is quite possible

that there exist x address conflicts. In that case, one of the conflicting node needs to

be reconfigured. The following messages are transmitted in the network when merger

occurs.

• 1 message containing the allocated address in the partition Ph to all the nodes in

the merged partition,

• 1 message containing the allocated address in the partition Pl to all the nodes in

merged partitions,

• configuration overhead x number of nodes.

Hence, the merging overhead, when two partitions merge into a single partition in

MANETconf is 2+(q+(r+1)n+2)x.
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4.3 AIPAC protocol

4.3.1 Overhead for configuring the new node

In this protocol [26], when a new node broadcasts Neighbor Query message, it will

wait for tnq seconds to receive a Neighbor Reply message. If a new node does not

receive any Neighbor Reply, then it rebroadcasts the Neighbor Query message. We

first assume single hop network. In the worst case scenario, the new node will transmit

Neighbor Query messages for q (maximum attempts) times and in the last attempt,

it will receive Neighbor Reply messages from s configured nodes in the network. The

requester will select one of nodes as an initiator and forward the initialize request to it.

The initiator will randomly select an address from the available addresses and broadcast

a Search IP packet. If the initiator receives Used IP packet then it will choose another

available address and again broadcast Search IP packet. In the worst case, initiator

will receive Used IP packet for n-1 times. If the initiator does not receive any Used IP

packet, then it will again broadcast the Search IP packet with the same address to get

a confirmation that no reply is coming because the IP address is not in use, and not

due to an error in the wireless channel. The following messages are transmitted in the

network for the configuration of (n+1)st node in the worst case scenario for single hop

network.

• q number of Neighbor Query messages,

• s Neighbor Reply messages,

• 1 Initialize Request message,

• n + 1 number of Search IP packets,
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• n− 1 number of Used IP packets, and

• 1 Initialize packet.

Hence, the upper bound on the communication overhead for configuring (n + 1)st

node in AIPAC is q + s +2*n +2.

Now, we will consider a multihop scenario in which n nodes are connected linearly

as shown in Fig 4.5. In the worst case scenario, the requester receives reply in qth

attempt. The requester will select the responder node as its initiator and forwards

the initialize request to it. The initiator will randomly select an address from the

available addresses and broadcast a Search IP packet as shown in Fig 4.5. The Search IP

packet will be transmitted throughout the network. If the initiator does not receive any

Used IP packet, then it will rebroadcast the Search IP packet with same address to get

a confirmation that no reply is coming because of IP address being not in use, but not

due to an error in the wireless channel. In the worst case, the initiator receives Used IP

packet from the (n)th node. It will choose another available address and again broadcast

Search IP packet. Next time, the Used IP packet is generated by (n − 1)st node and

so on. Thus, in this topology, the sum (Ss) of Search IP packets in the network can be

calculated as follows.

Ss = (n+ 1)(n− 1) = n2 − 1

The sum (Su) of corresponding Used IP packets can be calculated as follows

Su =
n(n− 1)

2

The following messages are transmitted in the network for the configuration of (n+1)st

node in the worst case scenario.

• q number of SendRequest messages,
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• 1 Reply message,

• 1 Initialize Request message,

• Ss number of Search IP messages,

• Su number of Used IP messages, and

• 1 Initialize message.

Hence, the upper bound on the communication overhead for configuring (n + 1)st

node in linear topology AIPAC is q + 2 +
3n2 − n

2
.

4.3.2 Partitioning Overhead

Each network in AIPAC has a unique identifier (NetID). If some of the links within

the network are broken then it can partition the network into two parts, the parent

partition Pp with np nodes and a child partition Pc with the remaining nodes nc.

Let a node x in the partition Pc with a higher IP address then its corresponding

neighbor y in the partition Pp, detects the partition. Node x floods its partition with a

Route Request message to find y. All the nc − 1 nodes present in child partition (Pc)

will rebroadcast the Route Request message. If no reply is received then node x will

choose a new random NetID and flood the network with a Change NetID message. The

Change NetID message contains the original and new NetID’s of the partition. Each of

the nc − 1 nodes will rebroadcast Change NetID message.

In the worst case scenario, all the nc nodes in Pc detect the partition and broadcast

nc Route Request messages and thereafter nc Change NetID messages. Thus, the total
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number of Route Request and Change NetID messages that flow in the child partition

in the worst case will be nc∗nc. When the nodes receive multiple Change NetID message

for the same original NetID, then the highest NetID will be selected as new NetID. The

following messages are transmitted in the network when partition occurs.

• nc ∗ nc Route Request messages,

• nc ∗ nc Change NetID messages.

Hence, the upper bound on the partition overhead when a single hop network splits

into two partitions in AIPAC is equal to 2 n2
c .

Consider a network of n nodes that are linearly connected as shown in Fig 4.8. When

any link within the network is broken then it partitions the network into two parts i.e.

the parent partition Pp and the child partition Pc. The parent partition contains the

lowest IP address of the network. In the worst case, the parent partition contains only

the lowest IP address node and remaining n-1 nodes are present in the child partition

as shown in Fig. 4.8. The node in the child partition that detects the partitioning will

broadcast a Route Request message. The Route Request message is broadcasted n-2

times for the considered topology. If no reply is received, then a new random NetID is

choosen by one of the nodes detecting partition and having higher IP address. It floods

the network with a Change NetID message. For network in Fig. 4.8, node 2 in child

partition will detect the partition and thus will broadcast the Change NetID message.

In the worst case scenario, the Change NetID message is broadcasted n-2 times. Thus,

the following messages are broadcasted in the network when partitioning occurs.

• n-2 Route Request messages,

• n-2 Change NetID messages.
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Hence, the upper bound on the partition overhead in AIPAC when in a multihop

network only a single node detects the partition, is equal to 2*n-4.

4.3.3 Merging Overhead

The AIPAC protocol [26], uses gradual merging process that reduces the message

overhead for reconfiguring the nodes when two or more networks come close to each

other. The main idea of gradual merging is that if two networks overlap for a certain

period of time, only then nodes need to reconfigure. The process of gradual merging is

based on the neighborhood table maintained at each node. Each node will switchover

to the other network if its neighbors are more in that network. This node needs to

reconfigure in the new network. If nl nodes merge into a single hop network of nh

nodes, then the upper bound on merging overhead in AIPAC is equal to (q + s +2*nh

+2)*nl.

For analysing AIPAC in multihop network, we have considered two linear networks

with number of nodes n1 and n2(> n1) with associated net id as NETID1 and NETID2

respectively. When two networks tend to merge together, then NetID of the higher

number of nodes (n2) will be used for the overall network. Thus, when the two linear

networks merge, then the overall NetID will be NetID2. The number of nodes that will

perform reconfiguration will be n1. Thus, in AIPAC the upper bound on the merging

overhead for multihop network scenario is equal to
�n1+n2

n=n2
(q+2+

3n2 − n

2
). The closed

form expression for the merging overhead is given as follows.

n1+n2�

n=n2

(q + 2+
3n2 − n

2
) = (q + 2)(n1 + 1) +

(n1 + n2)
2(n1 + n2 + 1)

2
−

(n2 − 1)2n2

2
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4.4 SHDACP Protocol

4.4.1 Overhead for configuring a new node

Suppose there exist n number of nodes and c number of cluster heads in a MANET.

If n+1st node (requester) enters in the network, it broadcasts Neighbor Query message.

If no reply is received for a duration of tnq seconds, then the requester rebroadcasts the

Neighbor Query message. In the worst case, the requester broadcasts for q attempts

and receives s Neighbor Reply messages in its last attempt. Requester now chooses an

initiator which is least hops away from its cluster head and sends an Address Request

message. The initiator node then forwards the Address Request to its respective CH.

The CH then selects an address and sends an Address Allocate message to the initiator

which forwards the same to the requester. If Address Allocate message is received after

the expiry of the Address Allocate timer then the requester sends an Address Reject

message. The requester then configures itself as the cluster head and floods the network

with a New Cluster message. The communication overhead for configuring (n + 1)st

node in the network for the worst case scenario can be calculated as follows:

• q Neighbor Query messages,

• s Neighbor Reply messages,

• 1 Address Request message,

• 1 Address Allocate message,

• 1 Address Reject message,

• c + 1 New cluster messages,
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• c Newcluster NegAck messages.

Hence, the upper bound on the communication overhead for configuring (n + 1)st

node in SHDACP protocol is equal to q+s+2*c+4.

Fig. 4.10 shows the comparison of the message overhead required to configure a new

node with the increase in the number of nodes for all the three protocols discussed

earlier. We have plotted the message overhead for configuring a new node in single

hop as well as multihop scenarios. The amount of message overhead for configuring a

new node in multihop scenario for AIPAC protocol is more than that for the single hop

scenario. However, in MANETconf the amount of message overhead is more for single

hop scenario than in the multihop scenario. This is because in multihop scenario each

node will forward the initiator request only if it does not find any address conflict with

the requested address.

Fig. 4.11 shows the message overhead with the number of attempts (q) made by the

requester. We found that as the number of attempts made by the requester increase,

the message overhead increases drastically.

4.4.2 Partitioning Overhead

In SHDACP protocol, when a node gets configured then the partition id of that node

is embedded in its IP address. Further, when a node moves to the other partition, it

will not change its partition id. In SHDACP protocol, there is no need for detecting

the network partitioning because all the route entries in the routing table will have

an expiry timer associated with them. These entries will automatically be purged out

after the expiry of timer. Thus, the amount of overhead involved in partitioning for
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SHDACP is zero.

4.4.3 Merging Overhead

Let there be two partitions Pl , Ph in the network with nl , nh nodes respectively.

If the merging of the partitions Pl , Ph is detected, then the merging communication

overhead is calculated as follows.

• nl − 1 Rtable Flood messages in partition Pl,

• nh − 1 Rtable Flood messages in partition Ph,

• 1 Exchange Rtable message by bridge node of Pl,

• 1 Exchange Rtable message by bridge node of Ph.

Hence, the merging overhead incurred when the two partitions merge is nl + nh.

Fig. 4.12 shows the comparison of the message overhead involved in merging of a

single node network with that of the bigger network. The message overhead for AIPAC

(multihop) is maximum as the configuration overhead is maximum in AIPAC (multi

hop).

Fig. 4.13 shows the comparison of the message overhead when a group of nodes

merge with a bigger network. Here, we have considered the size of a bigger network as

100 nodes and the size of the group that merges with this network is varied from 10 to

100 nodes. As expected, the amount of message overhead increases as the size of the

two groups becomes comparable.
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4.5 Conclusion

In this chapter, we have calculated the upper bound on the number of messages re-

quired for configuring a new node, for the existing address auto-configuration protocols.

We have also calculated the bound on the message overhead involved in partitioning as

well as in merging and then compared them with our protocol i.e. Scalable Hierarchi-

cal Distributive Auto-configuration protocol (SHDACP). The comparison shows that

SHDACP outperforms MANETconf as well as AIPAC under the worst case scenario.

The amount of overhead required for configuring a new node in SHDACP is lesser in

comparison to that of the MANETconf and AIPAC. Similarly, the amount of merging

overhead is also less than that of the MANETconf and AIPAC. Moreover, our proto-

col works efficiently even after partitioning as no overhead is required to detect the

partitioning.
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Figure 4.5: Worst Case Configuration overhead for AIPAC protocol
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Figure 4.6: Partitioning of a network into two partitions

Figure 4.7: Partitioning detection via broadcast message

Figure 4.8: Worst Case Partitioning overhead for AIPAC protocol
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Figure 4.9: Worst Case Partitioning overhead for AIPAC protocol
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Figure 4.10: Message overhead for configuring a new node (with fixed q) with the
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Figure 4.11: Message overhead for configuring a new node with the number of attempts
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Chapter 5

Proposed Stateful Address
Auto-Configuration Protocol for
MANETs

In this chapter, we have proposed a new stateful address auto-configuration protocol.

The main aim of this protocol is to allow each node to obtain an unique IP address in

one attempt only. Moreover, this protocol also allows each node to generate a set of

addresses for configuring the new incoming nodes. Further, the proposed protocol also

has an address reclaimation policy that allows the IP address of the outgoing nodes to

be reused by the other nodes with the minimum overhead. The proposed protocol is

simple to implement and also performs efficiently (in terms of latency and overhead)

during mergers as well as partitions.

5.1 Protocol Operation

The purpose of the proposed protocol is to perform the auto-configuration for the

incoming node with a minimum latency. Once the incoming node is configured, it will
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generate k different IP addresses. The algorithm used for generating these IP addresses

will ensure that these are unused IP addresses. The IP addresses generated by a node

can be used for configuring the other incoming nodes. Thus, each node can have atmost

k child nodes. Each node will keep all the generated k IP addresses in an address table.

This address table is updated whenever an address is allocated by the node. The address

table contains three fields i.e. level indicator and branch indicator to be given to the

child nodes, and status indicating if an address is allocated or not. Fig. 5.1 shows an

address table generated by a node at jth level and ith branch.

Figure 5.1: Address Table of a node at jth level and ith branch

Apart from maintaining the address table, each node also maintains a borrow IP

address table as shown in Fig. 5.2 . The entries of this table are filled by borrowed

address from each of the node which has acquired an IP address generated by this node.

Each node will borrow one address from its child only once after the address allocation.

Thus, the number of entries in the borrow IP address table of a particular node will

also indicate the number of IP addresses that this node has already allocated from its

address table. Each node after performing the address generation procedure will send

its first IP address from its address table to the borrow IP address table of its parent
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node.

Figure 5.2: Borrow Table of the node at jth level and ith branch

Each IP address in borrow table is also associated with two fields: level identifier and

branch identifier to be allocated to a newly arriving node. Each node also maintains

its own as well as its parent’s records (IP address, level and branch).

Except the root node, all other nodes can allocate k − 1 addresses from the address

table as well as k addresses from the borrow IP address table. Thus, each node can

allocate 2k-1 addresses. This is because each node except the root node needs to forward

its first IP address to its respective parent node. Each configured node will sequentially

allocate the IP addresses from its address table. Once all the IP addresses from the

address table are consumed then the node will start allocating sequentially from the

borrow IP address table.

It is possible that each time an address from the borrow IP address table is allocated

to some new node, an address is borrowed from the new node to replenish the borrow

IP address table, but we have not considered this scenario. Instead, the new node will
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send one address to the parent node as identified by the level and branch id allotted

to the new node. Thus, once all the addresses from the borrow IP address table are

allocated, the node cannot further assign any IP address. The replenishment of the

borrowed IP address table to the node is not required as it is unlikely that this node

will further receive any query from a new incoming node. Most of the time, the other

nodes around it, who may have been earlier configured by it, will be able to configure

the newly arriving node. This is explained in Fig. 5.3. In this figure, we have considered

Figure 5.3: Example scenario with k = 2

that each node has 2 IP addresses in its address table as well as in the borrow IP address

table (i.e. k = 2 for this case). The node r has allocated an IP address to node a, b

from its address table and c and d from the borrow IP address table. Now, node r does

not have any IP address to be allocated to a new node. As shown in figure, when a new

node sends a Neighbor Query message then the child nodes of node r will be able to

allocate the address. Thus, as more number of nodes join the network, the IP address

allocation is done mostly by the children nodes at the periphery of the network, who

have been configured in the recent past.
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In this protocol, we are assuming that the network is uniformly growing in all the

directions i.e. the nodes are coming from all the directions at the same rate. Moreover,

each IP address is associated with an IP address timer. Each node except the root

node, needs to renew its IP address before the expiry of the IP address timer. In case,

a parent node does not receive the IP renew request from one of its child nodes before

the expiry of the timer, the parent node assumes that the corresponding child node is

no more the part of the network and the allocated address is reclaimed for further use.

Also, if an IP renew request is not acknowledged, node relinquishes the current address

and initiates the address allocation process as a new node.

5.1.1 Network Formation

When the first node enters the network, it broadcasts Neighbor Query message in

order to search for any possible neighbors in the network. After broadcasting the

Neighbor Query message, the new node (i.e., the requester) will wait till the expiry

of Neighbor Reply timer. By this time, it should receive a Neighbor Reply message

from atleast one of the configured nodes. If the timer expires and it does not receive

any Neighbor Reply message, then it assumes itself to be the only node present in the

network. The new node then initializes itself with the first available address in the

IP address space and becomes the root node. It also maintains the value of its level

identifier and branch identifier as 0. It will then generate k IP addresses at the next

level and these addresses will have the level identifier j as 1 and the branch identifier i

from 0 to k-1 as shown in Fig. 5.4 .

In general, any intermediate node say x which is maintaining its level identifier as j

and the branch identifier as i will generate k IP addresses using the following equation
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Figure 5.4: Root node generating k IP addresses.

Figure 5.5: Intermediate node x at level j and branch i generating k IP addresses.

(see Fig. 5.5).

IP Address Offset =
kj+1 − 1

k − 1
+ i ∗ k

to
kj+1 − 1

k − 1
+ i ∗ k + k − 1. (5.1.1)

All these k addresses are maintained in the address table of the node x. The level
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identifier and the branch identifier of these IP addresses are as given below.

Level Identifier = j + 1; (5.1.2)

Branch Identifier = i ∗ k + s,

where s = 0, 1, 2, ........, k − 1. (5.1.3)

When nth node enters the network, it will broadcast a Neighbor Query message.

Each of the configured node upon receiving the Neighbor Query message, will respond

back with the Neighbor Reply message. The Neighbor Reply message contains two

parameters of the responding node, i.e. the number of unallocated IP addresses in the

responder’s address table and the number of unallocated IP addresses in the responder’s

borrow address table. If the requester receives more than one Neighbor Reply message,

then it will select one of the responder node as its initiator. The selection criteria

for the initiator node is on the basis of number of available IP addresses with each

of the responder nodes. The requester selects one of the responders as its initiator

based on the maximum available IP addresses with it. If two or more responders

have the maximum number of available IP addresses, then the requester will choose

any one of them randomly. The requester node will then send an Address Request

message to the selected initiator node. The reception of Address Request message by

the responder node will confirm that it is selected as an initiator. Now, the initiator

node will select one of the unallocated IP address from its address table and send the

same in Address Allotted message to the requester. The Address Allotted message

contains the IP address to be used by the requester node, and the level identifier as

well as branch identifier assigned to it. The requester node configures itself with the

allocated IP address. Then, it generates k different IP addresses using equation 5.1.1
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and forwards the first generated IP address from its address table to the borrow IP

address table of its parent node as identified by the level and branch identifiers. The

parent node updates its borrow address table by storing the first IP address received

from the child nodes. In case, the requester does not receive an Address Allotted

message before the expiry of Address Allotted timer, then the requester will again send

the Address Request message. The requester will retry for a threshold number of times

or till it receives an Address Alloted message. If it fails to receive an Address Allotted

message in all of its attempts, which will happen only if the requesting node is the only

present node in the region, then it will configure itself with the first address available

in the IP address space and maintain its level identifier and branch identifier as 0.

The node will then generate k IP addresses and maintain its address table as discussed

above. Fig. 5.6 shows the formation of hierarchical address tree in this protocol.

Figure 5.6: Hierarchical Tree formation

Once a node is configured, either by an existing node or by itself, it will perform the

following operations.
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• It will generate k new IP addresses which can be used to configure the other

incoming nodes upon the receipt of the address request. The process of the address

allocation is sequential.

• It will forward first IP address from its address table to the parent node as identi-

fied by level and branch identifier to populate its borrow address table. It may be

noted that when the address is allotted from borrow address table, the initiator

and the parent node are different.

• If all the IP addrsses are consumed then the initiator node will allocate an unused

IP address from its borrow address table.

• When no addresses are available in the address table and borrow address table,

the node will not respond to the Neighbor Query messages.

5.1.2 Address Reclaimation Policy

The address reclaimation policy is defined as the method by which we can detect

and reuse the IP addresses in the network, which were earlier allocated to the nodes

and are no more in the network. The nodes may have left the MANET at some point of

time, due to their mobility or due to the drainage of their battery power. The absence

of a node from the network may result in creation of voids in the hierarchical address

tree. The voids will be created if the outgoing node is a parent node, but not when it

is a leaf node. This is explained with an example tree shown in Fig. 5.7.

Here, some of the nodes (i.e., nodes b, c, e and i) leave the network after the comple-

tion of the auto-configuration process. The nodes b and e are the parent nodes while

the nodes c and i are the leaf nodes. The exit of a leaf node from the hierarchical
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Figure 5.7: Creation of voids in hierarchical address tree (due to mobility of nodes b &
e, voids are created whereas no void is created due to mobility of nodes c & i)

address tree does not create any void, as no other node has received any address from

it. Further, the absence of nodes b and e which are the parents of nodes f, g and node

k respectively, will create a void in the tree. In order to fill these voids, we need to

efficiently reclaim the IP addresses of the outgoing nodes. The address reclaimation

for a missing leaf node can be done very easily by its parent node. While the address

reclaimation for a missing parent node is not straightforward.

The algorithm used for implementing the address reclaimation policy in a network

needs to answer the following questions.

1. How to detect a void that is created in the address tree whenever a node leaves

the network?

2. How to obtain the information whether the outgoing node is a leaf node or a
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parent node?

3. If the outgoing node is a parent node, then how many child nodes did it have ?

How to attach these child nodes with the upper level in the address tree?

4. How to allocate the reclaimed IP addresses?

Algorithm for Address Reclaimation

The first step in our algorithm is to detect the void created by the outgoing nodes.

The void detection in this algorithm is done by the parent node with the help of an

address timer. This timer is associated with each IP address and each node needs to

Figure 5.8: Void node detection by parent node using IP address renewal message

renew its IP address before the expiry of the corresponding address timer. This is done

by periodically sending an IP address renewal message to the parent nodes, which gets

acknowledged. In case, the parent node does not receive an IP address renewal message

from one of its child nodes and the address timer expires, then it assumes that the

corresponding child node does not exist anymore in the network. As shown in Fig. 5.8,

the parent node a initially receives IP address renewal from all of its child nodes a1, a2

and a3. As node a2 leaves the network, a does not receive any address renewal message
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from a2. Thus, the parent node a detects the void created by node a2 in the tree.

The next step after detection of void is to identify whether the outgoing node is a

leaf node or a parent node. In order to do so, we have introduced a term known as IP

address count. The IP address count of a node is defined as the number of child nodes

that are currently associated with it. In case a node is a leaf node then its IP address

count is 0. Each node will send its IP address count to the parent node periodically

or whenever it allocates an IP address to an incoming node. Fig. 5.9 shows a scenario

where each node is periodically sending its IP address count to its parent node. Here

the nodes a, a1, a2 are parent nodes, while the nodes a11, a21, a22, a23 and a3 are the leaf

nodes.

Figure 5.9: Parent node stores the address count of all its child nodes in an address
count table.

The parent node maintains the record of the IP address count of all its child nodes in

a separate table known as Address count table. Thus, when a node leaves the network
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then its parent node can identify from the address count table whether the outgoing

node is a leaf node or a parent node. Now, we will discuss both the cases.

5.1.2.1 Outgoing node is a leaf node

When the parent node identifies that the outgoing node is a leaf node, then the

address reclamation policy is straight forward. This is because the IP address count of

the outgoing node is zero. This means that the outgoing node has not allocated any

IP address before leaving the network. Fig. 5.10 shows the scenario when one of the

leaf node (a3) leaves the network. So, once the parent node detects that one of its child

node whose IP address count is zero, has left the network, then it will change the status

as unallocated for that IP address in its address table. The IP address count table also

gets modified for parent node a. The parent node will then allocate the reclaimed IP

address to any new incoming node.

Figure 5.10: Leaf node moves out of the network
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5.1.2.2 Outgoing node is not a leaf node

Here, we will consider the case when the outgoing node is not a leaf node such as

node a2 in Fig. 5.9 . When this node leaves the network, then the resulting address

tree gets disconnected as shown in Fig. 5.11 . Here, the child nodes of node a2 i.e.

the nodes a21, a22 and a23 are disconnected from the tree. Now, the parent node of

a2 node i.e. node a needs to connect the child nodes of a2 in the tree. The parent

Figure 5.11: Parent node leaves the network.

node a then checks the IP address count of a2 (which is 3 in the current example)

from its address count table. It then generates the IP addresses of the child nodes of

the missing node i.e. node a will generate a21, a22, a23. This is possible because the

parent node a knows the level indicator and branch indicator of a2. The parent node

a then provides acknowledgements for address renewals, for all the child nodes (a21,

a22, a23) of the outgoing node, till the outgoing node’s IP address is alloted to another
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new incoming node. Parent node a also now recreates allocated address table using the

received renewal requests. The new node now will take over all the functionalities of

node a2. Fig. 5.12 shows that the parent node a allocates an address a2 to the incoming

node. When the parent node allocates the IP address of the missing node to any new

incoming node, then it also gives the address count as well as allocated address table

associated with that IP address. The new node then generates k IP addresses in its

address table as discussed in our protocol, and marks the status as allocated for the

IP addresses based on the received renewal requests. If it does not receive the address

renewal request from any of the already existing child nodes, then it will change its

status as unallocated.

Figure 5.12: Parent node allocates the reclaimed address (i.e. a2) to new incoming
node.

Thus, the parent node successfully reclaims the IP address with the help of the IP

address count and received renewal requests, when the outgoing child node is not a leaf

node.
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5.2 Simulation Results

In this section, we have simulated and compared our proposed protocol with the

other three existing stateful protocols [16][19][22]. The comparison is made in terms
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Figure 5.13: Message overhead with number of nodes in the network for initiator at-
tempts (i.e. r=2).

of the message overhead for configuring (n + 1)st node with respect to the n number

of nodes. For simulation purpose, we have considered the size of the network growing

from 10 to 200 nodes.

Fig. 5.13 shows a comparison of the proposed protocol with MANETconf, RSVconf

and D2HCP stateful auto-configuration protocols. This figure clearly depicts that for

a lesser number of nodes (20) in the network, the amount of overhead is maximum

for D2HCP and minimum for the proposed protocol. As the number of nodes increase
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(200), the MANETconf protocol consumes maximum amount of overhead, while the

proposed protocol always consumes minimum overhead for configuring (n+1)st node.
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(a) n=10.
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(b) n=20.
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(c) n=50.
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(d) n=100.

Figure 5.14: Message overhead with number of initiator attempts for different size
network (i.e. n = 10, 20, 50, 100).

Fig. 5.14 show a comparison of message overhead with the number of initiator

attempts for different stateful auto-configuration protocols. The plots shown in 5.14

shows that the amount of message overhead increases with the number of nodes for

different initiator attempts. Our proposed protocol consumes minimal overhead in

comparison to the other protocols.
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5.3 Conclusion

This chapter proposes a new stateful address auto-configuration protocol for MANETs.

The proposed protocol is compared with the three existing stateful protocols MANET-

conf, RSVconf and D2HCP. The comparison shows that the proposed protocol requires

minimal message overhead for configuring a new node. Moreover, the proposed protocol

allows the nodes to perform addressing in parllel. The protocol is simple to implement

and also has an address reclaimation policy for an efficient address space utilization.



Chapter 6

Proposed Variant of MANETconf
and Message complexity of stateful
protocols

In this chapter, we have proposed an improved variation of auto-configuration pro-

tocol MANETconf1. The communication overhead required for configuring a new node

has been used as performance metric to evaluate the improvement. We have also com-

puted and compared the upper bound on the message complexity [39][40]for configuring

a new node for most of the existing stateful auto-configuration protocols.

6.1 Proposed Variant of MANETconf

In this protocol, each configured node will maintain two tables viz, theAllocated table

and the Allocate pending table. The Allocated table of a node contains all the IP ad-

dresses that are allocated in the network as per the node’s knowledge. TheAllocate pending

table contains those IP addresses for which the address allocation has been initiated

1Amit Munjal and Yatindra Nath Singh “An improved auto-configuration protocol variation by
improvising MANETconf,”IEEE International conference on Advanced networks and Telecommunica-
tions systems (ANTS), New Delhi,14-17 Dec 2014.
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but has not yet been completed.

When a new node (i.e. the requester) wishes to join the network, it will broadcast

Neighbor Query message and will wait to receive the Neighbor Reply message from the

already configured nodes. The requester waits for the expiry of theNeighbor Reply T imer

to receive the responses. If the requester fails to receive the Neighbor Reply message be-

fore the expiry of the Neighbor Reply T imer, then it rebroadcasts theNeighbor Query

message for q (a threshold) times or till it receives the Neighbor Reply message. If the

requester fails to receive the Neighbor Reply message even after q attempts, then it

will assume itself to be the only node in the network and will configure itself with an

IP address.

Figure 6.1: Steps involved in proposed variant of MANETconf protocol for configuring
a node.

On the other hand, if the requester receives multiple Neighbor Reply messages, then
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it will select one of the responders as its initiator. The selection criteria for the initiator

node is based on the signal strength of the received Neighbor Reply message. The

responder with the maximum signal strength will be selected as the initiator node. The

requester node then sends the Requester Request to the selected initiator node. The

initiator node then selects an address (say x), which is not present in any of its tables

(i.e. Allocated table and Allocate pending table) and forwards the Initiator Request

message to all other nodes in the network. When the configured nodes receive the

Initiator Request message, they will check for the address x in their tables. If the

configured node does not detect an address match then it will not respond back to

the initiator with a Positive Ack message. While in original MANETconf protocol,

a Positive Ack is expected from all other nodes before the address allocation is con-

firmed to requester. Further if the configured node detects a match of the address

x in any of its tables, then it will respond with a Negative Ack back to the initia-

tor. Thus, the initiator node will demand the response only from those configured

nodes which have detected an address conflict for the address x in any of their ta-

bles. If the initiator node receives the Negative Ack message before the expiry of the

Initiator Request T imer, then it will again choose another address and repeat the

same for r (i.e. the Initiator Request Retry) number of times. Moreover, if the ini-

tiator receives Negative Ack message in all the r attempts, then it will send an abort

message to the requester. The abort message conveys the requester that it is not pos-

sible for the initiator to configure the requester. The requester will again initiate the

configuration process.
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6.1.1 Message complexity of auto-configuration Protocols

In this section, we have considered a scenario in which n nodes are already configured

in a MANET. We have calculated the upper bound on the message complexity that is

required to configure (n+1)st node in MANETconf protocol as well as in the proposed

MANETconf variant. The upper bound on message complexity can be defined as the

maximum amount of message overhead that is required in the worst case for a protocol.

We have assumed that all the nodes in the network can communicate with each other

in a single hop.

6.1.1.1 MANETconf

In MANETconf protocol, the upper bound on the message complexity that is required

to configure (n + 1)st node is calculated as:

• q Neighbor Query messages,

• n Neighbor Reply messages,

• 1 Requester Request message,

• r Initiator Request messages,

• r *(n - 2) + 1 Positive Ack messages,

• r - 1 Negative reply messages,

• 1 Address Allot messages.

Hence, the upper bound on the message complexity required for configuring the
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(n+ 1)st node in MANETconf is q+n+n*r+1.

6.1.1.2 Variant of MANETconf

In the proposed variant of MANETconf protocol, the upper bound on the message

complexity that is required to configure (n+ 1)st node is calculated as :

• q Neighbor Query messages,

• n Neighbor Reply messages,

• 1 Requester Request message,

• r Initiator Request messages,

• 0 Positive Ack messages,

• r - 1 Negative reply messages,

• 1 Address Allot messages.

Hence, the upper bound on the communication overhead for configuring the (n+1)st

node in MANETconf variant is q+n+2*r+1.

6.1.2 Results

In this section, we have shown the comparison of the upper bound on the message

complexity required to configure (n + 1)st node in MANETconf protocol and its pro-

posed variant. The comparison is done on the basis of the worst case message overhead

with an increase in the number of nodes. As the number of nodes increase, the num-
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Figure 6.2: Message complexity for MANETconf and proposed variant.

ber of messages required to configure a new node increase many folds in the original

MANETconf. Fig. 6.2 clearly depicts that the message complexity required to configure

a new node reduces drastically in the proposed MANETconf variant.

6.1.3 Conclusion

In this chapter, we have proposed a variant of the MANETconf auto-configuration

protocol that reduces the communication overhead for configuring a new node. We have

calculated the upper bound on the number of messages required for configuring a new

node, for the existing MANETconf as well as the proposed variant. The results clearly

show that the number of messages required to configure a new node is comparatively

less in the proposed variant with respect to the original MANETconf.
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6.2 Upper Bound on message complexity of Stateful

Auto-Configuration Protocols

In this section, we have investigated and compared the message complexity involved

in configuring the new nodes for different stateful protocols. For message complexity

analysis, we have calculated the upper bound on the message overhead for configuring

the new nodes for most of the existing stateful address auto-configuration protocols.

6.2.1 Problem Statement

Consider a steady state scenario as shown in Fig. 6.3. Here n nodes are already

configured in a mobile adhoc network. We want to find the upper bound on the number

of messages involved in configuring (n + 1)st node in the network using different auto-

configuration protocols.

Figure 6.3: n+ 1st new node wishes to join the n node network.



6.2 Upper Bound on message complexity of Stateful Auto-Configuration Protocols 118

6.2.2 Stateful Protocols

6.2.2.1 Enhanced Manet Autoconf Protocol (EMAP) [18]

In EMAP [18] protocol, each node generates a pair of the IP addresses (i.e. a tempo-

rary address and a tentative IP address). These addresses are selected from two different

sets of address spaces. The tentative address is the requested address, while the tem-

porary IP address is used only for the time being, till the new node is configured with a

tentative address. The new node first broadcasts DAD REQ message to check for the

Figure 6.4: New node joining a network in EMAP protocol.

availability of the tentative address. If the new node receives DAD REP message before

the expiry of DAD REQ TIMEOUT seconds then it will select another tentative address

(while keeping the same temporary address) and again broadcast DAD REQ message.

As shown in Fig 6.4 , the new node will repeat this process for DAD MAX RETRIES

(q) or till it succeeds. Thus, the upper bound on DAD REQ messages will be q. When

new node receives no DAD REP message within the DAD REQ TIMEOUT seconds

then it assumes that the selected address is unique and will assign the same to its in-

terface. Thus, the upper bound on the message overhead for configuring n + 1st node

in EMAP can be calculated as:
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• q DAD REQ messages

• q − 1 DAD REP messages.

Thus, the total messages involved =2*q-1.

6.2.2.2 RSVconf [19]

In RSVconf [19] node auto-configuration protocol for MANETs, when a new node

wishes to join the network, it chooses a random address and broadcasts the proxy

request (PREQ) message. If the new node receives more than one proxy reply (PREP)

message, then it will select a proxy whose reply comes first. In the worst case, the

new node receives proxy replies from all the configured nodes (n) as shown in Fig. 6.5.

The new node then sends proxy acknowledgement to the selected proxy. In case the

new node does not receive any reply then it will assign an IP address to itself and will

initialize the network. The selected proxy will select a free IP address from its IP data

Figure 6.5: New node joining a network in RSVconf protocol.
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base (IPDB) and then broadcast a reservation (RSV) message to get the confirmation

from all the nodes in the network. Each node will check its IPDB and in case a conflict

of IP address is detected then that node will broadcast a response (REP) packet. In

worst case, the proxy receives n − 1 REP messages. Further, if no address conflict is

detected then the proxy will register that IP in its IPDB. The proxy node then sends

an address assignment message that contains the available IP address and the IPDB of

the proxy node. The new node will now forget randomly choosen address and configure

itself with the received information. The total number of messages required to configure

n+ 1st node in the worst case can be calculated as:

• 1 PREQ message,

• n PREP messages,

• 1 Proxy selection message,

• 1 RSV message,

• n− 1 REP message,

• 1 IP address message.

Thus, the total number of messages required to configure n + 1st node in RSVconf is

2*n+3.

6.2.2.3 Logical Hierarchical Addressing (LHA) [20]

In LHA protocol [20] for MANETs, each configured node (Address Agent) can assign

an address to k requester nodes.
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Figure 6.6: New node joining a network in LHA protocol.

Here, the new node first senses the medium for beacon messages and after listening

the beacon message, it broadcasts an address agent solicitation (AA sol) message. Each

node that receives an AA sol message will respond with AA rep message that contains

the number of currently available free addresses (AfA) with it. In the worst case, the

new node (say n+ 1st) receives r AA rep messages and all the responders have AfA=0

i.e. each of the r responding nodes have consumed their k addresses. It may be noted

in such case (r − 1)(k − 1) + 1 nodes will exist who will have free addresses to be

allocated. Now, the requester will select a responder with the smallest address as its

AA and forward AA sel message to it. The selected AA will broadcast an address

agent address request (AA A req) message. The nodes that listen to this message will

reply with AA A rep message if their AfA>0, otherwise they will further broadcast

AA A req message as shown in Fig. 6.6. If the AA A req message are again received

by nodes with AfA=0, they will further broadcast it. In worst case, AA A req message
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can be broadcasted r number of times as those many nodes exist with all the addresses

consumed. Thereafter, a node which can allocate an address will surely be found. When

the AA node receives AA A rep message, then it will send AA A sel message to the

selected node. The selected node will send AA conf message to AA. The AA node will

then forward the same to the new node confirming the address allocation.

The number of various messages involved in configuring n + 1st node in LHA are

summarized below.

• 1 AA Sol message,

• r AA rep messages,

• 1 AA sel message,

• r AA A req messages (in worst case),

• s AA A rep message,

• 1 AA A sel message,

• 1 AA conf message.

Thus, the total number of messages required to configure n + 1st node in LHA is

2*r+s+4=2*r+(n-r)+4=r+n+4.

6.2.2.4 Distributed Dynamic Host Configuration Protocol (D2HCP) [22]

When a new node (i.e. the client node) wishes to join the network, it will broadcast

SERVER DISCOVERY message and will wait to receive SERVER OFFER messages

from the configured nodes as shown in Fig. 6.7. If no SERVER OFFER message is
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received before the expiry of SERVER DISCOVERY TIMER, then the client node re-

broadcasts the SERVER DISCOVERY message for SDISCOVERY MAX RETRY (q)

times or till it receives SERVER OFFER message. In the worst case, the client node

will receive SERVER OFFER messages in its last (qth) attempt. The client node will se-

lect a server from the received SERVER OFFER messages and send a SERVER POLL

message to the selected server. The client node then waits for SERVER POLL TIMER

seconds to receive the IP ASSIGNED message from the selected server. If the client

node fails to receive the IP ASSIGNED message before the expiry of timer, then it

resends the SERVER POLL message for a maximum of SPOLL MAX RETRY (p) or

till IP ASSIGNED message is received. When the server node receives SERVER POLL

message, then it will send IP ASSIGNED message to the client node directly, if free

address is available with the server. If no free address is available with the server

then the server will send IP RANGE REQUEST to the other nodes in the network

and wait for IP RANGE RETURN message. If no IP RANGE RETURN message is

received then the server node resends IP RANGE REQUEST for a maximum RRE-

QUEST MAX RETRY (r) times or till it receives IP RANGE RETURN message.

When the server node receives IP RANGE RETURNmessage then it sends IP ASSIGNED

message to the client node.

The upper bound on the message complexity for configuring n + 1st node when n

nodes are already configured can be calculated as follows:

• q SERVER DISCOVERY messages,

• n SERVER OFFER messages,

• p SERVER POLL messages,
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Figure 6.7: Client node performing auto-configuration in D2HCP protocol.

• p ∗ r IP RANGE REQUEST messages,

• 1 IP RANGE RETURN message,

• 1 IP ASSIGNED message

Thus, the total number of messages required to configure n + 1st node in D2HCP is

q+n+p*(r+1)+2.

6.2.2.5 One step addressing (OSA)[23]

In this protocol, the new node before joining the network will sense for beacon

messages. When it senses a beacon message, then it will broadcast Add Req message

as shown in Fig. 6.8. If no reply is received, then it will rebroadcast the same for

maximum F times or till it receives an Add Rep message from the existing node. In

the worst case, the n + 1st node will receive Add Rep in its F th attempt. Thus, the

upper bound on the number of Add Req messages will be F . The upper bound on the

Add Rep messages received will be n. The Add rep message contains the number of

free IP addresses available with the node. The new node then selects a responder with
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maximum number of available IP address as its agent node. It then forwards an Add sel

message to the agent node. The agent node then sends an Add conf message to the new

node. The Add conf message contains the available IP address for configuring the new

node. Thus, the upper bound on the total number of messages involved in configuring

Figure 6.8: New node address auto-configuration in OSA protocol.

n+ 1st node in OSA protocol is summarized below.

• F Add Req messages,

• n Add Rep messages,

• 1 Add Sel message,

• 1 Add conf message.

Thus, the total number of messages required to configure n+1st node in OSA protocol

is F+n+2.
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6.2.2.6 MANETconf Variant Protocol [41]

The variant of MANETconf protocol aims to reduce the message overhead involved

in configuring a new node. Here, the new node first broadcasts neighbor query mes-

sage and waits for neighbor reply messages from the already configured nodes. If no

response is received before the expiry of neighbor reply timer, then it will rebroadcast

neighbor query message for q (i.e. the threshold) number of times or till it receives the

neighbor reply messages. Thus, the upper bound on the number of neighbor query

messages will be q. Similarly, the upper bound on neighbor reply messages will be n (n

being number of node in the MANET and all of them responding to Neighbor Query

message).

The requester will select a responder node which has maximum signal strength as

its initiator. The requester then sends the requester request to the initiator node. The

initiator node then chooses an address and forwards the initiator request message to

seek permission from the other nodes to grant the choosen address to the requester.

The configured nodes when receive the initiator request message, will check their ta-

bles for an address match and if a match is detected then they will send a negative

response back to the initiator. If no match is deteced then they will not respond. If the

initiator node receives reply before the expiry of initiator request timer, then it will

again choose an address and repeat the process. The process can be repeated r (i.e. the

initiator request retry) number of times and if still address for allocation cannot be

finalized, the failure is indicated. In the worst case, the initiator succeeds in its last at-

tempt (rth). The initiator node will send address allot message to the requester. Thus,

the upper bound for successful address allocation, on the number of initiator request

messages will be r and that of negative responses is r − 1.
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The the upper bound on the total number of messages involved in configuring n+1st

node in MANETconf variant protocol is summarized below.

• q Neighbor Query messages,

• n Neighbor Reply messages,

• 1 Requester Request message,

• r Initiator Request messages,

• r - 1 Negative reply messages,

• 1 Address Allot messages.

Thus, the total number of messages required to configure n+ 1st node in MANETconf

variant is q+n+2*r+1.

6.2.3 Results

In this section, we have calculated and compared the upper bound on message over-

head complexity for configuring the n+1st node in the network. The message overhead

complexity is plotted with the number of nodes for different auto-configuration pro-

tocols. We have also plotted the message complexity with the increase in number of

requester attempts as well as with number of initiator attempts. The number of nodes

considered for simulation are in the range of 100 to 1000.
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6.2.3.1 Message overhead with number of nodes

The plots shown in figure 6.9 show the variation of the message overhead with an

increase in the number of nodes (1-100) for different stateful auto-configuration proto-

cols and different requester attempt values. The plots clearly show that the amount
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(a) Requester Attempts q=1.
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(b) Requester Attempts q=2.
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(c) Requester Attempts q=5.
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(d) Requester Attempts q=10.

Figure 6.9: Message overhead with number of nodes (1-100) in the network for different
requester attempts (i.e. q = 1, 2, 5, 10).

of message overhead increases with an increase in the number of nodes. The increase

of message overhead is sharp for lesser number of nodes, while for a larger number of

nodes the amount of message overhead tends to saturate for all the auto-configuration
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protocols. Moreover, the subplots 6.9a, 6.9b, 6.9c and 6.9d are drawn for different val-

ues of requester attempt (q) i.e. 1, 2, 5 and 10. In subplot 6.9a, the amount of message

overhead for EMAP protocol is very low, but in subplot 6.9d, the amount of message

overhead in EMAP increases significantly. This is due to an increase in the number

of requester attempts. The cross-over of curves is due to the fact that when number

of nodes = 0, then arrival of new node means formation of new network. In order to

identify the formation of new network, more messages are needed in LHA and D2HCP

protocols as compared to others.

The plots shown in figure 6.10 show the variation of message overhead with the

number of nodes (1-100) for different stateful auto-configuration protocols. The subplots

6.10a, 6.10b, 6.10c and 6.10d are drawn for different values of initiator attempt (r) i.e.

1, 2, 5 and 10.

The above plots clearly depict that there is an increase in the message overhead of

auto-configuration protocols with the increase in the number of nodes. In subplot 6.10a,

the amount of message overhead for MANETconf protocol is low, but in subplot 6.10d,

the amount of message overhead for MANETconf increases. This is due to the increase

in the number of initiator attempts. The plots also show that the MANETconf protocol

always requires maximum message overhead for configuring a new node.

The plot in figure 6.11 shows the comparison of message overhead involved in con-

figuring a n+ 1st node with the number of nodes for different stateful protocols. Here,

the comparison of message overhead is computed for the higher values of nodes (i.e.

1-1000). The message complexity overhead for configuring n + 1st node increases with

an increase in the number of nodes in the network. The MANETconf protocol re-

quires maximum amount of configuration overhead and it increases many folds with the
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(a) Initiator Attempts r=1.
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(b) Initiator Attempts r=2.
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(c) Initiator Attempts r=5.
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(d) Initiator Attempts r=10.

Figure 6.10: Message overhead with number of nodes (1-100) in the network for different
initiator attempts (1, 2, 5, 10).

increase in initiator attempts.

6.2.3.2 Message overhead with number of requester attempts

The plot in figure 6.12 shows the comparison of message overhead involved in con-

figuring a n + 1st node with the number of requester attempts for different auto-

configuration protocols. The subplots 6.12a, 6.12b, 6.12c and 6.12d are drawn for

different size of network (n) i.e. 10, 50, 100 and 500. The amount of overhead for all

the auto-configuration protocols increases with the number of nodes.
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(a) Initiator Attempts r=10.
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(b) Initiator Attempts r=20.
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(c) Initiator Attempts r=50.
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(d) Initiator Attempts r=100.

Figure 6.11: Message overhead with number of nodes (1-1000) in the network for dif-
ferent initiator attempts (10, 20, 50, 100).

6.2.3.3 Message overhead with number of initiator attempts

The plot in figure 6.13 shows the comparison of message overhead involved in config-

uring a n+1st node with the number of initiator attempts for different auto-configuration

protocols. The subplots 6.13a, 6.13b, 6.13c and 6.13d are drawn for different size of net-

work (n) i.e. 10, 50, 100 and 500. The amount of overhead for all the auto-configuration

protocols increases with the number of requester node attempts. Here, we have consid-

ered four different networks with number of nodes 10, 50, 100, 500 respectively.
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(b) Number of nodes n=50.
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(c) Number of nodes n=100.
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(d) Number of nodes n=500.

Figure 6.12: Message overhead with number of requester attempts (q) for different size
networks (10, 50, 100, 500 nodes).

6.2.4 Conclusion

In this chapter, we have calculated and compared the upper bound of message over-

head for different stateful auto-configuration protocols in MANETs. The amount of

message overhead involved in configuring a new node is directly related to the number

of nodes in the network, number of requester attempts as well as the number of initiator

attempts. The simulation results show that the MANETconf protocol consumes more
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(b) Number of nodes n=50.
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(c) Number of nodes n=100.
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Figure 6.13: Message overhead with number of requester attempts (q) for different size
networks (10, 50, 100, 500 nodes).

messages for configuring a new node whereas the EMAP protocol consumes least mes-

sage overhead out of all the protocols discussed in this chapter. The EMAP protocol

on the other hand does not have any partition and merger detection scheme. Thus,

EMAP protocol is not suitable for high mobility scenarios. Our future work is focussed

on the message complexity involved in detecting the partitions as well as the mergers

that happen frequently in MANETs.



Chapter 7

Conclusions and Future Work

In the thesis, we have focussed on one of the most challenging issues in mobile

adhoc networks i.e. auto-configuration of mobile nodes. The auto-configuration is

defined as a process of automatically assigning the IP addresses to every node in the

network, so that each new node can communicate with the other configured nodes via

single hop or multihop wireless links. In other wireless netwoks, the configuration of

mobile nodes is done by a centralized server such as dynamic host configuration protocol

(DHCP) servers. However in MANETs, no such centralized server exists to perform the

configuration of the mobile nodes.

Another challenge in MANETs is that the nodes are mobile, so they will leave or

join the network on their own. This results in frequent network partitions and merg-

ers. So, there is a possibility of duplicate IP addresses to be present in the network

after a merger takes place. Thus, to maintain the uniqueness of IP addresses at the

time of mergers and splits is also challenging. In order to provide the solution for

the above challenges in MANETs, we have proposed stateless and stateful address

auto-configuration protocols. In stateless auto-configuration protocol, no node is main-

taining an information regarding the existing IP addresses used within the network.
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The proposed stateless auto-configuration protocol is named as Scalable Hierarchical

Distributive Auto-Configuration Protocol (SHDACP). We have proposed two different

versions of SHDACP protocol as mentioned below:

• SHDACP-IPv6

• SHDACP-IPv4

The SHDACP-IPv6 version deals with IPv6 address space for assigning addresses to the

mobile nodes in the network. While the SHDACP-IPv4 version deals with IPv4 address

space. The main idea of both the versions is to logically divide the address space into

three fields: partition number, cluster number and node id. In both the versions, we

have cluster head nodes that are responsible for configuring the mobile nodes in the

network. The main objective of both the versions is to provide an unique IP address to

each node with a minimum message overhead as well as with minimum latency.

The other proposed protocol is stateful address auto-configuration protocol for MANETs.

In stateful approach, each node will maintain the tables corresponding to the IP ad-

dresses of the other nodes. Here, in the proposed protocol, each configured node gener-

ates a set of unique IP addresses and reserves them in its address table. This protocol

also has a borrowing mechanism that allows each node to borrow an IP address from

the node whom it has provided an address. The borrowed IP addresses are stored in

a borrow address table. Moreover, this protocol also allows addresses of the outgoing

nodes to be reclaimed. The address reclaimation policy allows the available address

space to be efficiently utilized.

We have also proposed an improved variation of the existing stateful auto-configuration

protocol MANETconf. The communication overhead required for configuring a new
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node has been used as performance metric to evaluate the improvement.

Apart from this, we have also calculated and compared the message complexity

required for configuring a new node, for the existing address auto-configuration protocols

with our proposed protocols. The message complexity required to handle network

partition and mergers is also computed. The result shows that our protocol SHDACP

outperforms MANETconf as well as AIPAC under the worst case scenario. Moreover,

our protocol works efficiently even after partitioning as no overhead is required to detect

the partitioning.

We have also computed the upper bound of message overhead required for different

stateful auto-configuration protocols. The simulation results show that the MANET-

conf protocol consumes more messages for configuring a new node whereas the EMAP

protocol consumes least message overhead out of all the protocols discussed in this chap-

ter. The EMAP protocol on the other hand does not have any partition and merger

detection scheme. Thus, EMAP protocol is not suitable for high mobility scenarios.

Future Work

• In stateful auto-configuration protocols, the size of the table depends on the num-

ber of configured nodes. Thus, with an increase in network size, the size of table

at each node increases gradually. Thus, we need to design some protocols that

take care of the memory constraint at each node.

• Time complexity for configuring a node is yet to be computed.

• Message Complexity for detecting mergers and partitions needs to be analyzed.
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