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Abstract

Diffusion is a widely used concept to define any spreading phenomenon. Differen-

tial equation based compartmental models of disease diffusion, originated in the field of

epidemiology have been extensively used in many other disciplines. Analysis of these

models is based on the assumption of homogeneous mixing which means that any person

can interact with everyone else in the population. But, our society is not homogeneous

in nature. To include the social heterogeneity, several network-based models have been

proposed in the last two decades. So, we have now two different approaches to un-

derstand the processes of diffusion. Significant work has been done using both the

approaches, but their comparison on the same platform is still missing. This thesis

proposes new compartmental models for spreading phenomena involved in viral mar-

keting and online media piracy and compares the similarities and dissimilarities of both

homogeneous and heterogeneous approaches.

In the first part of the thesis, we have considered the propagation of rumor in

the population based on already existing SIR model. Explaining the basic settings of

homogeneous as well as heterogeneous approach, we have focused on the similarities and

dissimilarities between both the approaches along with advantages and appropriateness

of each of them to understand different aspects of a physical phenomenon. Simulations

have been carried out on Random as well as Scale-free networks to understand the effect

of network structure on the diffusion process.

In the second part of the thesis, we have considered the scenario of Viral Marketing

which exploits the social connections of existing users by prompting them to share the

advertisements or campaign by providing rewards in return. Extending the existing

models in the literature, we have proposed two new models of viral marketing based on
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the consumer’s mindset retrieved from the analysis of the extensive survey conducted

by us. We have also shown how bistability can be exploited favorably for sustaining the

campaign even in the adverse conditions. Apart from Random and Scale-free network,

spread over some real networks has also been analyzed to gain the insights of the real

scenario. Finally, we have been able to suggest the key factors that need to be considered

while designing any viral campaign.

In the third part of the thesis, online media piracy has been discussed. Model

is based on the fact that the habit of using pirated content is germinated in a person

from their friends or family members. It is a sort of addiction because even after

knowing that it is not right, people are involved in piracy. Diffusion of this habit

has been modeled as an epidemic. We have later extended our work by including

the effect of awareness created by an external agency like media promotions or public

awareness programs. Media has been modeled as a time-varying entity with the rate

of change being proportional to the fraction of people involved in piracy at that time.

By introducing media, we are able to get rid of the steady state where the fraction of

aware class was becoming zero.

All these applications have been investigated by both homogeneous as well as

heterogeneous approaches. Similarities and dissimilarities of both the approaches have

been pointed out along with the identification of the key parameters which are affecting

the process most.



Chapter 1

Introduction

Contagious diseases have always been a threat to the existence of any species living

on the earth. Around 25 million people, one-fourth of the entire population of Europe,

died of Bubonic Plague (Black Death) in 14th century [1]. From 1918 to 1921, Russia

observed more than 20 million cases of Typhus where the death rate was as high as 10%

[2]. Recent Ebola virus spread of 2013-16, took the life of around 12 thousand people

of West Africa [3]. According to WHO report, since 1981, when the first case of HIV

was reported, around 70 million people have been infected with HIV with a mortality

rate of 50% [4].

Although numerous efforts have been made to fight against infectious diseases dur-

ing the entire history of human civilization, great progress had been accomplished amid

20th century. The worldwide vaccination program for smallpox has successfully erad-

icated the disease which was in existence from thousands of years. Similarly, after

1988, wild poliovirus cases have decreased by over 99% since the launch of the Global

Polio Eradication Initiative [5]. There are some other diseases, for example, measles,

diphtheria, pertussis and tetanus that can be severe and potentially life-threatening,

which have been mitigated in many places. Though major efforts have been given to
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develop medicines and vaccines against contagious disease and some good results have

also been achieved, analyses of spreading of the infectious disease have also become a

prime concern to the researchers.

1.1 Background

Mathematical modeling of the epidemic spread can be traced back to the models

for smallpox given by Daniel Bernoulli in 1760 [6], but the Modern mathematical epi-

demiology is considered to begin with the inclusion of Mass Action Principle for a

discrete-time deterministic epidemic model for the measles spread in 1906 by Hamer

[7]. Soon after the work of Hamer, Dr. Ronald Ross followed a simple differential

equation model to explain the transmission of malaria in 1911 [8]. Kermack and McK-

endrick, in 1927, generalized the differential equation approach in their popular SIR

(Susceptible−Infective−Recovered) model [9]. Extending their work for infections that

do not confer any permanent immunity like common cold and influenza, they formu-

lated the SIS (Susceptible−Infective−Susceptible) compartment model in 1932 [10].

The notion of threshold was formally introduced through this model. Threshold pro-

vides the boundary condition for a disease to spread in a given population. The concept

of threshold helped a lot to establish the foundation of the theory of epidemiology.

More exhaustive researches on epidemic spreading occurred at the end of the 20th

century. New models were developed taking into consideration various factors like

latent period, isolation, migration, vaccination with or without immunity loss, age

structure, spatial structure, genetic heterogeneity, etc. [11]. Recently, models have been

created for vector-borne diseases like dengue, chikungunya, yellow fever, etc. [12]. These

diseases are caused by vectors, i.e., living organisms that can transmit infection between
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humans or from animals to humans like mosquitoes, ticks, flies, sandflies, fleas, and some

freshwater aquatic snails. Apart from all the other parameters, these models include

time delays to account for the incubation period needed by vectors to become infectious

[13, 14]. Specific models have also been created for diseases like Ebola hemorrhagic fever

(caused by Ebola Virus) and AIDS/HIV (caused by sexually transmitted infections) [15].

Adding more social and biological factors in these models bring them closer to reality,

but their complexity increases simultaneously. Hence, along with the use of high-speed

computers, required for complicated simulations, more advanced mathematical analyses

such as degree, chaos, theories of bifurcation and semigroup have been comprehensively

applied in the model investigation [16, 17, 18].

Although most of these models have been borrowed by various other disciplines like

Computer science, Social Science and Network science, but due to their origin from

epidemiology, these are still termed as epidemic models [18, 19, 20]. In fact, all these

disciplines share a common interest in studying diffusion phenomenon and rely on very

similar models.

A computer virus is a potentially malicious software program or script that diffuse from

computer to computer by replicating itself to another program. When broke out, it can

cause significant damage by modifying sensitive information, file encryption, file dele-

tion, formatting disks or slowing down the system. In the past, outbreaks of computer

viruses have caused notable economic damages [21]. Factors such as the mutation of

existing viruses and the sudden breakthrough in the antivirus technology are akin to

the appearance of new infectious disease and invention of its medicines and vaccines.

Motivated by the close resemblances between computer viruses and their analogous

biological counterparts, various models have been borrowed from epidemiology to com-

prehend the spread of computer viruses on computer networks.
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Similarly, internet-based spreading mechanisms such as tweeting and sharing of online

content are contagious by nature [22]. Like a disease’s behavior, an Internet-based out-

break also starts with a few individuals who pass on the information to their contact

and eventually the information reaches to a significant number of people. One of the

frequent events in social media is the spread of rumors, gossips, and hoaxes. Depending

on its malicious content, they sometimes create threatening situations [23, 24]. With

the increasing influence of social media, viral marketing techniques are being used to

advertise a product which exploits social contacts of existing users [25]. Political parties

are using it as an important communication channel to propagate their agenda. Even

the extreme opinions or ideologies that were once restricted to small groups are easy to

spread via web. Such activities are responsible for opinion formation and adaptation

among the population and impact the decisions of vital importance. Researchers are

using epidemic modeling as a tool to understand the mechanism of these information

diffusion phenomena.

As discussed earlier, Kermack and McKendrick’s SIR and SIS model [9, 10] are the

foundation of epidemic spread analysis. Under this scheme, the whole population is

compartmentalized in different classes, and transition from one class to another is mod-

eled by a system of ordinary differential equations. It is very true that it is difficult

to identify all the factors affecting a real-world phenomenon and its accurate quan-

tification and modeling is perhaps impossible. Therefore, simplifying assumptions are

made to gain insights into epidemic dynamics. One of the fundamental assumptions is

homogenous mixing according to which every individual in the population has the same

chance of coming into contact with every other individual [8]. The second assumption

is referred as mass-action approximation according to which the rate of change of indi-

viduals in a compartment at the next time step is assumed to be proportional to the



1.1 Background 5

number of individuals in the compartment at the current time step [26]. The third

crucial assumption is about the rate of occurrence of events. It is assumed that an

infected person spreads the infection at a constant rate or recovery rate of an infected

person is constant.

Mass action assumption appears to hold in most of the cases, but homogeneous

mixing is no longer valid in many cases. HIV/AIDS is one of the obvious examples.

Moreover, societies are not random and well-mixed instead they have their unique

community structures. For example, someone is much more likely to be infected by a co-

worker, friend, or family member than by a random individual in the population because

(s)he spends much more time and has close contact with the former group of people.

Compartmental models do not account for these social structures. Homogeneous mixing

hypothesis eliminates the need to know the precise contact network on which the disease

spreads, replacing it with the assumption that anyone can interact with anyone else.

However, with all its limitation, the homogeneous approach of modeling is proved to be

efficient in several fields including public health planning and policy making.

Although, these models are efficient in providing answer to the questions like how

many people are infected at any given time; how many will remain infected in steady

state; what is the nature of bifurcation, etc., but they are silent on the questions like who

are expected to be infected at a particular time; who are the critical persons contributing

largest number of infections. In short, all population level statistics is provided by

these models, but information related to a particular individual is missing [27]. To

understand the dynamics of the individuals, researchers have used simulation-based

network analysis where individuals are depicted as nodes, and intercommunications

between them as links connecting the respective nodes [28, 29, 30]. The heterogeneous

network representation to model interactions makes a number of points intuitive. First,



6 Introduction

each node has degree much smaller than the size of the network in general, which easily

represents the real social structure where a person interacts only with a small fraction of

the society. In this way, various kinds of heterogeneity can be efficiently represented by

network structure, which is very difficult to be accommodated in compartmental models.

Second, while a social network has a dynamic structure as new links are formed through

new contacts, and some existing links get deleted as old associations disappear, most

of the existing links will remain unaltered for substantial time duration. Therefore

without loss of generality, networks are often considered to be static within a timescale

of interest (such as the duration of an epidemic) [31].

1.2 Motivation

Though several attempts are made to analyze outbreaks using homogeneous and het-

erogeneous approaches independently, it is not well-explored what are the similarities

and dissimilarities between these two approaches. Upon first inspection, both these ap-

proaches seem quite different. Homogeneous modeling is based on differential equations

and relies on strict assumptions about homogeneity, whereas heterogeneous analysis

is based on simulations carried over a heterogeneous network structure. Conversely,

homogeneous analysis is expected to run fast whereas heterogeneous analysis may take

hours to run on a computer (depending on the size of the network and complexity of

the interactions). However, researchers have begun to realize that these frameworks are

much closer than initially thought [32, 33, 34].

In this thesis, we aim to model different social phenomena that exhibit epidemic

like diffusion such as rumor propagation, viral marketing, multimedia piracy, etc. To

make the models more realistic, extensive surveys have been carried out, wherever re-
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quired. Survey results helped us to understand the behavioral transition between differ-

ent classes based on the individual’s psychology. We have also analyzed the similarities

and dissimilarities that we can achieve by using homogeneous and heterogeneous ap-

proaches. Apart from qualitative analysis, similarities and dissimilarities between both

the approaches have also been explicitly quantified. We observe that while there are

certain physical information that can be achieved from both approaches, each of them

explicitly reveals specific characteristics about the flow in the society which can be

crucial to develop promotional or inhibiting activities.

1.3 Thesis Outline

The rest of the chapters are organized as follows. Chapter 2 discusses the fundamen-

tal concepts of diffusion dynamics for both homogeneous and heterogeneous approaches.

In this chapter, the discussions are restricted to SIS model which are further extended

for more complex models in the following chapters, and also the concepts of random,

scale-free and real networks are introduced to understand diffusion phenomena over

heterogeneous structures.

Chapter 3 discusses spreading of rumor or hoax in the society as an epidemic spread.

Three subpopulations of the society, typically called as Unaware, Believer, and Inert

migrate from one category to another with specific conversion rates. We analyze the

rumor spreading for both homogeneous and heterogeneous society structures.

To understand the intrinsic correlations between both the approaches, a different diffu-

sion dynamics, known as viral marketing, is further modeled and analyzed in Chapter

4. A survey was conducted to understand the key-parameters and the dominant inter-

actions in the dynamics. Our findings indicate that people who are not participating in
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a campaign, may regain his/her interest, and such transitions help in the sustainability

of the campaign. We first introduced a minimal model to understand the diffusion dy-

namics of viral marketing campaigns. Further, we modify the interactions between the

subpopulations according to the survey results to come up with a more realistic model

to understand a viral campaigning spread.

Opposite to the beneficial effect of diffusion, we model a complicated adverse habit of

online piracy in Chapter 5. The spread of the habit of online piracy, in the presence

of social contacts, is often compared with an epidemic. We proposed two different

awareness models- word-of-mouth and media induced awareness. The models help to

understand the benefit of one-to-one awareness programs as well as the effect of mass

awareness programs. We also analyzed the effect of heterogeneity on both of these

awareness schemes.

Chapter 6 concludes the thesis and discusses the future scopes of this work.



Chapter 2

Fundamentals of Epidemiology for
SIS Model

In this chapter, we will present a short account of the concepts that appear to be

of importance in discussing mathematical models of epidemiology. We have used basic

SIS (Susceptible−Infective−Susceptible) model to explain the essential terminologies of

the epidemiology.

2.1 Homogeneous Approach

SIS model was proposed by Kermack and Mckendrick in 1932 [10]. It is a com-

partmental model in which the total population is compartmentalized into two classes:

susceptible class (S) in which all the individuals are susceptible to the infection if they

come in contact; and an infected class (I) in which all the individuals are infected by

the disease and spread the infection to susceptible individuals. This model is appli-

cable if there is no permanent immunity from the disease. So, infected individuals,

after recovery goes back to the susceptible compartment. Processes of infection, as well

as recovery, are characterized as the migration of individuals between compartments.
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Treating number of susceptible and infectious individuals as continuous variables, they

have described this movement by the following pair of coupled ordinary differential

equations:

S ′ = −β I
T
S + γI,

I ′ = β
I

T
S − γI· (2.1)

Here, S and I indicates the number of susceptible and infectious individuals, respectively

and T denotes the overall population. The rate of change of S and I with time is

denoted by S ′ and I ′ respectively. In rest of the thesis, similar notation has been used

to represent the rate of change of a variable. Total population, T , remains constant when

the population is considered to be closed while ignoring birth, death, immigration, and

emigration. Infection and recovery parameters are denoted by β and γ respectively.

The term β I
T
S denotes the rate at which new infections arise. While formulating

this term, authors have assumed population to be well mixed (homogeneous mixing)

which means that individuals are equally probable to interact with anyone else in the

population. Under this assumption, the law of mass action (a well-established relation

for chemical reactions) holds, and the rate at which susceptible acquires infection is

proportional to the densities of susceptible and infective both.

The second term γI depicts the number of individuals recovered from the infected

compartment per unit time. Since, S + I = T , the pair of differential equations can be

reduced to the single equation

I ′ = βI(1− I

T
− γ

β
). (2.2)

I
T

appearing in the above equation is nothing but the fraction of infected individuals in

the population. Similarly S
T

is the fraction of susceptibles. These fractions are denoted
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by i and s respectively. In this whole thesis, we have used fractional population while

analyzing differential equations. Dividing the eq. 2.2 by T , we get the rate of change

of fractional population of infectives as below

i′ = βi(1− i− γ

β
)· (2.3)

2.1.1 Steady State Analysis

Once the system reaches to steady state, the fraction of a particular class will become

constant and thereafter the rate of change of i or s with time will be zero. Equating

eq. 2.3 to 0, we get

βi(1− i− γ

β
) = 0. (2.4)

As clear from the above equation, there are two possible steady states −(a) i?0 = 0 and

(b) i?1 = (1 − γ
β
). Corresponding values of susceptible class will be s?0 = 1 and s?1 = γ

β

respectively. The solution i?0 = 0 is always a feasible solution but i?1 = (1− γ
β
) is feasible

only if it is non-negative as negative fractional population has no physical significance.

Therefore, depending upon whether (1− γ
β
) is positive or negative (which implies β

γ
= R

is greater or less than 1) system may lead to one of the two different scenarios:

1. Case 1: R < 1

In this case, only one solution (s?0 = 1, i?0 = 0) is feasible, and hence the system

reaches an endemic free equilibrium state where no infected individual exists in

the entire population. Endemic free equilibrium state is represented as E0(s?0, i
?
0)

i.e., E0(1, 0).

2. Case 2: R > 1
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In this case, along with epidemic free state, an endemic steady state also exists

which is denoted by E1(s?1, i
?
1) where s?1 and i?1 are γ

β
and (1− γ

β
) respectively.

2.1.2 Reproduction Number (R )

It is evident that the quantity R is exhibiting the epidemic threshold which predicts

whether a disease will persist or die out with time. In epidemiological literature, R

is called reproduction number, and it is defined as the average number of secondary

infections caused by a single infectious individual during their entire infectious lifetime

[35]. The parameter β is the rate at which an infected individual creates a new infectious

individual by spreading the disease to susceptible class. The parameter γ is the rate

at which an individual departs back from infected class to susceptible. Hence, 1
γ

is the

average time spent by a person in the infected class and β
γ

represents the Reproduction

number of SIS dynamics. It is intuitive that if R > 1, then every individual is causing

more than one infection and hence the disease will survive; otherwise, it will die out.

2.1.3 Stability

Apart from finding out the feasible equilibrium point, it is also necessary to investi-

gate whether the equilibrium point is stable or unstable, i.e., whether the system moves

towards (stable) or away from (unstable) a given equilibrium point. Local stability of

an equilibrium point can be estimated using linear stability analysis. For a generalized

set of ordinary differential equations, ẋ = f(x) with an equilibrium point x?, we can

linearize the equation by Taylor series expansion around the equilibrium as,

f(x) = f(x?) +
∂f

∂x

∣∣∣
x?

(x− x?) (2.5)
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Let x = x? + δx, where δx is a small perturbation. The question of stability now

translates into the eventual decay (or growth) of δx, so that x comes back to (or moves

away from) the steady state x?, making the equilibrium point stable (or unstable).

To study the behavior of δx with time, we take a time derivative of the expression

x = x? + δx and find that,

δẋ = ẋ = f(x), (2.6)

as x? is a constant. Drawing the equivalence between eq. 2.5 and 2.6, as both express

a form of f(x), we write,

δẋ = J?δx, (2.7)

where J? is the Jacobian evaluated at the equilibrium. For equilibrium x? to be stable,

all the eigenvalues of J? should have negative real part. For a system of N ordinary

differential equations, where N variables are coupled with each other, the components of

state vector x are [x1, x2, x3..., xN ] and the components of rate vector f are [f1, f2, f3,...,

fN ]. In this case, the Jacobian is

J? =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xN

. . . . . . . . . . . .
∂fN
∂x1

∂fN
∂x2

. . . ∂fN
∂xN

 (2.8)

evaluated at [x?1, x
?
2, x

?
3, . . . , x

?
N ]. To analyze the stability of the fixed points of the SIS

model we have,

f1 = −βsi+ γi

f2 = βsi− γi (2.9)

Required jacobian will be

J? =

[
∂f1
∂s

∂f1
∂i

∂f2
∂s

∂f2
∂i

]
=

[
−βi −βs+ γ
βi βs− γ

]
(2.10)
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and two eigenvalues are 0 and β(s− i)− γ. Value of non-zero eiganvalue β(s− i)− γ

at E0 and E1 will be (β − γ) and (γ − β) respectively. Now again two cases arise:

1. Case 1: β < γ

β < γ implies β
γ

= R < 1. Under this condition, eigenvalue corresponding to

E0 will be negative and corresponding to E1 will be positive. Hence, for R < 1

endemic free equilibrium is the stable equilibrium state.

2. Case 2: β > γ

Similar to the analysis in case 1, we can observe that for R > 1, E0 is unstable

and endemic equilibrium E1 is the stable steady state.

In this way, we can check the stability of the steady state points. For complex models,

numerical methods can be helpful to find the nature of eigenvalues of the Jacobian

matrix.

2.1.4 Bistability

While exploring the stability of equilibrium points, there might be a scenario when

more than one equilibrium point is stable in a given region. Such a condition is re-

ferred to as bistability. In such cases, the system leads to different equilibrium points

depending on initial conditions, which in our case is the initial number of susceptible

or infected individuals.

There are a few more relevant terms like phase transition and bifurcation diagram

that we will discuss in Sec. 3.2.3. With this much background of the homogeneous

epidemic models, we can now move on to heterogeneous part.
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2.2 Heterogeneous Approach

As discussed in the previous chapter, homogeneous modeling assumes the possibility

of interaction of an individual to every other individual in the population, but it does

not represent the real-life situation where any person can interact only to a limited

fraction of the community. Networks are used to model this heterogeneity in the social

structure. In the next section, we will discuss the modeling of SIS epidemic spread

by the heterogeneous approach, but before that, it is better to get familiarized to few

terminologies of network science used in this thesis.

2.2.1 Network Representation

A network is a collection of nodes and links which is most commonly represented as

an adjacency matrix. The adjacency matrix A of a simple network graph is a matrix

with elements Aij such that

Aij =

{
1 if link exists between nodes i and j,
0 otherwise.

(2.11)

A diagonal element (i = j) represents self-loop. For a network with no self-loops, all

the diagonal elements of the matrix A will be zero. The Adjacency matrix for an

undirected graph is always symmetric since a link between nodes i and j implies a link

between j and i. In case of a directed network, every link has a direction associated

with it, pointing from one node to another. The adjacency matrix of such a network

is generally asymmetric. If the link of a network represents the strength or frequency

of a certain event, number 1 in the adjacency matrix is replaced by various rational

numbers representing weights. Such a network is called a weighted network.
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2.2.2 Degree Centrality

Various centrality measures have been defined to find out the most important (or

central) nodes in the network. Simplest among all of these measures is the number of

neighbors it has, which is often called the degree of the node. Higher the degree, more

important the node is. Highest degree node is the most central node. If a node has a

very high degree compared to most of the other nodes, it is called a hub.

There are many other centrality measures like eigenvector centrality, Katz centrality,

closeness centrality, betweenness centrality, page rank, etc. These have not been used

in our present work, thus have not been elaborated any further.

2.2.3 Degree Distribution

In a network, the fraction of vertices having degree k is denoted by pk. It can also be

thought of as a probability of a randomly chosen node to have degree k. The distribution

of the probability pk is called degree distribution of the network. The directed networks

will have in-degree distribution and out-degree distribution corresponding to the number

of links ending at and beginning from a node.

2.2.4 Clustering Coefficient

Clustering coefficient reflects the level of clustering in the network and is defined as

the average probability that two neighbors of a node are also the neighbours of each

other. Local clustering coefficient for a single vertex i having degree ki is defined as

Ci =
number of pairs of neighbors of i that are connected

number of possible pairs of neighbors of i
(2.12)
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where total possible number of pairs of neighbors is ki(ki−1)
2

. The average local clustering

coefficient of the network is the mean of local clustering coefficients of all the nodes in

the network.

Another way to define clustering on the scale of the whole network is Global clustering

coefficients [36].

C =
(number of triangles)× 3

(number of connected triplets)
(2.13)

Here, a “connected triplet” means three vertices abc with edges (a, b) and (b, c). The

edge (a, c) may or may not be present. The factor of three in the numerator arises

because each triangle gets counted three times when we count the connected triplets in

the network.

2.2.5 Network Generation Models

Network science always aims to build models that can reproduce the properties of real

networks. Here, we are going to describe two fundamental models of network generation

which helped a lot to understand why a network possess a particular structure and

characteristics. Although the networks generated by these models are not matching the

real networks exactly, they help to understand the generation mechanism of most of the

networks.

2.2.5.1 Random Network

At first inspection, the large network appears to be random. Paul Erdős and Alfréd

Rényi [37] used this apparent randomness to generate networks that are truly random.

In this model, an edge is created between every possible pair of nodes with an indepen-

dent linkage probability p. In a network of N nodes, there can be a maximum of
(
N
2

)
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distinct pairs of links. Hence, the expected number of edges in the network is
(
N
2

)
p, and

the average degree of the network is (N − 1)p. Consequently, the degree distribution of

a random network follows the binomial distribution [38]

pk =

(
n− 1

k

)
pk(1− p)n−1−k. (2.14)

Most real networks are sparse. It means that for them k << n. In this limit, the degree

distribution given in eq. 2.14 is well approximated by the Poisson distribution

pk = e−〈k〉
〈k〉k

k!
(2.15)

which is often called the degree distribution of a random network. Here, 〈k〉 is average

degree of the network.

2.2.5.2 Scale-free Network

Initially, large networks were assumed to be random and have Poisson degree distri-

bution. With the first map of WWW generated by Hawoong Jeong at the University of

Notre Dame, it became clear that all networks do not have Poisson degree distribution

instead many of them follow power-law degree distribution [39] given as

pk ∝ k−α (2.16)

where k is the degree and α is the power constant. Using techniques to generate random

graphs with any given degree distribution, it was possible to create a network follow-

ing power-law. But, these models were not able to explain what is the reason for the

network to have a power law degree distribution. This investigation led to generative

network models which focus on the mechanism by which networks are created. If the

characteristics of the obtained network match with the real network, it can be concluded

that the latter might be generated by a similar mechanism.
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In recent times, the Barabási-Albert model is the best known generative model [40].

According to this model, two essential features responsible for power-law degree dis-

tribution are growth and preferential attachment. Here, nodes are being added to the

existing network one by one, and each node connects to a fixed number of pre-existing

nodes. Instead of connecting to any node randomly, here node makes a connection to

another node with probability proportional to their degrees. In this way, nodes with

a higher degree will have more chance to get a new connection. This phenomenon is

referred to as a preferential attachment. If a node connects to m of the existing nodes,

we will have a network with 2m average degree.

In this work, the network generated by both of these mechanisms- Random network

and Scale-free network are referred to as model networks.

2.2.5.3 Real Networks

There are many extensions of both of these fundamental models, and all of them

try to generate the network as close to real networks as possible, but no one is able to

capture the properties of real networks completely. That’s why apart from using random

and preferential attachment model, it is also necessary to validate our results on real

networks. In this thesis, we have considered Hamster network, Email network, and Jazz

network. Hamster network contains friendships and family connections between users

of the website hamsterster.com. Email network is the email communication network at

the University of Rovira i Virgili in Spain. Jazz network is the collaboration network

between Jazz musicians, where a node symbolizes a particular musician, and a link

between two nodes represents that the two musicians have played together in a band.

All these data have been taken from KONECT (The Koblenz Network Collection) [41].
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2.2.6 Epidemic Spread over Networks

In a network, different nodes have different degrees. Nodes with a higher (or lower)

degree will be able to spread the disease to a more (or less) number of people. Therefore,

we need to consider the dynamics of a node based on their degrees.

We are using degree block approximation assuming statistical equivalence among nodes

with the same degree. It means that nodes with the same degree will behave in precisely

the same manner. We denote the fraction of susceptible and infective nodes with degree

k by sk and ik respectively. Overall fraction of a particular type of nodes in the network

is given by

s =
∑
k

pksk; i =
∑
k

pkik

where pk is the degree distribution of the network, explained in the Sec. 2.2.3.

In the homogeneous approach, β was the rate of infection spread by an infectious

node in the entire population. The rate was assumed to be equal for each of the

nodes. In the network setting, every individual has different reach depending on its

degree. Therefore, this assumption of homogeneous model does not look appropriate

in the heterogeneous scenario. Instead of going for overall infection rate in the entire

population, it is appropriate to consider the rate at which an infectious node spreads the

infection to one susceptible individual. We have denoted this rate by βn and assumed it

to be same for nodes of varying degree. For a susceptible node having degree k, number

of infectious node in its neighborhood will be ki where i is the fraction of infectious

nodes. Hence, the overall rate at which a susceptible node having degree k will receive
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the infection will be βnki. System model will be

dsk
dt

= −βnkski+ γik,

dik
dt

= βnkski− γik· (2.17)

In these equations, we have assumed that the fraction of infectives around a node is

independent of k (degree of the node) and is equal to the overall fraction of infectives

in the population, i.e., i. But, in a real network, this is not the case. As mentioned in

[42], Θki is the density function which gives the probability of infectives around a node

of degree k and is given by

Θki (t) =
∑
k′

p (k′/k) ik′(t) (2.18)

where p (k′/k) is the probability that a node of degree k will point to a node with

degree k′ and ik′(t) is the probability that a node with degree k′ is in the infectious

state. For correlated networks, p (k′/k) is a function of k. For an uncorrelated network,

this probability is independent of k and is given by

p(k′/k) =
k′pk′

〈k〉
. (2.19)

Some authors use (k′ − 1) instead of k′ in the above equation considering the fact that

any susceptible node must have got the infection from one of its infected neighbors and

hence it can spread it only to remaining (k′ − 1) nodes. Both of the formulations have

the same order of dependency on nodal degree k, and for the sake of simplicity, we have

considered k′. Density function for uncorrelated function thus takes the form

Θki =

∑
k′ k
′pk′ik′

〈k〉
= Θi. (2.20)
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Including density function in the system model, eq. (2.17) modifies to

dsk
dt

= −βnkskΘi + γik,

dik
dt

= βnkskΘi − γik· (2.21)

Solving these equations, we can obtain the threshold condition for an epidemic to spread.

To know the course of evolution of the epidemic, we carry out simulation which tells the

current status (susceptible/infective) of each of the node in the network at a given time.

Status of a node keeps on changing with time, but after a steady state is reached, overall

fraction of each class remains constant. We can then compare the results obtained by the

homogeneous and heterogeneous approach. After discussing the fundamental concepts,

we move to our first work that deals with the dynamics of rumor spreading in society.

By this work, we want to make the basic foundation of the comparative analysis of

homogeneous and heterogeneous approaches.



Chapter 3

Propagation of Rumor and Hoax

3.1 Introduction

We have discussed in the previous chapter that both homogeneous and heterogeneous

modelings give crucial insights about the process under study, but the relation between

these two methods are mostly unexplored. In this chapter, we try to bridge these

two models to understand the effectiveness of both approaches while analyzing the

propagation of rumors in the real world.

Spreading of rumors, gossips and hoax in our practical life and social media are quite

frequent. Depending on its maliciousness, the spread may sometimes create dangerous

situations and should be handled carefully. On March 19, 1935, a rumor was spread in

New York city that an innocent Puerto Rican boy was beaten to death by a white man.

The rumor led to The Harlem race riot of 1935 which resulted in damage of roughly 2

million dollars. Adjusted for inflation, these figures work out to be 200 trillion dollars

worth of property [23]. Similarly, on October 3, 2008, a hoax spread that Apple CEO

Steve Jobs had a heart attack. Within an hour the stock lost 10% of its value equivalent

to 4.8 billion dollars [43]. In the year 2018, a fake message related to child lifting was
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circulated on WhatsApp. It propelled 61 mob lynching incidents leading to 24 deaths

in different parts of India [24]. There are numerous examples where a large-scale spread

of wrong information has created chaos in the society. As it can be a threatening

situation if the rumor is related to any sensitive topic, analysis of rumor dynamics is

vital to understand and resist the spread.

Rumor propagates in a society by the individuals who actively take part in the

information diffusion [44]. Numerous attempts have been made to model this diffusion

to understand the dynamics of the process for effective control and prevention of the

rumor propagation. One of the early models in rumor propagation was proposed by

Rapoport and Rebhun exploiting the fact that spreading of rumor has an epidemic-like

behavior [45]. Later, researchers used the same concept to model diffusion of rumor

in society using a set of differential equations and applied homogeneous approaches to

analyze the behaviors of the spread in transient and steady-state conditions [46]. Daley

and Kendall [47] proposed a diffusion model dividing the entire population into three

sub-classes: Unaware, Believer and Inert. Later, researchers modeled the interaction

between these subpopulations to analyze the spreading of rumor. In [48], the author

modeled the diffusion using an ordinary differential equation (ODE) with variable rumor

strength.

Apart from ODE modeling, researchers have recently started to observe the prop-

agation of epidemic-like phenomena in networks assuming each person as a node and

connection between two persons as a link. In [28], authors proposed a shortest path

algorithm to spread the rumor in a connected network. Zhao et al. [49] modeled the

diffusion of rumor for a variable forgetting rate in a small world network. Haeupler pro-

posed a fast rumor spreading model assuming the structure of the network is not known

[50]. In [51], authors modeled the spread over the online social network and proposed
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effective countermeasure to prevent the spreading. Tripathi et al. [52] had proposed

novel metrics to model rumor dynamics and introduced an anti-rumor process based

on trust. Instead of modeling rumor spread using three sub-populations as mentioned

above, Zhou et al. [53] divided the population into four sub-classes and modeled the

spread over the social network. The significant contribution of Zhou’s model [53] is the

introduction of a hibernating sub-population to model the forgetting mechanism. In

[54], authors proposed a cost-efficient strategy to control rumor in the mobile sensor

network.

Though several attempts have been made to analyze rumor propagation using ho-

mogeneous and heterogeneous modeling independently, it is not well-explored what are

the similarities and dissimilarities between these two approaches. It is required to un-

derstand the relationship as in many complex systems, it is not possible to solve the

heterogeneous model precisely, and the homogeneous approach is needed to analyze the

system [50]. Thus, it is necessary to quantify the differences between homogeneous and

heterogeneous approaches explicitly.

In this chapter, a simple model of rumor propagation has been analyzed using homo-

geneous as well as heterogeneous approach, and the difference in steady-state results

have been quantified. In Section 3.2, we discuss the model structure and explore the

equilibrium state of the homogeneous system, with discussions about stability and re-

production number of the dynamics. Section 3.3 contains the analysis of the same model

for random and scale-free networks, by exploring the degree distributions. Simulation

results of homogeneous and heterogeneous approach have been discussed in the subsec-

tions 3.2.3 and 3.3.3 respectively. We finally conclude the chapter in Section 3.4, with

a discussion on the contrasting results.
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Figure 3.1: Block diagram of the rumor propagation model showing all possible transi-
tions from one class to other.

3.2 Homogeneous Modeling

We consider that total population (T ) is categorized into three compartments: Un-

aware (U), Believer (B) and Inert (I). The fraction of different classes will be U
T
, B
T

and

I
T

which is denoted by u, b and i respectively. The nodes in unaware class (U) are not

informed about a particular gossip or rumor, whereas nodes in class B believe the rumor

and spread it to the nodes in unaware class. Whenever a believer comes in contact with

an unaware, believer tries to spread the rumor. The rate of rumor transmission is ρ,

which is a combination of the contact rate between a believer and an unaware, and the

probability of successful rumor transmission. A class of the population has also been

considered which after listening to the rumor, ignores it and do not take part in further

spreading. These people are kept in inert category I. This transition is inspired from

practical scenarios, where we may lose interest in a particular gossip or a rumor after

a certain time. The parameter σ signifies the rate of conversion from believer (B) to

inert (I). All three compartments of the model along with possible transitions from one

class to another have been shown in Fig. 3.1.

As any real-world population is dynamic, people come and leave a community at a

certain rate. To incorporate this feature into the model, birth and death have been
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included. The parameter µ is natural death as well as birth rate in the present model.

Both rates are kept equal to maintain a constant population. It is assumed that at the

time of birth, every individual will be in unaware class. Considering all these assump-

tions together with homogeneous mixing among the population; the rumor propagation

model is defined by the following set of coupled differential equations:

U ′ = µT − ρ(
B

T
)U − µU,

B′ = ρ(
B

T
)U − σB − µB, (3.1)

I ′ = σB − µI·

Dividing these equations by T gives the rate of change of fractional population of all

three classes.

u′ = µ− ρbu− µu,

b′ = ρbu− σb− µb, (3.2)

i′ = σb− µi·

Since we are analyzing the number or fraction of people in a particular class, all the

variables and parameters are assumed to be non-negative.

3.2.1 Equilibrium Analysis

At equilibrium, there is no change in fraction of population corresponding to different

classes, hence u′, b′, and i′ will be zero. By equating second equation of the eq. set 3.2

to zero, we get

b(ρu− σ − µ) = 0· (3.3)

The above condition holds if either of the multiplicative terms is zero. One of the

solution is b?0 = 0. We are denoting the equilibrium point value of b by b?. We obtain
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u?0 = 1 and i?0 = 0 by substituting b = 0 in expression of u′ and i′ given in eq. 3.2. Hence,

one possible equilibrium state is E0(1, 0, 0)1, when there is not even a single person who

believes in the rumor. This steady state is known as rumor-free equilibrium.

Equating the second multiplicative term on the left-hand side of eq. 3.3 to zero, we

get

u?1 =
σ + µ

ρ
·

As all three parameters σ, µ and ρ are positive, value of u?1 will be always positive.

Substituting the value of u?1 in expression of u′ and i′ given in eq. 3.2, we get the other

components, b∗ and i∗ of second equilibrium point E1(u?1, b
?
1, i

?
1), as follows:

b?1 =
µ

σ + µ
(1− u∗); i?1 =

σ

σ + µ
(1− u∗)·

It is to be noted that the fraction of a population can never be greater than 1. So, the

endemic equilibrium is practically feasible only if u?1 < 1 i.e., σ+µ
ρ
< 1 or ρ

σ+µ
> 1.

3.2.2 Reproduction Number

As mentioned in Sec. 2.1.2, the average number of new believers generated by a

single believer during its lifetime is called the reproduction number. In this model, µ

is the rate at which believer dies, and σ is the rate at which it shifts into state I. It

means (σ + µ) is the overall rate at which a person departs from believer class. Hence,

1
σ+µ

is the average time spent by a person in believer class. A believer creates a new

believer by spreading the rumor to unaware class at rate ρ. Thus, ρ
σ+µ

represents the

average number of new believers created by a single believer during its lifetime, which

is the reproduction number for this particular dynamics and is denoted by R.

1E(u,b,i) gives the fraction of unaware, believer and inert population at equilibrium point.
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The value of R depends on three model parameters ρ, σ, and µ. We calculate

sensitivity to measure the variation in R, caused by variation in these parameters.

Sensitivity analysis tells which parameter affects the quantity of interest (R in this

case) the most. A highly sensitive parameter is crucial to control the diffusion process.

The sensitivity of R for any parameter x is defined as

ΓRx =
x

R
· ∂R
∂x

(3.4)

The sensitivities of R for all three parameters are as follows:

ΓRρ = 1,

ΓRσ = − σ

σ + µ
, (3.5)

ΓRµ = − µ

σ + µ
·

Negative sign indicates that increase in value of the corresponding parameter will de-

crease the value of R. It can be observed from eq. 3.5 that magnitude of sensitivity

with respect to parameters σ and µ are less than 1. Hence, we can say that out of all

three parameters, ρ affects R, the most.

In the next section, we have discussed the numerical results of the simulations carried

out to verify the analytical findings of homogeneous model obtained so far. All these

simulations have been carried out over MATLAB.

3.2.3 Numerical Results

Solving the set of differential equations numerically with a given initial condition

(values of u, b and i), we get time evolution of u, b and i. An example with the initial

condition (u, b, i) ≡ (0.95, 0.05, 0) has been shown in Fig. 3.2 (a). We can see that as
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time progresses, all three values become constant bringing the system to an endemic

equilibrium state.

Numerical time-dependent solutions for u, b, and i for a given initial condition can be

used to draw the phase plane for the system of equations. We have plotted the (u− b)

phase plane for two different set of parameter values in Figs. 3.2 (b) and (c). Arrow

along the curves indicate the direction in which the solution moves as time increases.

Fig. 3.2 (b), corresponds to parameter set (ρ = 0.06, σ = 0.02, µ = 0.05) which implies

the reproduction number R = ρ
σ+µ

= 0.855 < 1. We can observe that starting from any

initial point, the system eventually reaches to rumor free equilibrium where no believer

exists in the entire population. It confirms our analytical result that for R < 1, the

rumor free equilibrium E0(1, 0, 0) is the stable state. Similarly, Fig. 3.2 (c) corresponds

to parameter set (ρ = 0.50, σ = 0.02, µ = 0.05) which implies R = 7.143 > 1. In

this case, the system reaches to an equilibrium state E1(0.14, 0.6143, 0.2457), which is

clearly an endemic state as a finite fraction of population is in believer class and is still

active in spreading the rumor.

From all this analysis, we conclude that the steady-state fraction of believers (b?) can

either be zero or non-zero depending on reproduction number R. Thus, we plot b? with

respect to R by varying the most sensitive parameter, ρ, in Fig. 3.2 (d). The figure

again confirms that for R < 1, b? = 0 and hence only rumor-free equilibrium E0 exists

whereas for R > 1, along with E0, the endemic equilibrium E1 also exists. Different

colors in the plot signify whether the equilibrium point is stable or not.
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(a) (b)

(c) (d)

Figure 3.2: (a) Temporal variation of u, b and i for µ = 0.05, ρ = 0.5, and σ = 0.02;
(b) Flow diagram of rumor-free steady state starting from various initial conditions for
µ = 0.05, ρ = 0.06, and σ = 0.02; (c) Flow diagram of endemic steady state starting
from various initial conditions for µ = 0.05, ρ = 0.5, and σ = 0.02; (d) Bifurcation
diagram showing fraction of believer with respect to R for µ = 0.05 and σ = 0.02.
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3.2.3.1 Stability Analysis

To analyze the stability of an equilibrium point, the Jacobian method discussed in

Sec. 2.1.3 can be employed. In this case, the components of the rate vector f necessary

to compute Jacobian are

f1 = µ− ρub− µu,

f2 = ρub− σb− µb, (3.6)

f3 = σb− µi·

We obtain J? for both the equilibrium points E0 and E1 and analyze the eigenvalues.

The analysis reveals that for R < 1, the solution (1,0,0) is stable. However, forward

transcritical bifurcation occurs atR = 1, as the rumor-free equilibrium loses its stability

and becomes unstable. AtR = 1, which is also called the bifurcation point, the endemic

state appears and remains stable for any R > 1. In Fig. 3.2 (d), we show the stable

solution with purple dots, and the unstable solution with orange color.

3.3 Heterogeneous Modeling

We have already established the need for heterogeneous modeling in Chapter 1 and

Sec. 2.2. Though the homogeneous model predicts the steady state of the system, that

is found to be true in most of the networks; it does not give any information about the

dynamics of a particular node. The structure of the network will decide the way rumor

will spread through the entire population. Thus, we need to analyze the spread over a

network incorporating its structure in the differential equation model.

In this chapter, we have considered two different types of network structure: (a)
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Figure 3.3: Block diagram of the rumor propagation model showing all possible transi-
tions from one class to other for a degree k node.

Random network and (b) Scale-free network. We are going to investigate the following

two questions for both of these.

(1) If the equilibrium of the fractions of the population, exists in the heterogeneous

model, is it same as calculated in the homogeneous model or is it different? If different,

how much is the difference?

(2) Whether or not parametric conditions for equilibrium are same in the homoge-

neous model and the heterogeneous models.

3.3.1 Degree Block Approximation

Similar to the SIS model of Chapter 2, degree block approximation has been used

assuming statistical equivalence among nodes of similar degree. The fraction of unaware,

believer and inert nodes having degree k are denoted by uk, bk and ik respectively. All

possible transitions with their respective rates have been shown in Fig. 3.3. Differential

equations for the rate of change of these degree-wise fractions will be
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u′k = µ− ρnkukΘb − µuk,

b′k = ρnkukΘb − σbk − µbk, (3.7)

i′k = σbk − µik·

Here, Θb is the density of believers around a node. As discussed in eq. 2.20 of

the previous chapter, the fraction of believers around a node of degree k will be given

by density function Θkb . For an uncorrelated network, the density function will be

independent of k and will take the form

Θkb =

∑
k′ k
′pk′bk′

〈k〉
= Θb· (3.8)

Rumor propagation parameter ρ, used in homogeneous model, discussed in Sec. 3.2, has

been replaced by ρn as done in Sec. 2.2.6. It is important to note that this modification

is needed at all those places where the transition from one class to another depends

on the interaction between neighboring nodes of different classes. It is so because the

number of such interactions depends on the number of nodes in the neighborhood, i.e.,

the degree of the node. Whenever transition depends solely on the status of a single

node, no such modification will be required e.g. σ in σbk is left as it is because it

represents the probability that a believer will lose interest in rumor and will become

inert. This probability is independent of interaction between two nodes and depends on

the choice of an individual itself. From the mathematical point of view, rate parameters

associated with the non-linear terms in the differential equation (terms containing the

product of two variables) will be modified whereas parameters associated with linear

terms will remain as it is.

In the last paragraph, we assumed that the rate of rumor spread by a believer should

be proportional to its degree and that’s why we introduced a new term ρn. Now, the

next question is what should be the value of ρn? Our primary aim is to compare the
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results of the homogeneous and the heterogeneous modeling. Value of ρn should be such

that average rumor spread in the heterogeneous setting is equal to the overall rumor

spread by a believer in the homogeneous setting. Mathematically, the condition will be

〈ρnk〉 = ρ ⇒ ρn〈k〉 = ρ ⇒ ρn =
ρ

〈k〉
· (3.9)

Here, 〈k〉 represents the average degree of the network which in turn depends on the

structure of the network. This condition will let us compare the results of both the

approaches.

3.3.2 Early Stage Analysis

In the early stage of the rumor, most of the people are in unaware class. So, uk can

be approximated by 1. Incorporating this approximation, the second equation of the

eq. set 3.7 will be simplified to

b′k ≈ ρnkΘb − σbk − µbk · (3.10)

Multiplying this equation by kpk
〈k〉 and summing over k gives

Θ′b =

[
ρn
〈k2〉
〈k〉
− (σ + µ)

]
Θb· (3.11)

This is a linear differential equation having the solution

Θb = Ce
t
τ (3.12)

where

C = b0; τ =
〈k〉

ρn 〈k2〉 − (σ + µ) 〈k〉
(3.13)

Here, C is equal to initial believer density. Assuming uniform distribution of different

classes in the initial stage, the density of a particular class around a node can be
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assumed to be equal to the initial fraction of that class in the entire population. We

have considered Θb|t=0 = b|t=0 = b0. The value of the time constant τ must be positive

so that the density of believers, Θb, can grow with time. It gives the condition for the

epidemic outbreak as

ρn
σ + µ

>
〈k〉
〈k2〉

(3.14)

Replacing ρn by ρ
〈k〉 as mentioned in eq. 3.13, we get

ρ

σ + µ
>
〈k〉2

〈k2〉
(3.15)

This equation relates the parameters of homogeneous modeling with the parameters

of network structure. LHS of the inequality represents reproduction number R of the

homogeneous rumor dynamics as calculated in Sec. 3.2.2. RHS depends on the first

and second moment of degree distribution of the network which will change with the

structure of the network. For a random network with Poisson degree distribution, the

expectation of square of the nodal degree is

〈
k2
〉

= 〈k〉 (〈k〉+ 1) · (3.16)

Putting this value in the inequality eq. 3.15, we get the condition R > 〈k〉
〈k〉+1

which

can be approximated by R > 1. This is exactly the same condition what we had in

the homogeneous scenario. So, we can say that random network structure behaves like

the homogeneously mixed population concerning threshold condition for the epidemic

outbreak.

In case of a scale-free network, degree distribution has the form

p(k) = Ak−γ (3.17)
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and average degree and average of degree square is given by

〈k〉 =
∞∑
k=m

kpk = A
1

γ
m2−γ. (3.18)

〈
k2
〉

=
∞∑
k=m

k2pk ≈ A

∫ ∞
m

k2−γdk. (3.19)

When γ ∈ (2, 3]; (2−γ) is in range of [−1, 0); 〈k2〉 diverges and time constant obtained

in the eq. 3.13 approaches to zero. It indicates that rumor will spread very fast on such

a network as the value of t
τ

will approach ∞. In other words, we can say that rumor

threshold is absent. But, practically for a finite network 〈k2〉 is never infinite, and

hence, we can calculate the threshold, although it will be extremely small as compared

to the random network of the same size and same average degree.

For a scale-free network with a degree exponent γ > 3, 〈k2〉 is finite. Hence, we will

observe the same behavior as observed in the random network although with a different

value of τ .

Till now, we have carried out the mathematical formulation of degree block ap-

proximation model over the network. In the next section, we will simulate the rumor

dynamics over a random and a scale-free network and will see whether the numeri-

cal results are matching the results of the homogeneous model or not. We will also

discuss the additional information that we can gather from the statistical analysis of

heterogeneous modeling.

3.3.3 Numerical Results

Simulations have been carried using MATLAB over Erdös-Rényi random network

following binomial degree distribution which converges to Poisson distribution for a
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very large number of nodes (infinite network) and Barabási-Albert scale-free network

[55] following power-law degree distribution having power exponent 3. In the following

sections, we will discuss the results for both of these networks, one by one.

3.3.3.1 Random Network

Simulations have been carried out on a random network of 1000 nodes with the

probability of linkage2 0.02, resulting in a network of average degree 20.

Initially, every node is assigned a particular class. Most of the nodes are unaware

and only a few are believer. Class of an individual node keeps on changing with time

depending upon the rates of transition from one class to another. All transition rates of

the homogeneous model are incorporated in the network simulation in terms of proba-

bility. Due to the involvement of probability, the results of the same simulation carried

out multiple times are not exactly the same. In fact, the steady-state value obtained

in a single simulation has a considerable amount of perturbation. We have therefore

carried out the simulations multiple times and averaged to get the average statistical

result. Time evolution of u, b, and i for the considered random network with initial

value (0.95, 0.05, 0) is shown in Fig. 3.4 (a).

To measure the deviation of the equilibrium point in random network from the

homogeneous values, let us define a measure ε as

ε =
(
|u∗h − u∗r|+ |b∗h − b∗r|+ |i∗h − i∗r|

)
× 100% (3.20)

where (u∗h, b
∗
h, i
∗
h) is the steady-state values of different classes derived from the homo-

2Probability of linkage means the likelihood with which a link is created between two nodes. More
details can be found in the Sec. 2.2.5.1
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geneous modeling and (u∗r, b
∗
r, i
∗
r) is the experimental steady-state values of different

classes in the random network. We observe that for the considered network at 〈k〉=10,

ε is 3.88%.

To understand the effect of the structure of the network on this error, we have

simulated many different random networks. Networks have been created by varying

the average degree of the network keeping the number of nodes same. In Fig. 3.4(b),

we have plotted the total error for networks having 1000 nodes and different average

degree. It can be observed that total error decreases with an increase in the average

degree of the network. The result can be attributed to the fact that by increasing the

average degree, the network is moving closer to the homogeneous setting, where it is

assumed that everyone can interact with everyone else in the population.

Steady state analysis gives us the overall fraction of u, b and i in the entire population

but it does not tell about what happens to nodes of different degrees. Looking at time

evolution of a set of nodes having a particular degree k, we can comment on whether

the steady state fraction uk, bk, and ik is independent of degree k or not? In Fig. 3.4(c),

we have plotted the steady-state value of these fractions as a function of degree k. It is

clear from the figure that higher degree nodes have high believer fraction as compared

to lower degree nodes.

To understand the reason behind this observation, we have plotted the fraction of u,

b and i in the neighborhood of a node of different degrees in Fig. 3.4(d). It is clear from

the figure that statistically the fraction of believers around a node is independent of the

degree of the node. But, it does not mean that the number of believers around every

node is also equal. A node with a large number of neighbors will have more believers

around them. Chances of receiving the rumor will obviously be more for higher degree
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(a) (b)

(c) (d)

Figure 3.4: (a) Temporal variation of u, b, and i for a random network with average
degree 〈k〉 = 20 for rate parameters µ = 0.05, ρ = 0.02, and σ = 0.02; (b) Error ε
between steady-state values of homogeneous and heterogeneous models with respect to
average degree 〈k〉 in random network; (c) uk, bk, and ik with respect to degree k at
steady-state; (d) Fraction of u, b, and i in the neighborhood of a node with degree k.
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nodes as more believers are trying to spread the rumor to such nodes. That’s why the

probability of being in believer state increases monotonically with the degree as shown

in Fig. 3.4(c).

3.3.3.2 Scale-free Network

We have used same network size and parameter values as used in random network

analysis. Fig. 3.5 (a) shows the temporal evolution of all three classes. We observe that

the steady-state reaches the value obtained by homogeneous modeling with a relatively

large difference as compared to the random network. We have simulated the scale-free

network for average degree varying from 10 to 30. Value of the deviation measure ε at

〈k〉=10 is 8.98% which has been found to be decreasing with an increase in the average

degree of the network in our considered range as shown in Fig. 3.5(b). It can also

be noted that the deviation measure does not go below 7% even after increasing the

average degree of the network to 30.

A relatively large value of the error is attributed to the structure of the scale-free

network. As we have discussed in the Sec. 2.2.5.2, scale-free network follows power-

law degree distribution instead of Poisson degree distribution of the random network.

In Poisson distribution, most of the nodes have degree closer to the average degree of

the network whereas in case of the power-law network, a large number of nodes have

smaller degree and a few nodes (hubs) have huge degree. This heterogeneous structure

of the scale-free network is far from the homogeneous mixing and is responsible for the

comparatively large error.

As done in the case of the random network, to study the effect of degree on node

dynamics, we have plotted the fraction of different class of population for varying degrees
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(a) (b)

(c) (d)

Figure 3.5: (a) Temporal variation of u, b, and i in scale-free network with average
degree 〈k〉 = 10 for rate parameters µ = 0.05, ρ = 0.02, and σ = 0.02; (b) Error ε
between steady-state values of homogeneous and heterogeneous models with respect to
average degree 〈k〉 in scale-free network; (c) uk, bk, and ik with respect to degree k at
steady-state; (d) Fraction of u, b, and i in the neighborhood of a node with degree k.
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in Fig. 3.5(c). We can observe that similar to random network scenario; smaller degree

nodes have fewer chances of receiving rumor as compared to the larger degree nodes.

We have also plotted the fraction of different classes in the neighborhood of a node with

degree k. Unlike random network, the fraction of believers around nodes of different

degree is not identical. It is again due to the heterogeneous structure of the network.

Most of the smaller degree nodes have hubs as their neighbors, and these hubs have

a high probability to be in believer class. That is why the fraction of believers in the

neighborhood of small degree nodes is relatively more as compared to higher degree

nodes.

3.4 Summary

In this chapter, we attempted to explore the similarities and dissimilarities of ob-

servations between homogeneous and heterogeneous approaches, related to a rumor

propagation dynamics. We have observed that though homogeneous ODE approach

does not reveal any information about the interconnections and interactions in a com-

plex network, it is extremely useful in predicting the steady-state solutions for the large

systems, like Barabasi-Albert network, with a marginal error. These estimations, if

computed from network simulations, would have increased the computational complex-

ity and simulation time extensively. The homogeneous approach is also effective to

analyze the effect of the parameters and the stability of the solutions at steady states.

Network analysis, on the other hand, is not the correct tool to estimate the values of

steady-state, parametric contribution or stability with accurate precision. However,

because of its considerations of the inherent dynamics and the underlying system struc-

ture, the network-based heterogeneous theory can be applied to predict the behavior
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of a particular class of nodes with the same degree in both transient state and steady

state.

In this chapter, we have considered the well-known SIR model of epidemiology with

no backward transition from inert to believer or inert to unaware class. But, if we ob-

serve human behaviors, often we find that people change their practices due to internal

and external factors. Some of these transitions are indeed induced by social contacts.

To understand the behavior of the models with feedback loops, we formulate the prob-

lem of referral marketing that has various forward and backward transitions due to

complex interactions among classes.



Chapter 4

Spreading of Viral Marketing (VM)
Campaigns

4.1 Introduction

According to World Internet Users Statistics, 51% of the world population have

found their way online, and this number is rising every day [56, 57]. In this age of

the Internet, the importance of social networks is undeniable. People habitually use

online social networks for conveying information as well as opinion due to the conve-

nience, competence, and substantial dissemination power. E-commerce together with

social networking websites and online life brought notable growth in digital marketing.

Introduction of new marketing technologies through the Internet has revolutionized the

world of marketing and advertisement.

It is true that creating a viral ad campaign is a cost-effective and fast way to spread

the word, but in today’s vigorously active social media, there is a huge chance of an ad

campaign becoming incredibly short-lived. Similarly, extensive email marketing might

help to catch the attention of distracted customers, but sometimes these emails also



46 Spreading of Viral Marketing (VM) Campaigns

cause unnecessary annoyance and irritation to the customers leading to undesirable

impact. Therefore it becomes necessary to devise strategies to exploit existing social

networks to make a campaign fast spreading as well as sustainable and effective.

One important observation is that in the present time when the fabricated and false

promises are prevailing around, people tend to believe the recommendations of their

relatives or friends instead of promotional emails or advertisements put up by the com-

panies. Now the question is how a company can make use of its consumers as their pro-

moting agents by encouraging them to share and spread a marketing message through

their social contacts? This is what viral marketing (VM) is all about.

Viral marketing (VM) is based on exploiting pre-existing social networks (or other

online platforms, like, web forums, blogs, emails, etc.) to accomplish precise marketing

goals [58], by considering the existing customers as brand advocates. VM is also known

as Internet Word-of-mouth marketing, as it encourages people to share product informa-

tion (specifications, improvements, campaigns, etc.) with their friends through email or

other social media [59]. This prompting is sometimes done by the introduction of some

benefits (like credit points, e-cash, extra discounts, cashback, promo codes, etc.) to

the existing customers, as a reward for sharing information in their peer network. VM

campaigns have several benefits over traditional mass media campaigns, an important

one being its ability to reach particular customer groups, as, in many cases, friendship

networks arise from common interests [60]. These communications also have more im-

pact and acceptability than third-party advertising among the potential customers, as

it comes with an endorsement and recommendation of a friend.

VM is being adopted as a recent marketing strategy and a way of communication

with customers, which can potentially reach a large audience very fast [61, 62, 63].
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Prominent companies like Amazon, Google, and Hotmail have succeeded with virtually

no marketing, based solely on consumer-driven communications [64]. In similar fashion,

established organizations such as Procter and Gamble, Microsoft, BMW, and Samsung

have successfully used VM, through which the intact marketing message spreads across

the market rapidly, imitating an epidemic [25]. While there is no shortage of news

publications fighting for the attention of millennials, in 2017, the San Francisco-based

daily email newsletter The Hustle gained 300,000 subscribers in just a few months, with

great copywriting and an aptly planned Milestone Referral program. In 2013, Harry’s,

a New York-based shaving equipment manufacturer used a credible referral to launch

their grooming brand and gathered 100,000 customers in one week before their launch.

They have used a strategically planned Milestone Referral campaign where the minimum

required referral numbers were kept as low as 5, and 77 % of their initial customers were

collected via referrals, where 20,000 people referred about 65,000 friends. Dropbox’s

referral program is possibly one of the most famous cases of viral marketing executed

with exceptional success. Dropbox’s metric history shows a 3900% growth just within

15 months (September 2008: 100,000 registered users to December 2009: 4M registered

users), with a marketing idea of providing 500MB for 1 referral, coupled with an easy

invitation process and clear view of the benefits. In another extraordinarily successful

strategy with a well-timed and well-implemented referral marketing program, Airbnb

offered a $25 discount for accommodation booking to both sides, which became popular

as the ‘altruistic referral’.

Since December 1996, when the term VM was coined by a Harvard business school

professor, Jeffrey Rayport, in an article The Virus of Marketing, the topic has evolved

into an interesting area of research. In 2003, Mohammed et al. [65] pointed out that

users are less likely to trust promotional communications by the company themselves
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compared to the peer recommendations about a product or service. In 2012 Nielsen’s

Global Trust Advertising survey [66] reported, “people don’t trust advertising, at least

not as much as they trust recommendations from friends and consumer opinions ex-

pressed online.” With data for more than 28,000 Internet respondents in 56 countries,

it has been seen that 92% of consumers trust recommendations from friends and family

above all other forms of advertising. This is one of the major reasons why products

that use a VM campaign tend to succeed very quickly. Moreover, it is rather clear

that VM would cost considerably less than the traditional marketing and promotional

techniques [67]. Starting from gaining new patrons to creating brand intimacy in ex-

isting customers [68], this strategy of Internet word-of-mouth creates several positive

outcomes for the firms. Customers proceed with brand recommendations for diverse

reasons: while someone joining in a referral program may endorse a brand to earn a

monetary incentive [69], another may do the same to communicate identification with

the brand [70, 71]. Going through the studies carried out in this field we can say

that the majority of them propose a conceptual framework, completely ignoring the

mathematical treatment. Studies that attempt to balance qualitative perspectives with

quantitative methods are lacking.

In the last few years, several studies started to conceptualize viral marketing (VM)

as the close derivatives of disease infection models from mathematical epidemiology.

While the usual epidemiology studies aim to contain the epidemic, in the context of

VM, the purpose of the study will be to maximize the spread. The spread of marketing

messages in social networks raises various theoretical and practical questions: How can

an advertisement reach the maximum audience? Are there any factors that affect this

dynamics beyond the design and content? What actions can the companies take to

speed up the diffusion rate?
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In marketing, Bass (1969) used the underlying epidemic model as a foundation for

his new product diffusion model. But, in the context of online social networks, Sohn

et al. [72] first demonstrated in 2013, the VM diffusion as SIR and SEIAR processes

of epidemiology, although they have developed only the conceptual framework without

going into quantitative analysis. A major step forward was the quantitative treatment

of the VM dynamics developed by Rodrigues et al. [25] in 2016, capturing the epidemi-

ological aspects and consumer behavior into diffusion dynamics study. However, this

model was based on the basic SIR model and could not include some important and

evident interactions, which are crucial for dealing with real-world scenarios.

It is evident that a clear insight of customer behavior is indispensable for a firm to en-

sure the relevance and survival of a viral campaign. To understand customer motivation

and actual dynamics of VM campaigns, we conducted an extensive questionnaire-based-

survey. 331 participants from different age group shared their opinions through both

polar as well as qualitative answers in that survey. Considering the inputs from real-

world customers, we built a model resting on the key features observed from the survey

outcomes.

4.2 Proposed Model of VM

In the homogeneous approach, we compartmentalize the total population (T ) and as-

sociate each individual to one of three mutually-exclusive subpopulations : Unaware (U ),

Broadcaster (B) and Inert (I ). This approach has been adopted before for epidemiolog-

ical modeling [25] as well as network-level treatment [73] of email-based advertisement

campaigns. The behavioral transitions between the mutually-exclusive compartments

are driven by several guiding factors, which set up the rules for the model. Results of
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Figure 4.1: Reasons behind sharing an online advertisement. Y-axis indicates the per-
centage of people motivated by the reasons mentioned along X-axis. Participants could
choose more than one option according to their choice.

the survey also indicate that there are several inter-dependent and independent factors

that play significant roles in customer’s approach towards a VM campaign.

Key observations in the survey to understand the transitions in customer behavior for a

particular brand product that is offering some reward/benefit for referring it to others

are summarized below. We see that when a person encounters a viral campaign for the

first time, few major factors influence the first reaction towards the campaign. As this

decision of taking part in a campaign is most of the times, a momentary decision, the

fate of the campaign gets decided in a very short time, for that particular customer.

These factors are:

1. Reward: The incentive or reward, provided by the advertiser to the advocating

customer, is found to greatly influence their motivation to participate in a referral

program. In our survey, 55.8% of the total participants admitted that they shared

an online advertisement with a friend (or shared the contact detail of the friend)
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Figure 4.2: Results about missing a viral offer, despite of having initial interest. (a)
‘Yes’ (‘No’) signifies the person missed (never missed) such an offer. (b) Reasons for
missing an offer. Y-axis indicates the percentage of people motivated by the reasons
mentioned along X-axis. While forgetting and diversion of attention were the reasons
for majority, some people also claimed that they lost the message. Participants could
choose more than one option according to their choice.

to avail an offer/reward/discount. Among these, for 74%, one of the main reasons

for sharing was how lucrative the offer was, for themselves.

2. Ease of share: Another driving force for sharing motivation was ease of the sharing

procedure and flexibility of the number of referrals. A considerable percentage of

customers claimed that they only proceed for sharing if the process is not too

complex (40.9% of total population)

These two factors were considered to be the major motivation for a person participating

in the viral campaign and moving from Unaware to Broadcasters class. Detailed survey

result pertaining to reasons behind sharing has been plotted in the Fig. 4.1. The

broadcasters also gradually move to the Inert class as time passes on. The key factors

that influence this switch are:

1. Diversion of attention and forgetting: A key finding of our survey was related to

the inherent forgetting associated with the customers. In answer to our question,

76.6% participants said they had missed at least one viral offer, which they first
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Figure 4.3: Regaining interest in a viral offer which was ignored or missed when (a)
a friend wins a good reward from it and (b) when a friend reminds you about it.
‘Yes’(‘No’) signifies people who (do not) think the reason will cause them regain of
interest in an ongoing offer. “May be” signifies they might regain their interest about
it.

decided to avail. Focusing on the reasons that made them miss the offer, diversion

of attention and forgetting were detected as the two major contributors (59.1%,

50.4%). Results can be seen in Fig. 4.2.

2. Getting bored or doubtful: We also found that 62% people who used to broadcast

the viral message can lose interest and come to inert class due to factors like,

getting annoyed (due to low profit-to-effort ratio), bored or suddenly becoming

doubtful (about security).

We combine these two factors in a parameter to depict the switching from B to I class.

Interestingly, we also found that there are always chances that the inert may regain

his interest depending on the influence from another friend who has a common interest

(already a broadcaster). Major factors responsible for this switching are:

1. Friendly reminders: The people, who often were interested in the offer, but forgot

about it, feel that they missed the offer (almost 76%), continue to be submissively

interested about the advertisement campaign. A timely reminder by someone or
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Figure 4.4: Block diagram of the proposed model for viral marketing showing all possible
transitions from one state to another.

strategically designed retargeting emails from the company can influence them

straightaway to gain their active state back, and they start contributing to the

propagation of the campaign again.

2. Lucrative offers: As shown in Fig. 4.3, the people who had left the B class by

getting bored or annoyed, more than 92% of them agreed that authentic infor-

mation or genuine news related to a considerable gain from the same campaign

might make them motivated to return to active participation.

On the basis of above discussion, the scheme of the model can be formulated as

shown in Fig. 4.4.

4.3 Homogeneous Modeling

The unaware class, denoted by U, is yet to receive the message; these are susceptible

people or the target market, who may receive an advertising message containing mar-

keting offers. The broadcaster class B consists of individuals who came to know about

the message and have the potential to forward the message further in the population.

If a member in this class decides to participate in the campaigning, (s)he transmits

and spreads the message in the entire population by recommending it through (her) his

social contacts. We assume that ρ is the rate at which a broadcaster comes in contact
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with a member from unaware class, and share the viral message to create new potential

broadcasters. The transition from class B to class I has been captured by the parame-

ter σ of the model. Transitions from U to B and B to I were the part of the SIR based

model proposed by Rodrigues et al. [25]. But according to our survey results, there are

always chances that the inert may regain their interest in the campaign. To accommo-

date this finding, a transition from I to B has been added by allowing feedback from

inert class to the broadcaster with a relapse rate α.

In practical scenarios, people enter and leave the population. To include this factor,

we have introduced birth and death in our model. Both birth and death rates are kept

equal to µ so that fixed population size can be maintained [25, 33, 73, 74, 75, 76]. For

a particular VM dynamics, birth and death can be viewed as events when people join

or leave the social platform where the campaign is going on. Considering u, b and i

to be the fraction of unaware, broadcaster and inert classes normalized by the total

population T , the VM dynamics in the population with the mentioned interactions is

governed by the following differential equations:

u′ = µ− ρbu− µu

b′ = ρbu− σb− µb+ αbi (4.1)

i′ = σb− αbi− µi

4.3.1 Equilibrium Analysis

At equilibrium, there is no time evolution of the system model defined in eq. 4.1 and

the rate of change of u, b and i becomes zero. The system of equations always has a

VM-free equilibrium E0, at which the whole population is unaware. Also, the system

exhibits an Endemic equilibrium E? with a finite percentage becoming broadcasters.
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By setting u′, b′ and i′ of eq. 4.1 to zero, all the components of E? can be evaluated.

While solving for E?, the first equation of the eq. set 4.1, gives

u? =
µ

ρb? + µ
· (4.2)

Relevant substitutions from eq. 4.2, replacing i? by (1 − b? − u?), and simple algebra

results into p(b?)2 + qb? + r = 0, where

p = αρ ; q = (σρ+ µρ+ αµ− αρ) ; r = µ(σ + µ− ρ)· (4.3)

Examining the coefficients, we can conclude that p is always positive; q is positive for

small values of α, and r is positive or negative depending on whether ρ
σ+µ

= R is smaller

or greater than 1. Two utterly different steady state scenarios can arise:

Case 1: For negative r (i.e., R > 1), the quadratic equation has a unique positive

solution b?+, as another solution b?− is always negative and so, unphysical, and there

exists a unique endemic equilibrium E? whenever R > 1.

Case 2: On the other hand, for positive r (i.e., R < 1), the number of physical roots of

the equation depends on the sign of q, and therefore, the nonlinear relapse parameter

α. Depending on this fact if α is high (or low), multiple (or no) endemic equilibria may

exist.

4.3.2 Reproduction Number

Reproduction number is defined as the average number of broadcasters a single broad-

caster can create in its lifetime without considering its interaction with inert class (which

makes α irrelevant for this estimation). If interaction between class B and I is ignored

then the model will exactly look like the rumor propagation model discussed in Section
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3.2 of the previous chapter. That is why the reproduction number R of this model is

identical to the model of the previous chapter i.e. ρ
σ+µ

. Sensitivity analysis will also be

exactly the same. See section 3.2.2 for details.

4.3.3 Bifurcation

The model exhibits two completely different behaviors depending on the value of the

parameter α as described in Sec. 4.3.1. To understand the phenomenon, we observe

the steady states of the model for two different α values fixing µ = 0.05, σ = 0.2 in

Fig. 4.5 (a) and (b). Stability of the steady states has been determined by analyzing

the eigenvalues of the Jacobian matrix obtained by linear stability analysis described

in Sec. 2.1.3. A forward transcritical bifurcation is observed in Fig. 4.5(a), indicating

the existence of only the message-free solution before R = 1. On the other hand, a

backward bifurcation occurs for high α values as shown in Fig. 4.5(b). In this case,

for the parameter regime where R ∈ [Rc, 1), there exists a choice for the system be-

tween two distinctly different responses. This regime is known as a region of bistability

where both the endemic and the message-free solutions can be achieved by the sys-

tem depending upon the initial conditions. The initial condition here corresponds to

the initial number of people in different classes. This history dependence is commonly

known as hysteresis, drawing an analogy from a similar phenomenon in ferromagnetic

systems. This phenomenon of bistability gives the system sustainability, so that, once

a transition occurs from the message-free state to the endemic state, the nonlinearity

of the dynamics inherently makes it difficult to any switch-back driven by the imme-

diate fluctuations of the parameters; the whole system works as a very robust switch.

Thus, it can be concluded that high value of nonlinear relapse rate α makes it difficult

to eradicate the message from the system; the message-epidemic will be present for a
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(a) (b)

Figure 4.5: Variation in steady state fraction of B with reproduction number R for (a)
α = 0.1, when only a single epidemic state persists beyond R = 1 and for (b) α = 1,
when bistability can be observed in range Rc to 1. Parameter values are σ = 0.2 and
µ = 0.05. In these figures, orange (and continuous) lines indicate stable solutions and
purple (and dashed) lines indicate unstable solutions. For these parameter values, we
calculated Rc = 0.562 from eq. 4.6.

broad parameter regime, even when R < 1. The condition for the existence of this

bistable region will be discussed in next section.

4.3.4 Conditions for Bistability

To ensure bistability, the necessary conditions are q < 0 and q2 − 4pr > 0 where,

p, q, and r are given by eq. 4.3. We can figure out the limiting condition for bistability

from these relations. Though the nonlinear relapse rate, α, does not appear in the

expression of R, it causes a drastic change in the behavior of the system. By equating

q = 0, we can figure out the minimum threshold for α as:

αth =
ρ(σ + µ)

ρ− µ
· (4.4)

For a given set of parameters, iff α > αth, then bistable solutions can be expected.

Once we satisfy the condition for α, it should be noted that both the endemic states

can exist (i.e., have real roots) only if q2−4pr > 0. The region of bistability extends for
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Figure 4.6: Phase diagram of the model in α−R space for σ = 0.2 and µ = 0.05. The
blue line indicatesRc, purple dashed line indicates αth and red line indicatesR = 1. The
region filled with orange color always exhibits monostable endemic state as R > 1, the
gray region exhibits monostable VM free state as α < αth. For both the white region
and green region, α ≥ αth. For the white region, R < Rc and the region contains
monostable VM free state. However for the green region, α > αth, R > Rc and R < 1.
Thus, this area exhibits bistability, where either VM free state or the endemic state is
chosen by the system depending upon the initial state.

a range of R values, from Rc to 1, as mentioned in the Sec. 4.3.3. For R < Rc neither

of the endemic solutions is feasible and message-free state is the only steady state. Rc

or the critical threshold for bistability can be evaluated by equating q2 − 4pr to zero.

With some additional algebraic manipulations, we get

ρ =
αµ

α + µ+ σ − 2
√
σα
· (4.5)

Calling this ρ as ρc, and substituting in the expression of R, discussed in Sec. 4.3.2, we

get

Rc =
1

(σ + µ)

αµ

(α + µ+ σ − 2
√
σα)
· (4.6)

Eq. 4.4 and 4.6 provide us with two limits for ensuring the bistable dynamics of the

system. From our previous discussions, it is evident that depending upon the two key
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parameters of the model, R and α, only endemic, only VM free or both solutions can be

obtained. To illustrate this idea, we explored the phase diagram of the system in α−R

space in Fig. 4.6. The only region where bistable dynamics can be observed is shaded in

green, bounded by the R = 1, αth and Rc. Bifurcation diagram for two different values

of α shown in Fig. 4.5 (a) and (b) can be obtained by tracking the system behavior

while moving across the α − R phase space through vertical lines α = 0.1 and α = 1

respectively. We note that the region of bistability increases gradually as the value

of α increases. This shows that high values of the relapse rate ensure the survival of

the campaign in the steady state. From the phase diagram, it can also be noted that

without the relapse (i.e., α = 0), no bistability is possible.

4.4 Heterogeneous Modeling

In this chapter, along with our model networks (Random and Scale-free networks),

we have studied the diffusion of the viral campaign on real networks too. In upcoming

sections, we will formulate degree block approximation for VM diffusion dynamics. We

will also find threshold condition required for the spread of campaign in its initial phase,

and its sustenance after steady state is reached.

4.4.1 Degree Block Approximation

In contrast to the homogeneous approach, diffusion in networks will be dependent

on degree distribution of the network. We denote with uk, bk and ik, the fraction of

unaware, broadcaster and inert nodes with degree k. Instead of rate parameters ρ and

α of the homogeneous analysis, we have used ρn and αn respectively, as we had done in

section 3.3.1 of the previous chapter. Using Θu, Θb, and Θi as density of various classes
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around a given node, system eq. 4.1 modifies to

u′k = µ− ρnkukΘb − µuk,

b′k = ρnkukΘb + αnkikΘb − (σ + µ)bk, (4.7)

i′k = σbk − αnkikΘb − µik·

Multiplying all these three equations by kpk
〈k〉 and then performing summation over k,

we get

Θ′u =
∑
k

kpk
〈k〉

µ− ρn
∑
k

k2pk
〈k〉

ukΘb − µ
∑
k

kpk
〈k〉

uk,

Θ′b = ρn
∑
k

k2pk
〈k〉

ukΘb + αn
∑
k

k2pk
〈k〉

ikΘb − (σ + µ)
∑
k

kpk
〈k〉

bk, (4.8)

Θ′i = σ
∑
k

kpk
〈k〉

bk − αn
∑
k

k2pk
〈k〉

ikΘb − µ
∑
k

kpk
〈k〉

ik·

4.4.2 Early Stage Analysis

In the initial phase of message spreading [77], uk can be approximated by by 1, and

bk as well as ik can be considered to be negligible. Using these values in nonlinear terms

so that they can be simplified to a linear equation, we get

Θ′u = µ− ρn
〈k2〉
〈k〉

Θb − µΘu,

Θ′b = ρn
〈k2〉
〈k〉

Θb − (σ + µ)Θb, (4.9)

Θ′i = σΘb − µΘi·

Integrating second equation of the above system and using b0 as initial value of Θb,

we get Θb = b0e
t
τb where

τb =
〈k〉

ρn 〈k2〉 − (σ + µ) 〈k〉
· (4.10)
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Putting the value of Θb in the third equation of the system and using i0 as an initial

value of Θi, we get Θi = C1e
t
τb + C2e

− t
τi , where

C1 = στbb0; C2 = στbb0 − i0; τi =
1

µ
· (4.11)

Similarly, first equation of the system with u0 as the initial value of Θu gives Θu =

µt+ C3e
t
τb + C4e

−t
τu , where

C3 = −ρn
〈k2〉
〈k〉

τbb0; C4 = u0 + ρn
〈k2〉
〈k〉

τbb0; τu =
1

µ
· (4.12)

For an epidemic to spread, τb must be positive. This condition gives a relation between

various rate constants of the model and network parameters to ensure epidemic, i.e.,

ρn
σ + µ

>
〈k〉
〈k2〉
· (4.13)

As per eq. 3.13, we have again chosen ρn to be ρ
〈k〉 so that the overall infection by a

node in homogeneous as well as heterogeneous approaches remain same and it will be

possible to compare the results. Substituting this value, the inequality 4.13 modifies to

ρ

σ + µ
>
〈k〉2

〈k2〉
· (4.14)

We have the same inequality which we had in eq. 3.15 in the previous chapter. Further

analysis of the condition for random and scale-free networks will also be exactly the

same. We are skipping those details here. See Sec. 3.3.1 for further details.

4.4.3 Steady State Analysis

In large time limit, the system will reach a steady state. The rate of change of

fractions u, b and i will be zero. In case of degree based compartment scheme, uk, bk

and ik will not change. Equating the three system evolution equations of eq. 4.7 to
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zero, we have

bk =
ρnkΘb(µ+ αnkΘb)

(µ+ ρnkΘb)(αnkΘb + σ + µ)
· (4.15)

Multiplying bk by kpk
〈k〉 and performing summation over k we get

Θb =
1

〈k〉
∑
k

pkk
2ρnΘb(µ+ αnkΘb)

(µ+ ρnkΘb)(σ + µ+ αnkΘb)
· (4.16)

This is a self-consistency equation where Θb = f(Θb). At Θb = 0, f(Θb) is also zero.

Hence, Θb = 0 is a solution of the equation. Value of the function at Θb = 1 is

f(1) =
1

〈k〉
∑
k

pkk
2ρn(µ+ αnk)

(µ+ ρnk)(σ + µ+ αnk)
(4.17)

which after a slight arrangement can be written as

f(1) =
1

〈k〉
∑
k

pkk

(1 + µ
ρnk

)(1 + σ
µ+αnk

)
· (4.18)

It is clear from the above expression that f(1) < 1. A sample diagram for the scenario

has been given in Fig. 4.7. It can be observed from the figure that in order to have a

non-zero solution in the interval 0 to 1, the slope of the function at Θb = 0 must be

greater than 1.

df(Θb)

dΘb

∣∣∣
(Θb=0)

=
1

〈k〉
∑
k

pkk
2ρn

(σ + µ)
=

ρn
(σ + µ)

〈k2〉
〈k〉
≥ 1

which is the same condition we had from linear approximation in the initial phase of

the epidemic. We conclude that satisfying this single condition is sufficient for an initial

spread of the campaign to reach out to a large fraction of the population as well as to

achieve a steady state without dying out sooner.

4.5 Numerical Results

Simulations for homogeneous as well as heterogeneous analysis have been carried

out on MATLAB. To understand the effect of population heterogeneity and network
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Figure 4.7: Condition for existence of a non-zero steady state value of Θb in the range 0
to 1. Curve f(Θb), represented by a red solid line, is starting from (0,0) and at Θb = 1,
its value is less than 1. If initial slope of the curve f(Θb) will be less than 1, then it
will never intersect with the line f(Θb) = Θb, represented by a dotted blue straight line,
and there will be no solution of the equation f(Θb) = Θb, other than zero.

topology, we have considered random network, scale-free network, and a few real social

networks in our simulations.

4.5.1 Simulation of Homogeneous Model

As discussed in Sec. 4.3.4, the system may lead to any one of three possible steady-

state situations: when only message-free state exists; when only an endemic state exists;

when an endemic, as well as a message-free state, can exist depending on the initial

population of different classes. We have shown two cases where at least one of the

steady state is endemic, in Fig. 4.8(a)-(b) with their respective parameter values.
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Figure 4.8: Numerical simulation of convergence to the steady state for different initial
conditions, for (a) Homogeneous system with single endemic steady state for µ= 0.05,
σ= 0.1, ρ= 0.25 and α= 0.4; (b) Homogeneous system with bistable dynamics for µ=
0.05, σ= 0.15, ρ= 0.15 and α= 0.75; Temporal variation of u and b with different
initial conditions for equivalent parameter regime as (b) in (c) random network and
(d) scale-free network. To ensure the equivalence with the homogeneous analysis, the
infection rate and the relapse rate for network dynamics are taken as ρ/ 〈k〉 and α/ 〈k〉
respectively. In all of these figures, X and Y coordinates of the initial point of any
flow represents the initial fractional population of unaware and broadcaster class of
population.
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4.5.2 Simulation over Model Networks

The same set of parameters have been used to compare the results of the homoge-

neous model with the heterogeneous model. We have carried out our simulation over

random and scale-free network having 1024 nodes and average degree 20.

In the case of a random network, we obtained similar results as predicted by the ho-

mogeneous model. Using the values of the bistable steady-state configuration of Fig.

4.8(b), we similarly observed two stable states in Fig. 4.8(c), one endemic and one

message-free. Steady state value obtained by the simulation is also in agreement with

the homogeneous approach.

In the case of a scale-free network, endemic steady state values are not exactly the

same. For the considered set of parameters, there is a maximum of 4% error in the

steady-state fraction of different classes. This error is due to non-homogeneity present

in the scale-free network in the form of hubs. The second point of difference is that

message-free state never appears in a scale-free network. The fact is in alignment with

our analytic result regarding the absence of an epidemic threshold in a scale-free net-

work. It can be observed in Fig. 4.8(d) where the temporal variation of u and b leads to

an endemic steady state in every set of initial conditions, in contrast with the random

network scenario of Fig. 4.8(c), where we can see few flows terminating at message-free

steady state.

To understand the dynamics of nodes of different degree, we have plotted steady state

value of u, b, and i in their neighborhood. As shown in Fig. 4.9(a), for a random

network, these fractions are independent of the degree of nodes. Hence, the number of

broadcasters around a higher degree node is large as compared to a lower degree node

which makes them more prone to receive the message. It is evident from Fig. 4.9(b)

where the fraction of broadcasters is shown to be monotonically increasing with the
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(a) (b)

(c) (d)

Figure 4.9: (a) Degree-wise fraction of u, b and i with respect to degree k at steady-
state in random network; (b) Fraction of u, b and i in the neighborhood of a node
with degree k in random network; (b) uk, bk and ik with respect to k at steady-state
in random network; (c) Degree-wise fraction of u, b and i with respect to degree k at
steady-state in scale-free network; (d) Fraction of u, b and i in the neighborhood of a
node with degree k in scale-free network; uk, bk and ik with respect to k at steady-state
in scale-free network.
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degree. Even in a scale-free network, bk increases with degree k as shown in Fig. 4.9(d).

But, in Fig. 4.9(c) fraction of broadcasters around any node is more than the fraction of

unawares which is entirely opposite to the random network case shown in Fig. 4.9(a).

This outcome is a result of these two features of the scale-free network: (i) chances

of higher degree nodes (hubs) getting infected is very high as shown in Fig. 4.9(c)

and (ii) same hubs are present in the neighborhood of multiple nodes while counting

broadcasters around a node.

The second feature can be observed clearly in the portion of a network shown in Fig.

4.10. There are 10 nodes in the network and 2 of them having higher degree (hubs)

are broadcasters. Overall fraction of broadcasters in the network is thus 0.2. Both of

these nodes have 5 neighbors and only one of the neighbors is the broadcaster. The

fraction of broadcaster in the neighborhood of these 2 nodes is thus 0.2. Remaining 8

nodes are having degree 2 and one of their neighbors (one of the hubs) is broadcaster

and second one is unaware. The fraction of broadcasters in their neighborhood is hence

0.5. Statistically, the average fraction of broadcasters in the neighborhood of a node

in the network is 2×0.2+8×0.5
10

= 0.44, which is quite larger than the overall fraction of

believers in the population. Here we can see that same hub is repeatedly counted as a

broadcaster neighbor while calculating the fraction of broadcasters in the neighborhood.

This redundancy leads to increment in the local fraction of broadcasters in neighborhood

of a node.

4.5.3 Simulation over Real Networks

Though Figs. 4.8 and 4.9 indicate that the information diffusion in the proposed

model follows the dynamics as discussed in Sec. 4.2 and 4.4, it is important to analyze
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Figure 4.10: A sample network structure where individuals are denoted by nodes and
interaction between them by links. Red and blue color nodes represent broadcaster and
unaware individuals respectively.

Figure 4.11: Physical topologies of real networks (Hamster, Email, and Jazz) used in
our work

the model over real-world networks as most of these networks do not follow the typical

characteristics of any particular model network. Thus, we have studied the proposed

viral marketing model over some real networks collected from KONECT database [41],

to understand its behavior in real social interactions scenarios.

The networks that we have used for testing our VM models are referred to as Hamster

network, Email network and Jazz network in rest of the chapter. The first real network

that we considered is the friendship network of website www.hamsterster.com that has

2,426 users (nodes) with 16,631 friendships edges. The second one, the Arena email

network has been collected from University Rovira i Virgili of Spain. The network
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Table 4.1: Important characteristics of different network

Network
characteristics

Hamster
Network

Email
Network

Jazz
Network

Number of nodes 2426 1133 198
Number of edges 16631 5451 2742
Average degree 13.71 9.624 27.7

Maximum degree 273 71 100
Power law Exponent 2.46 6.77 5.27

has 1,133 users (nodes) with 5,451 connections (edges). The third one, referred to

as the Jazz network, is the collaboration network between jazz musician that can be

visualized as a network of people with common interest or skill. The jazz network has

198 musicians (nodes) with 2,742 collaborations (edges). In Fig. 4.11 we show the

topologies of the real networks used in this work. The network parameters for the real

networks that are considered in this chapter are summarized in Table 4.1.

We studied the flow of a viral message in all the three real networks mentioned

above. As email network has almost the same number of nodes as the model networks

considered in our simulations, we show the time evolution of email network for different

parameters and initializations in Fig. 4.12 as the message diffuses. In Fig. 4.12(a),

we set the parameters equivalent to Fig. 4.5(a) along with R = 0.64, which gives

only VM free state in homogeneous analysis. For all different initializations, we get a

complete broadcaster-free state in the email network as well. To analyze bistability,

we set the parameters equivalent to Fig. 4.5(c) with R = 0.64, which belongs to a

bistable region in homogeneous case. To locate the lower branch, we generated five

different realizations of simulations for 104 time units, and results were obtained where

2% of the nodes were broadcasters initially. If the infected fraction went to zero in any

of the five runs, the message-free state was considered stable [78]. Simulation results

show that the email network exhibits VM free state when the number of broadcasters
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Figure 4.12: Time evolution of email network for R = 0.64: (a) when the network
parameters are equivalent to Fig. 4.5(a); steady state is completely free of broadcast-
ers. (b) When the network parameters are equivalent to Fig. 4.5(b), which satisfies
Rc < R < 1 with 70% broadcasters initially; steady state is endemic, having 30%
broadcasters. (c) When the network parameters are equivalent to Fig. 4.5(b) but with
2% broadcasters initially; steady state is completely free of broadcasters. (d) When the
network parameters are equivalent to Fig. 4.5(b) but for R = 1.4, that satisfies R > 1
with 2% broadcasters initially; steady state is endemic. green, red and white colors
represent unaware, broadcaster and inert nodes respectively. Some portions (marked
in red squares) of the network at the initial state and the final state are enlarged and
shown in corner. Please refer to the online version of the chapter at maximum zoom to
fully appreciate the results.
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Table 4.2: Comparison of steady states in different networks for R = 0.64

Steady state
fraction

Homogeneous
Setting

Random
Network

Scale-free
Network

Hamster
Network

Email
Network

Jazz
Network

u∗ 0.5 0.505 0.49 0.59 0.53 0.50
b∗ 0.33 0.325 0.37 0.31 0.35 0.37
i∗ 0.17 0.17 0.14 0.1 0.12 0.13

is low initially. To locate the upper branch, the system was run to a steady state where

initially 70% of the total population were acting as broadcaster and none were in the

inert state in each network. For each run, we studied the system for 104 time units

and then averaged over 200 samples. Like the homogeneous model, with a high number

of broadcasters initially, the email network also shows the endemic state. We show

the steady states of the email network for both the initializations in Figs. 4.12(b) and

4.12(c) respectively; different final states for different initial conditions demonstrates

the existence of hysteresis. It is also noted that for all different networks, systems’

propensity for the endemic state starts to dominate as R goes beyond Rc, for a specific

parameter set. As Rc is always less than 1, even in real networks we acquire a state

of endemic for R < 1, where the message is being spread throughout the population.

The final steady-state conditions for the real networks are compared in Table 4.2 for

R = 0.64 with 70% broadcasters initially and parameters equivalent to Fig. 4.5(b).

It shows that 30-35% of the population belongs to the broadcaster class, ensuring the

survival of the advertisement campaign in the steady state, even when R < 1.

4.5.4 Behavior for Unequal Birth and Death Rate

It is to be noted that for a more realistic modeling of the dynamics, the birth and

death rates could be considered different, i.e., we can assume that people enter and

leave the population at different rates. Considering that in a social media platform,
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new people migrate in at a much faster rate than the rate at which people leave the

platform, it might be assumed that the birth rate of unaware people is µ while the death

rate for them is µ1 (< µ). The death rate for broadcasters, as they are more active in

the media platform, could be taken as much smaller than µ (we can call it µ2), while

the rate at which inerts leave the population could be a bit more than that of µ, which

could be taken as µ3. A model with a variable population instead of a fixed one was

considered. We tested our model with a typical set of parameters chosen according to

the above logical relation, with µ = 0.05, µ1 = 0.03, µ2 = 0.005 and µ3 = 0.07. With the

other parameters unchanged, the equilibrium analysis shows no qualitatively different

results; bistable (for α = 1) as well as monostable (for α = 0.1) dynamics were observed

for higher and lower values of α respectively, but the mathematical handling becomes

complicated.

4.6 Extended Viral Marketing Model

A major finding of the conducted survey was the possibility of people returning

to broadcaster class from inert one. It was accommodated in the model by adding a

transition from I to B. In the extended version of this model, we are including a few

more real-life observations.

Till now, we have assumed that reason for I to B transition is the campaign infor-

mation shared to inert people from their friends in the broadcaster class. Transition

rate was, therefore, αbi, proportional to the fractional population of B as well as I.

But, there is a fraction of people from inert class who goes back to class B by their own

choice without persuasion of anyone else. The transition is generally noticed when an
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Figure 4.13: Rigidly inert people in a population : (a) ’Yes’ (’No’) signifies people who
(never) contributed in VM campaign; (b) Possibility of regaining interest of inert class
in a viral offer when a positive feedback or positive review is circulated by a company.
(c) Possibility of regaining interest of inert class in a viral offer when friends request
to avail, or discuss about in social platform. We mark the people as rigidly inert who
do not contribute in VM campaign, and never gain interest in such activity even in
presence of positive review or friend’s requests.

inert individual remembers the campaign s(he) had once forgotten or sees their friends

getting benefits from any particular campaign. This behavior has been included in the

model by adding a linear transition from inert to the broadcaster with rate λi.

The second observation, shown in Fig. 4.13, is that almost 23% of the total popula-

tion was rigidly inert, and they show no interest to be a part of a viral campaign ever.

Even a good amount of reward or an exceptionally good review of the product does

not entice them to share these messages with their peers. The reason behind that was

noted as follows:

1. Spamming: While preparing the questionnaire, the factor of spamming was not

explicitly mentioned by us; hence, it was not among the given options. Never-

theless, the words related to spamming (e.g., spamming, spam, spammer, bulk,

etc.) found 18 appearances in our final excel sheet, as participants mentioned

them while explaining their reasons to be against viral campaigns. One partic-
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ipant clearly stated that “ . . . If I send this kind of messages, though it’s a

spam, it will find its way into the main Inbox. Important emails getting lost in

the junk of Spam, I hate that.” Another respondent explained, “ . . . Whats

the point? Nine out of ten people would ignore it as its spam. dont wanna be

spammer.” Moreover, spam messages can never be trusted, as those can contain

viruses, malware that can end up disrupting the computerized environment of the

user. Many respondents also mentioned that they assumed these emails being

associated with a virus (“ Not felt secured, link has some virus”) or phishing (“

Asking about personal information” or“ . . . stealing personal data”).

2. Brands: We also found that the idea of brands closely affects this. While reputed

brands are connected with trust and comfort, 39% respondents thought that rec-

ognized brands would not be associated with spurious offers. Interestingly, two

consecutive surveys in 2012 and 2015 pointed out, that customers identify a brand

as unprofessional and choose to email opt-out (or unsubscribe) in case of excessive

frequency of promotional emails.

These observations indicate that whenever a broadcaster sends a referral message to an

unaware individual, apart from entering broadcaster class, unaware may directly move

to inert class as well. These two factors were compiled into a parameter that gives a

room for people to move from U to I class directly.

In our previous viral marketing model, an unaware always has to become a broad-

caster before entering the inert class, but in extended model, we have relaxed this

assumption and allowed people to move directly from U to I class. Now, whenever

a broadcaster sends a referral message to an unaware individual, unaware moves to

broadcaster class with probability p and to inert class with probability (1− p).
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Figure 4.14: Block diagram of the extended viral marketing model showing all possible
transitions from one class to another.

Adding these two observations to the previous model, we get an extended version of

the viral marketing model as shown in Fig. 4.14.

4.7 Homogeneous Analysis

Transition between three sub-populations Unaware (U ), Broadcaster (B), and Inert

(I ) is now modeled by the following set of coupled ordinary differential equations:

u′ = µ− ρbu− µu,

b′ = pρbu+ λi+ αbi− σb− µb, (4.19)

i′ = σb+ (1− p)ρbu− λi− αbi− µi·

Similar to the previous model, here also the birth and death rate of the individual

has been kept the same (µ) to maintain a fix population size. The parameters ρ, σ,

and α have the same meaning. Two new parameters λ and p have been added as per

the discussion in the previous section. All the steps carried out in the previous model
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will be repeated to analyze the extended model. We will briefly discuss all the steps

emphasizing upon the new findings.

4.7.1 Equilibrium Analysis

Similar to our previous model discussed in Sec.4.3, this system model also has two

steady states E0 and E?. At E0, the VM marketing campaign fails to sustain, and the

whole population eventually becomes unaware about it, whereas at E? the system ex-

hibits an endemic equilibrium where a certain percentage of people acts as broadcasters

and helps to sustain the campaign. While solving for E?, the first equation of the eq.

set 4.19 gives

u? =
µ

ρpb? + µ
· (4.20)

Substituting this expression of u? in second equation of the eq. set 4.19 and replacing

i? by (1 − b? − u?), simple algebraic manipulation results into l(b?)2 + mb? + n = 0,

where

l = αρ; m = (σρ+ µρ+ λρ+ αµ− αρ); n = µ(σ + µ+ λ)− ρ(λ+ µp)· (4.21)

Examining the coefficients, we conclude that l is always positive; m is positive for small

values of α, and n is positive or negative depending on whether ρ(λ+µp)
µ(λ+µ+σ)

= R is smaller

or greater than 1. Two utterly different steady state scenarios can arise:

Case 1: For negative n (i.e., R > 1), the quadratic equation has a unique positive

solution b?+, as another solution b?− is always negative and so, unphysical, and there

exists a unique endemic equilibrium E? whenever R > 1.

Case 2: On the other hand, for positive n (i.e., R < 1), the number of physical roots of

the equation depends on the sign of m, and therefore, the nonlinear relapse parameter
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α. Depending on this fact if α is high (or low), multiple (or no) endemic equilibria may

exist.

We can see that the description of the equilibrium analysis is equivalent to the descrip-

tion of the previous VM model discussed in the Sec. 4.3.3.

4.7.2 Reproduction Number

As found in the Section 4.7.1, reproduction number of the model is

R =
ρ(λ+ µp)

µ(λ+ µ+ σ)
· (4.22)

It is evident that replacing p by 1 and λ by 0, the extended system model of eq. 4.19

will reduce to the previous model of the eq. 4.1. Reproduction number R mentioned in

eq. 4.22 will also reduce to ρ
µ+σ

which is the reproduction number of our previous model

as discussed in Sec. 4.3.2. From eq. 4.22, we can observe that, for smaller value of p,

a larger value of ρ is required to satisfy the basic condition for an epidemic to spread,

i.e., R > 1. In a practical sense, it means that if more people are switching directly

to inert class from unaware class, more marketing effort will be required to attain an

endemic steady state.

The sensitivities of R for various parameters are as follows:

ΓRρ = 1,

ΓRp = µp,

ΓRσ = − σ

(λ+ µ+ σ)
, (4.23)

ΓRλ =
λ

(λ+ µp)

σ + µ(1− p)
(λ+ µ+ σ)

,

ΓRµ = −(
λ

λ+ µp
+

µ

λ+ µ+ σ
)·



78 Spreading of Viral Marketing (VM) Campaigns

(a) (b)

Figure 4.15: Variation in steady state fraction of b with reproduction number R for (a)
α = 0.1, when only a single epidemic state persists beyond R = 1 and for (b) α = 1,
when bistability can be observed in range Rc to 1. Parameter values are σ = 0.2,
λ = 0.0002, and µ = 0.05. In these figures, orange and green lines indicate stable
solutions and purple lines indicate unstable solutions. For these parameter values, we
calculated Rc = 0.562 from eq. 4.26.

4.7.3 Bifurcation

As discussed in Sec. 4.7.1, the extended model also exhibits different behavior for

smaller and larger value of α. In Fig. 4.15, we plot the steady-state fraction of class B

for two different values of α. To highlight the impact of the parameter p, results have

been shown for p = 1 and p = 0.7.

Results for a small value of α, shown in Fig. 4.15 (a) depicts that the endemic steady-

state fraction of broadcasters, b?, reduces with a decrease in value of p. For a smaller

value of p, the probability of an unaware individual to move to broadcaster class will

be less, and more people will be moving from unaware class to inert class directly. As

the relapse rate, α is also small, switching from inert to broadcaster will take place at

a smaller rate. Reduction in b? can be attributed to the combined effect of these two

phenomena.

In Fig. 4.15 (b), we can see that for a higher value of α, there is no significant change

in b? for different values of p, in the region R > 1. Although a fraction of unaware
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population is coming directly to inert class, the large value of α brings them back to

the broadcaster class. In this case, the significant change is observed in the region

R < 1, where we can observe the expansion in the bistable region as Rc decreases. We

will derive the expression of Rc in the next section.

Though for the sake of completeness we have discussed all the parameter space of

the system model given by eq. 4.19 which also includes a high value of α with a low

value of p (close to 0), but this region may not be observed in real cases. A small value

of p signifies that a large fraction of population goes to inert class as soon as they listen

about the campaign for the first time, whereas a large value of α means broadcasters

can bring a large fraction of inert people back to the broadcaster class. If the first

impression of the campaign for most of the unaware class is not good, then it is very

much unlikely that they can be easily brought back to the broadcaster class later. That

is why in practical scenarios, a low value of p and the high value of α may not exist

simultaneously.

4.7.4 Conditions for Bistability

We have found in Sec. 4.7.1 that multiple solutions (bistable region) may exist when

R < 1, for large value of α. Equating the coefficient m in the quadratic eq. 4.21 to 0,

we get threshold value of α

αth =
ρ(σ + µ+ λ)

(ρ− µ)
· (4.24)

Interestingly, αth does not depend on the value of p. Comparing with the αth of the

previous model (Sec. 4.3.4), the value is larger due to the addition of λ in the numerator.
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The critical value of ρ is calculated by equating m2 − 4ln to 0 and is given by

ρc =
αµ

(α + λ+ µ+ σ)− 2
√
α(µ− pµ+ σ)

· (4.25)

Substituting ρc in place of ρ in the expression of reproduction number R (eq. 4.22)

gives the critical value of reproduction number Rc as

Rc =
ρc(λ+ µp)

µ(λ+ µ+ σ)
=

αµ

(α + λ+ µ+ σ)− 2
√
α(µ− pµ+ σ)

(λ+ µp)

µ(λ+ µ+ σ)
· (4.26)

At p = 1 and λ = 0, Rc is equal to the value of the threshold in our previous model

(Sec. 4.6). To see the limiting case, equating p = 0 we observe that value of Rc will

be smaller than the value obtained in the previous model. It means that region of

bistability R ∈ [Rc, 1) will expand.

4.8 Heterogeneous Analysis

Similar to the heterogeneous analysis of the previous VM model, we will formulate

the differential equation using degree block approximation in Sec. 4.8.1. We will then

derive the threshold condition for a viral marketing message to spread in the population

and its persistence in the population at the steady state.

4.8.1 Degree Block Approximation

Differential equations representing the evolution of degree based compartments of

different classes will be

u′k = µ− ρnkukΘb − µuk,

b′k = pρnkukΘb + λik + αnkikΘb − (σ + µ)bk, (4.27)

i′k = σbk + (1− p)ρnkukΘb − λik − αnkikΘb − µik·
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All the parameters used in the above model have the same meaning what they had

in the previous model of eq. 4.1, apart from λ and p which have been introduced in

the extended model. ρn and αn are the network counterparts of ρ and α used in the

homogeneous setting. The density function of broadcasters in the neighborhood of a

node is Θb.

Multiplying all these three equations by kpk
〈k〉 and then performing summation over k,

we get

Θ′u =
∑
k

kpk
〈k〉

µ− ρn
∑
k

k2pk
〈k〉

ukΘb − µ
∑
k

kpk
〈k〉

uk,

Θ′b = pρn
∑
k

k2pk
〈k〉

ukΘb + λ
∑
k

kpk
〈k〉

ik + αn
∑
k

k2pk
〈k〉

ikΘb − (σ + µ)
∑
k

kpk
〈k〉

bk, (4.28)

Θ′i = σ
∑
k

kpk
〈k〉

bk + (1− p)ρn
∑
k

k2pk
〈k〉

ukΘb − λ
∑
k

kpk
〈k〉

ik − αn
∑
k

k2pk
〈k〉

ikΘb − µ
∑
k

kpk
〈k〉

ik.

4.8.2 Early Stage Analysis

As done in the Sec. 4.4.2 of the previous model, in the initial phase of message

spreading uk can be approximated by 1, and bk as well as ik can be considered to be

negligible. Using these values in nonlinear terms so that they can be simplified to a

linear equation, we get

Θ′u = µ− ρn
〈k2〉
〈k〉

Θb − µΘu,

Θ′b = pρn
〈k2〉
〈k〉

Θb + λΘi − (σ + µ)Θb, (4.29)

Θ′i = σΘb + (1− p)ρn
〈k2〉
〈k〉

Θb − (λ+ µ)Θi.
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Last two eqs. of the system 4.29 form a system of simultaneous linear differential

equations with constant coefficients.

Θ′b = C1Θb + C2Θi (4.30)

Θ′i = C3Θi + C4Θb (4.31)

Solving the above simultaneous equations, we get

Θ′′b − (C1 + C3)Θ′b + (C1C3 − C2C4)Θb = 0. (4.32)

It is clear from the form of the equation that Θb will be the summation of two expo-

nential, the exponents of which depend on the roots of the auxiliary equation of the

differential eq. 4.32. For a viral message to spread in the population, Θb needs to be

an increasing function in time. If C1C3 − C2C4 > 0 holds, it can be shown that C1

will surely be negative and in turn C1 + C3 will be negative resulting into negative

roots of the auxiliary equation. Hence Θb will be an exponentially decaying function.

So, necessary condition for initial growth in class B is C1C3 < C2C4. Substituting the

expression of all these constant terms, the condition modifies to

ρn
µ

(λ+ pµ)

(σ + λ+ µ)
>
〈k〉
〈k2〉
· (4.33)

Replacing ρn by ρ
〈k〉 the condition modifies to

ρ

µ

(λ+ pµ)

(σ + λ+ µ)
= R >

〈k〉2

〈k2〉
· (4.34)

In the extended model also, we have been able to find the analytical expression of the

epidemic threshold. While finding threshold condition in every heterogeneous model,

we observe that left-hand side of the inequality is the reproduction number R of the

homogeneous model and right-hand side is 〈k〉
2

〈k2〉 which depends on average degree and
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average of square of individual degrees of the nodes in the network. The exact value of

the expression will depend on the type of network. Values for the random and scale-free

network has been discussed in the Sec. 3.3.1.

4.8.3 Steady State Analysis

In large time limit, system will reach steady state and rate of change of fractions uk,

bk and ik will become zero. Equating first and third equation of eq. set 4.27 to zero,

we have

uk =
µ

µ+ ρnkΘb

and ik =
σbk + (1− p)ρnkukΘb

λ+ µ+ αnkΘb

. (4.35)

Putting these values in second equation of the same set will give

bk =
ρnkΘb(µp+ λ+ αnkΘb)

(µ+ ρnkΘb)(λ+ µ+ σ + αnkΘb)
· (4.36)

Multiplying bk by kpk
〈k〉 and performing summation over k, we get

Θb =
1

〈k〉
∑
k

pkk
2ρnΘb(µp+ λ+ αnkΘb)

(µ+ ρnkΘb)(λ+ µ+ σ + αnkΘb)
· (4.37)

This is a self consistency equation where Θb = f(Θb). At Θb = 0; f(Θb) is also zero.

Hence Θb = 0 is a solution of the equation. Value of the function at Θb = 1 is

f(1) =
1

〈k〉
∑
k

pkk
2ρn(µp+ λ+ αnk)

(µ+ ρnk)(λ+ µ+ σ + αnk)
· (4.38)

After slight rearrangement of the terms, we get

f(1) =
1

〈k〉
∑
k

pkk

(1 + µ
ρnk

)(1 + σ+(1−p)µ
λ+µp+αnk

)
· (4.39)

It is clear from the above expression that f(1) < 1. As shown in Fig. 4.7, to have

another solution in the interval 0 to 1, slope of the function at Θb = 0 must be greater
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than 1.

df(Θb)

dΘb

∣∣∣
(Θb=0)

=
1

〈k〉
∑
k

pkk
2ρn(µp+ λ)

µ(λ+ µ+ σ)
=

ρn(µp+ λ)

µ(λ+ µ+ σ)

〈k2〉
〈k〉

> 1

After replacing ρn by ρ
〈k〉 , we will get the same condition what we had from linear

approximation in early stage analysis discussed in Sec. 4.8.2.

4.9 Numerical Results

Like previous model, we have again carried out the simulations for homogeneous as

well as heterogeneous approach. Along with random and scale free networks, few real

network structures have also been considered. Size of the network and simulation are

same as used for previous model discussed in Sec. 4.5.

Depending upon the parameter values, system may lead to message-free state or

endemic state. Two different cases for homogeneous setting have been shown in Fig

4.16(a)-(b). As discussed in Sec. 4.7.3, bi-stability can be observed in the system for

value of α greater than αth. It is observed in Fig. 4.16 (b), where depending on initial

fraction of different classes, system reaches to endemic or message-free equilibrium.

Parameter values for bistable case have been used to plot the results for both of

the model networks, random as well as scale-free network in Fig. 4.16 (c) and (d)

respectively. Results of random network almost matches the findings of homogeneous

model. Along with similar endemic steady-state values, bistability can also be observed

in random network scenario of Fig. 4.16 (c). In case of scale-free network, endemic

steady state values are not exactly same and maximum error in endemic steady-state

fraction of a particular class is 5%. Reasons for the difference in steady state values

are the same what have been discussed in Sec. 3.3.3.2. Under bistable parameter set,
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(a) (b)

(c) (d)

Figure 4.16: Numerical simulation of convergence to the steady state for different initial
conditions with parameter values µ= 0.05, ρ= 0.25, σ= 0.2, λ= 0.0002, p=0.7, and (a)
α=0.1 for a homogeneous system with a single campaign free steady state; (b) α=1 for
a homogeneous system with bistable steady states ; Temporal variation of u and b with
different initial conditions for equivalent parameter regime as for (b) in (c) random
network and (d) scale-free network. In all of these figures, X and Y coordinates of
the initial point of any flow represents the initial fractional population of unaware and
broadcaster class of population.
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message-free steady state never appears and system leads to endemic steady state for

every set of initial conditions. It can be observed in Fig. 4.16(d) where every flow

terminates at endemic steady state. This observation is in alignment with our analytic

result regarding absence of epidemic threshold in scale-free network as mentioned in

Sec. 4.8.2.

Degree-wise steady state fraction uk, bk, and ik has been plotted for random and

scale free networks in Fig. 4.17 (a) and (c) respectively. Fraction of u, b and i in the

neighborhood of a node of different degrees has also been plotted for both the networks

in Fig. 4.17 (b) and (d) respectively. Figures are showing the same trend what we

have observed in Fig. 4.9 of our previous model. A node with higher degree has higher

probability to be in broadcaster class, in random as well as scale free network. For

random network, the fraction of believers around a node is independent of its nodal

degree, but for scale free network this fraction is not identical. It is again due to the

heterogeneous structure of the network and presence of hubs in the network.

We have analyzed the model over a few real world networks as most of these networks

do not follow the typical characteristics of any particular model network. Analysis helps

us to understand the behavior in real social interaction scenarios. Same set of real

networks as collected earlier from KONECT database [41], and have been used in the

previous model discussed in Sec. 4.5.3, have been considered here.

To see the node dynamics in the real network scenario, we have simulated all three real

networks obtained from KONECT database. Steady state values for various networks

are mentioned in Table 4.3. Degree-wise steady state fraction and fraction of different

classes in neighborhood of a node of a particular degree for email network has also

been plotted in Fig. 4.18 (a) and (b) respectively. Observations are close to the results

obtained for scale free network shown in Fig. 4.17 (c) and (d).
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(a) (b)

(c) (d)

Figure 4.17: (a) uk, bk and ik with respect to k at steady-state in random network;
(b)Fraction of u, b and a in the neighborhood of a node with degree k in random
network; (c) uk, bk and ik with respect to k at steady-state in scale-free network; (d)
Fraction of u, b and i in the neighborhood of a node with degree k in scale-free network.

Table 4.3: Comparison of steady states in extended VM for R = 0.64
Steady state

fraction
Homogeneous

Setting
Random
Network

Scale-free
Network

Hamster
Network

Email
Network

Jazz
Network

u∗ 0.277 0.288 0.319 0.512 0.394 0.348
b∗ 0.521 0.510 0.467 0.342 0.417 0.469
i∗ 0.202 0.202 0.214 0.146 0.189 0.183
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(a) (b)

Figure 4.18: (a) uk, bk and ik with respect to k at steady-state in email network; (b)
Fraction of u, b and a in the neighborhood of a node with degree k in email network.

4.10 Summary

Marketing is always considered as one of the key components, not an auxiliary ar-

rangement, for a successful business [79]. Surely, a viral marketing campaign works as a

less expensive and unexpected way to reach the customers; but nowadays, when almost

85 million videos and photos get uploaded every day in a popular social networking

website like Instagram [80], the main challenge is making that advertisement execute

long lasting iterations in the population, so that it can reach a bigger audience. If we

consider just the case of Instagram, with almost 500,000 advertisers using this popular

website as campaigning platform [81], most of the uploads get tossed like a needle in a

haystack. The model we propose in this chapter establishes a principle of sustainabil-

ity for online advertisement campaigns relying on rigorous consumer psychology survey

data [82]. Extensive analysis with differential equation based homogeneous approach

as well as network simulation based heterogeneous approach shows that the region of

bistability grows as the value of α, the nonlinear relapse rate increases. Bistability gives

the system a chance to retain its viral state for adverse parametric conditions as well.
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While we have observed that the steady states of diffusion in networks are closely re-

lated to homogeneous system dynamics, we also appreciated the importance of network

structures in this issue. Not only on model systems, but in real social networks, with

consideration to all heterogeneity that exists in the population, it has been shown that

sustainability of a viral campaign is actually dependent on drawing the attention of

those who are not participating in spite of being aware of the campaign. If a certain

percentage of this inert population start broadcasting in favor of the campaign, it re-

tains its endemic state in the entire population. We have also shown that over-usage

of advertising mails and too much lucrative offers are many a times treated as spam

and create negative brand value instead of a positive impact. For a new firm having

no brand history, these points must be included in their referral policy, otherwise an

initial adverse acceptability of the brand might lead to the failure of the entire campaign

process.

The model presented in this chapter is the first to include the relapse rate while analyz-

ing the epidemic spread and sustainability of viral marketing messages. The remark-

able effect that this relapse rate has on the sustainability of the campaign has deeper

marketer-level implications. Through last couple of years, advertisers have slowly un-

derstood the importance of capturing the attention of lost customers. We are already

familiar with Facebook retargeting for products, where by adding a code snippet (often

called a pixel), the online websites retarget attention of the customers, whom they lost

from their website due to unknown reasons [83]. Firms are becoming quite inclined to

get the services of companies like Adroll, Retargeter, Perfect Audience, etc. or going

directly to the exchanges like Google, Facebook, Twitter [84] for running their own

retargeting campaigns to re-engage anonymous users. But recent studies show that

continuous retargeting leads to a definite privacy concern and skepticism among cus-

tomers, which results into a lower purchase intention [85]. Our findings in this chapter
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point out that the relapse has a major effect, especially if a social-circle-level remarket-

ing technique can be devised where factors like authenticity and security are ensured.

The campaigns should adopt clear privacy policies about protection of consumer data,

as well as consider adding a social context to encourage spontaneous reminders among

the population. As friends and peers have a substantial influence, close proximity and

often share similar interest, it is both more plausible and effective, if they assure the

lost customers about the genuineness and usefulness of a campaign.

In this chapter, we demonstrate a typical case where the endemic solution is desired

for the sustainability of a viral campaign in the population. We discussed the critical

parameters in this chapter that helps to sustain the endemic state even in unfavorable

conditions by exploiting the properties of bistability. However, in several epidemiological

spreading models, often we want to inhibit the diffusion in the population by identifying

the contributions of the parameters. In the next chapter, we model the diabolical habit

of piracy as an epidemic spreading through a population and discuss the effectiveness of

one-to-one awareness policy and mass awareness policy by analyzing various parameters

of the flow.



Chapter 5

Contagious Habit of Online Media
Piracy

5.1 Introduction

Digital contents like movies, songs, games, software, etc., are protected with copy-

right and distribution laws so that production companies can maintain the supply

chains. Any illegal usage, preservation or distribution of such contents are commonly

known as digital piracy. Internet, being the most convenient way to share data across

the world, magnifies digital piracy by order of magnitudes [86]. Internet-based piracy,

also known as online piracy, is one of the biggest concerns of digital content manufac-

turers and has become a burning problem for them since last few decades.

Though internet is the prime platform for digital piracy nowadays, the history of illegal

distributions of digital contents can be traced back to even early ’80s [87]. Back then,

movies and music cassette tapes were used to be illegally replicated and sold as pirated

copies. However, with the advancement of internet, digital piracy not only becomes

fast and easy, but it also becomes extremely difficult to control. In the last decade,

the scenario has deteriorated even more rapidly as the connectivity and the number
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of internet users have grown rapidly [88]. Though the effects of online piracy on the

different industries were not well-understood initially [89, 90, 91], several researchers

later discussed the adverse impact of online piracy [92, 93, 94], and pointed out online

piracy as a major threat to various industries. In [92], authors found out that countries

with higher internet access suffer more due to online piracy. Zenter [95] calculated that

online piracy can reduce the profit of music industry by 30%, whereas Ma et al. [96]

measured that a pirated copy of early released movie can cause 19.1% reduction in the

revenue. A more alarming situation was figured out by Danaher and Smith [97] that

showed that the problem is not limited to any particular country. Sudler [87] reported

that countries like Venezuela, Indonesia, China and Thailand lost more than 70% of

their software markets only because of piracy. According to a recent report [98], India

is one of the top-3 countries that suffer most due to online piracy, and the cumulative

loss was around $3 billion in 2017. According to a survey conducted in the same report

[98], 49% out of 10,343 people responded that they have some pirated software in their

computers. Even new laws that are imposed to reduce this trend is making little effect

in restricting online movie piracy in India [99]. Because of its substantial severity, online

piracy is often associated with an epidemic for the digital industry [100, 101, 102].

Several extended studies have been conducted to understand the psychological, social

and behavioral aspects of online ‘pirates’. Surprisingly, it is observed in several studies

that most of the people who are engaged in online piracy know that it is illegal to dis-

tribute copyrighted materials [103]. But several demographic (age, gender), economic

(price, availability, income), social (recent trends, education, culture) and technical

(internet speed, quality of the available product, malware) aspects control the behav-

ior and participation of an individual in online piracy [104, 105]. A recent report [105]

shows that online piracy is spreading alarmingly for mobile devices also, and users in the

age group 18-24 contribute the most (∼60%) in online piracy in middle east Asian and
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African countries. In an another independent study [106], 56.3% participants among

116 university students told that they are well aware of the fact that internet piracy is

a serious crime. However, 61.6% of them started downloading pirated media contents

online below the age of 12. The survey also revealed that there is a very strong peer

influence that attracts people towards online piracy. In the study, 62.5% of students

reported that they were introduced to online piracy by their close friends and parents.

The main motivations behind engaging in piracy are the availability of media contents

without any price (58.5%), and the convenience to avail recent products (31.6%). In

many studies, it is found that online piracy among young people is an acquired habit

even in the presence of their sense of moral obligation [107, 108, 109]. In [107], au-

thors emphasized that a person acquires the habit of piracy depending on the risk of

punishment that he estimates by direct or indirect encounters. Ramayah et al. [106],

found out that people have a strong tendency to recommend or share a friend any illegal

download information. It also depicts that social contacts influence the habit of online

piracy. Lee et al. [110] had shown that people with prominent presence in social media

sites have a strong tendency to share music at online sites.

Even when major file sharing sites are going down regularly, the habit of online piracy

and adaptation to new ways of sharing illegal contents are not diminishing [97, 111].

Though several studies have been conducted to understand the economic and behav-

ioral aspects of the online piracy, very little is investigated about the spreading of this

habit in a population. To the best of our knowledge, no one has investigated the spread

of the habit of online piracy in the light of social contacts.

In this work, we argue that someone who does not know about online piracy or some-

one who does not know about a particular way to download pirated files is introduced

to specific piracy techniques by their friends and social contacts. However, because of

the substantial adverse effects on industries and individuals, there are always a group
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of aware people who want to reduce the habit of piracy using word-of-mouth in their

respective social circles.

5.2 Proposed Model with Word-of-Mouth Aware-

ness

In our proposed model, T is the total population which is categorized in three com-

partments: U , B, and A. Class U is called unaware as they are unaware of the digital

piracy techniques. Class B is called bootleggers1 or illegal downloaders. They are the

people who themselves are habituated to piracy and also encourage others to get in-

volved in such activities. The effective rate at which bootleggers succeed in transferring

this habit to an unaware person is denoted by ρ. Class A is the population who are

well-aware of the fact that piracy is an anti-social activity and they spread this aware-

ness among their contacts. The parameter β signifies the rate at which an aware node

is able to change the mentality of bootleggers and bring them to aware class. There

are scenarios when people from aware class themselves cannot resist the temptation to

download certain pirated contents. This transformation from aware to bootleggers have

been included in the model by adding a linear transition from class A to B at the rate λ.

As mentioned in earlier chapters, µ is the birth and death rate of the individual node.

Both rates have been kept same to maintain a fix population size. All these transitions

are shown in Fig. 5.1 with appropriate rate parameters.

1Bootlegger is someone who makes, copies, distributes or sells something illegally. The term was
first coined in Omaha, Nebraska in 1889 when liquor was illegally supplied by concealing bottles in
high boots of the bootlegger. More recently, the term has broadened to include a whole range of other
illegal or pirated goods.
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Figure 5.1: Block diagram of the proposed model for the propagation of habit of on-line
piracy when only word-of-mouth awareness prevails in society.

5.3 Homogeneous Modeling

In Fig. 5.1, the fractions of unaware, bootlegger and aware classes are denoted by u,

b, and a respectively. The rate of change of u, b, and a are given by the set of ordinary

coupled differential equation mentioned below:

u′ = µ− ρub− µu,

b′ = ρub− βba+ λa− µb, (5.1)

a′ = βba− λa− µa·

5.3.1 Equilibrium Analysis

At steady state, rate of change of u, b and a will be 0. Equating third equation of

the system model described in eq. 5.1 to zero, it can be observed that a? = 0, is an

obvious solution. Substituting a? = 0 in remaining two equations of the eq. set 5.1, we

get E0(1, 0, 0) as one equilibrium point where triplets of E0 are in order (u, b, a).

Equating first equation of the eq. set 5.1 to zero, we get

u? =
µ

µ+ ρb?
· (5.2)



96 Contagious Habit of Online Media Piracy

Substituting u from eq. 5.2 and using a? = (1− u? − b?) in second equation of the eq.

set 5.1, we get a quadratic equation in b? i.e., p(b?)2 + qb? + r = 0, where

p = βρ ; q = −β(ρ− µ) + ρ(µ+ λ) ; r = (µ+ λ)(ρ− µ)· (5.3)

Roots of the quadratic equation are b?1 = ρ−µ
ρ

and b?2 = µ+λ
β

. By relevant substitutions,

we get

u?1 =
µ

ρ
; a?1 = 0 and u?2 =

µβ

µβ + ρ(µ+ λ)
; a?2 =

(µ+ λ)((ρ− µ)β − (µ+ λ)ρ)

β(µβ + ρ(µ+ λ))
·

Thus, we have two more possible steady states: E?
1(u?1, b

?
1, a

?
1) and E?

2(u?2, b
?
2, a

?
2). As

fraction of bootleggers are non-zero in both of these equilibrium states, they are referred

to as endemic equilibria. A contrasting difference between these endemic equilibria is

the steady state value of aware class. In E?
2 , there remains a fraction of aware people

in the steady state, but in E?
1 , aware class depletes completely from the population.

Examining the coefficients of the quadratic eq. 5.3, we can infer that system of

equation can have two different set of feasible steady states depending on sign of r, which

in turn depends on whether ρ
µ
(= R) is smaller or greater than 1. R is reproduction

number of the model.

Case 1 : When R < 1, steady state values b?1 and a?2 are negative. Therefore,

neither of the endemic steady states E?
1 and E?

2 are physically realisable in this region.

Irrespective of the initial condition i.e., initial fractional population of all the three

compartments, system eventually reaches to only possible steady state E0(1, 0, 0).

Case 2: When R > 1, both b?1 and b?2 are positive. Moreover, b?1 will surely be

less than 1 as numerator (ρ − µ) is less than the denominator ρ. Hence, E?
1 is always

a possible steady state if R > 1 but, feasibility of E?
2 , will depend on whether a?2 is

positive or not. Value of a?2 will be positive only if (ρ−µ)β−(µ+λ)ρ > 0 i.e., β > (µ+λ)ρ
(ρ−µ)

·
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We are denoting right hand side of the inequality by βth.

Subcase 2.1: For β < βth, a
?
2 will be negative and only E?

1 will be the feasible steady

state.

Subcase 2.2: For β > βth, a
?
2 will be positive. Rearranging the condition of β > βth,

we get ρ
µ
> β

β−λ−µ · Denoting right hand side of the inequality by Rc, the condition is

R > Rc. We can conclude that for β > βth, E
?
2 will also be a feasible steady state,

along with E?
1 .

5.3.2 Bifurcation

Bifurcation diagrams have been plotted in Fig. 5.2 for two different values of β by

varying the parameter ρ. It can be observed from the figures that in the range R < 1

system leads to piracy-free steady state in both the cases. As discussed in case 2 of Sec.

5.3.1, for β < βth, a single endemic steady state can be observed in the region R > 1

in Fig. 5.2 (a). Similarly, we can observe two endemic steady states in Fig. 5.2 (b) for

β > βth in the region R > Rc.

Stability of all these equilibrium points have been obtained by linear stability analysis

as discussed in Sec. 2.1.3. Forward transcritical bifurcation can be observed at R = 1

(in both the cases) and R = Rc (in second case). At R = 1, endemic free equilibrium

E0 looses its stability and an endemic equilibrium E?
1 appears. Similarly, at R = Rc,

E?
1 becomes unstable and E?

2 emerges.

We get a a straight horizontal line beyond R = Rc in Fig 5.2 (b), because the value of

b?2 is µ+λ
β

, which is independent of ρ, and our bifurcation diagram has been plotted by

varying the parameter ρ.
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(a) (b)

Figure 5.2: Variation in steady state fraction of b with reproduction number R for (a)
µ = 0.05, λ = 0.2, and β = 0.15, where only one type of endemic steady state persists
beyond R = 1 ;(b)µ = 0.05, λ = 0.2, and β = 0.5, where two types of endemic steady
state persists − one in the range 1 < R < Rc and another in R > Rc. In these figures,
green lines indicate stable solutions and red lines indicate unstable solutions.

5.3.3 Effect of Word-of-Mouth

The impact of word-of-mouth awareness has been modeled by transition of people

from bootlegger to aware class at the rate β. We have seen in Sec. 5.3.1 that system

shows two different behaviors depending on whether β is less or more than βth =

(µ + λ) ρ
ρ−µ . In most of the real applications birth-death rate, u, is very small as

compared to other rates. Considering this fact we can assume that ρ
ρ−µ will have value

very close to 1, and βth will be approximately (µ+ λ).

Relating this mathematical findings to the physical phenomenon, λ and µ are the rates

at which people are departing from aware class. The only way to generate aware class is

by their interaction with bootleggers and making them aware. If this rate of conversion

from B to A is slower than the overall rate of departure from class A, i.e., (β < λ+ µ),

then eventually the population of aware will decrease to zero. That is why the system

attains the equilibrium point E?
1 , where the fraction of aware is zero. If the overall

awareness is significant i.e, value of β is large, then system can be brought to a steady
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state where aware class will persist in the society.

5.4 Heterogeneous Modeling

To understand the diffusion of piracy habit in nonhomogeneous social structure,

heterogeneous modeling has been investigated. In next sections, we will discuss the

degree block approximation model of the diffusion process and epidemic threshold in

heterogeneous case.

5.4.1 Degree Block Approximation

As used in earlier chapters, degree block approximation has been used to model the

process over heterogeneous network structure. In this approach, nodes having equal

degree are considered to be statistically equivalent assuming that nodes with similar

degree are able to impact their neighbours to the same extent. An unaware node having

degree k is in class Uk and fraction of such nodes is denoted by uk. Similar notations

like Bk, bk, and Ak, ak are used for bootleggers and aware nodes respectively.

In this approach, impact rate of a node of a particular class on another is assumed to

be proportional to degree of the node. Nonlinear rates of homogeneous approach, ρ and

β modifies to ρnk and βnk respectively. As discussed in Sec. 3.3.1, ρn and βn are chosen

to be ρ
〈k〉 and β

〈k〉 respectively so that overall infection or awareness spread by a single

person is same in homogeneous and heterogeneous approaches. Fraction of bootlegger

or aware class around a node is given by the density function Θb and Θa respectively.
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As discussed in Sec. 4.4, the density functions have the expression as follows:

Θu =

∑
k′ k
′p(k′)uk′

〈k〉
,

Θb =

∑
k′ k
′p(k′)bk′

〈k〉
, (5.4)

Θa =

∑
k′ k
′p(k′)ak′

〈k〉
·

Including all these factors in eq. set 5.1, the system model is modified to

u′k = µ− ρnkukΘb − µuk,

b′k = ρnkukΘb − βnkbkΘa + λak − µbk, (5.5)

a′k = βnkbkΘa − λak − µak·

Multiplying by kpk
〈k〉 and summing over k, we get the expression for rate of change of

density functions of all three classes as follows

Θ′u = µ− ρn
∑
k

k2pk
〈k〉

ukΘb − µΘu,

Θ′b = ρn
∑
k

k2pk
〈k〉

ukΘb − βn
∑
k

k2pk
〈k〉

bkΘa + λΘa − µΘb, (5.6)

Θ′a = βn
∑
k

k2pk
〈k〉

bkΘa − λΘa − µΘa·

5.4.2 Early Stage Analysis

Analysing the system from early stage when very few people are having the habit of

piracy or very few people are aware of a particular piracy strategy, we can approximate

uk by 1, and bk and ak will be negligible. Using this approximation in nonlinear terms,
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eq. set 5.6 simplifies to

Θ′u = µ− ρn
〈k2〉
〈k〉

Θb − µΘu

Θ′b = ρn
〈k2〉
〈k〉

Θb + λΘa − µΘb (5.7)

Θ′a = −λΘa − µΘa·

Initial values of Θu, Θb, and Θa are assumed to be u0, b0, and a0 respectively. Solving

third equation of the eq. set 5.7 with these initial conditions, we get

Θa = a0e
t
τa (5.8)

where τa = − 1
λ+µ

. Substituting Θa from eq. 5.8 in second equation of the eq. set 5.7,

we get

Θb = λa0τae
t
τa + C1e

t
τb (5.9)

where

C1 = b0 − λa0τa = b0 +
λa0

λ+ µ
; and τb =

〈k〉
ρn〈k2〉 − µ〈k〉

·

Substituting Θa and Θb in first equation of the eq. set 5.7, we get

Θu = µt− ρn
〈k2〉
〈k〉

(C1τbe
t
τb + a0λτ

2
ae

t
τa ) + C2e

t
τu (5.10)

where

C2 = u0 + ρn
〈k2〉
〈k〉

(c1τb + λτ 2
aa0) and τu = − 1

µ
·

For the habit of piracy to spread, rate of change of Θb should be positive. Differentiating

the expression of Θb (eq. 5.9), we get

Θ′b = λa0e
t
τa + C1

1

τb
e
t
τb ·
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Substituting values of C1, τb and τa we get

Θ′b = λa0e
t
τa + (b0 +

λa0

λ+ µ
)(
ρn〈k2〉 − µ〈k〉

〈k〉
)e

t
τb · (5.11)

If ρn〈k2〉 > µ〈k〉 holds, every term in equation 5.11 will be positive which will ensure

the increment of Θb in early stage. Replacing ρn by ρ
〈k〉 , we get the necessary condition

for the habit of piracy to spread, i.e.,

R =
ρ

µ
>
〈k〉2

〈k2〉
(5.12)

This inequality relates parameters of the model to parameters of network structure and

gives epidemic threshold in terms of first and second moment of degree distribution.

5.4.3 Steady State Analysis

In steady state (after a large time) uk, bk and ak will not vary with time. Thus

equating eq. set 5.5 to zero, we have

µ− ρnkukΘb − µuk = 0,

ρnkukΘb − βnkbkΘa + λak − µbk = 0, (5.13)

βnkbkΘa − λak − µak = 0·

Solving these equations, we get

uk =
µ

µ+ ρnkΘb

; ak =
βnkbkΘa

λ+ µ
· (5.14)

Substituting these expression of uk and ak in (uk + bk + ak = 1), we get

bk = (
ρnkΘb

ρnkΘb + µ
)(

λ+ µ

λ+ µ+ βnkΘa

)· (5.15)
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Multiplying the above equation by kpk
〈k〉 and summing over k, we have

Θb =
∑
k

kpk(λ+ µ)(ρnkΘb)

〈k〉(λ+ µ+ βnkΘa)(ρnkΘb + µ)
· (5.16)

This is a self consistency equation of the form Θb = f(Θb,Θa) having 0 as an obvious

solution. At Θb = 1

f(1,Θa) =
∑
k

kpk(λ+ µ)(ρnk)

〈k〉(λ+ µ+ βnkΘa)(ρnk + µ)
(5.17)

which is less than 1. As discussed in Sec. 4.4.3 and shown in Fig. 4.7, to have a solution

of eq. 5.16 in the interval Θb = (0, 1), slope of the function f must be greater than 1

at the point (Θb = 0,Θa = 0).

∂f(Θa,Θb)

∂Θb

=
(λ+ µ)ρn

〈k〉(λ+ µ+ βnkΘa)

∑
k

µk2pk
(µ+ ρnkΘb)2

· (5.18)

At the point (Θb = 0,Θa = 0) slope is ρn〈k2〉
µ〈k〉 . Hence, the condition to have a non zero

solution is

ρn
µ
>
〈k〉
〈k2〉

(5.19)

which can be further simplified to

ρ

µ
>
〈k〉2

〈k2〉
· (5.20)

This is the same condition, what we had in early stage analysis.

5.5 Numerical Results

All the analytical results claimed till now have been verified in this section by nu-

merical results of the simulations. Results have been obtained for homogeneous as well

as heterogeneous approach.
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(a) (b)

Figure 5.3: Temporal variation of u and b with different initial conditions, for homoge-
neous settings with µ = 0.05, λ = 0.2, β= 0.5 with two cases − (a) ρ = 0.08 satisfying
the condition 1 < R < Rc and resulting into a steady state value (0.625, 0.375, 0), hav-
ing no aware individual in the population; (b) ρ = 0.2 satisfying the condition R > Rc

and resulting into a steady state value (0.333, 0.5, 0.167), having a nonzero fraction of
aware in the steady state. Value of Rc for both cases is 2. Values of R for first and
second figures are 1.6 and 4 respectively.

5.5.1 Simulation of Homogeneous Model

As discussed in the Sec. 5.3.1, system may lead to piracy free steady state (or endemic

steady state) if reproduction number R is less (or more) than 1. For endemic scenario,

the nature of equilibrium point depends on value of β, which signifies the impact of

word-of-mouth awareness. For β < βth, aware class vanishes from the population,

whereas for β > βth, aware class will persist if R is greater than Rc. In Fig. 5.3,

we have considered the endemic scenario for β > βth and have shown the temporal

variation of fraction of unaware (u), and fraction of bootlegger (b) for both the cases −

R < Rc and R > Rc.
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(a) (b)

(c) (d)

Figure 5.4: Temporal variation of u and b with different initial conditions, for random
network with µ = 0.05, λ = 0.2, β= 0.5, with two cases - (a) ρ = 0.08 satisfying the
condition 1 < R < Rc, and (b) ρ = 0.2 satisfying the condition R > Rc. Value of Rc

is 2. Values of R for first and second case are 1.6 and 4 respectively. Both these results
for Jazz network are plotted in (c) and (d) respectively.
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5.5.2 Simulation over Model Networks

To understand the propagation of the piracy habit in a heterogeneous society, sim-

ulations have been carried over a random and a scale-free network. To compare the

result with the homogeneous approach, we have plotted the temporal variation in the

u − b plane using the parameter set of Sec. 5.5.1, in Fig. 5.4(a)-(b). Similar to our

findings in the previous chapter, the steady-state value in case of the random network

is almost the same as in the homogeneous setting. Error in the steady-state fraction of

different classes is bounded by 3 % for the considered parameter set in case of random

network.

To analyze the impact of diffusion on nodes with different degrees in random network,

we have plotted degree wise steady-state fraction of different classes in Fig. 5.5 (a). It

can be observed from the figure that the probability of a node to be in unaware class

is decreasing with the nodal degree. To understand the reason behind this observation,

we have plotted the fraction of different classes in the neighborhood of a node in Fig.

5.5 (b). It is independent of the degree in case of a random network. It indicates that

higher degree nodes are surrounded by more number of bootleggers. That is why they

are more prone to infection. Similar pattern can be observed in case of scale-free net-

works, in Fig 5.5 (c) and (d). We can also observe that in case of the random network,

the fraction of aware class in the neighborhood of a node with degree k is zero, which

is matching with the results of homogeneous analysis observed in Fig. 5.3 (a). But, in

case of the scale-free network, this fraction is not completely zero, especially for nodes

with a higher nodal degree. It reminds us about the absence of epidemic threshold in

case of a scale-free network, we have discussed in the Sec. 3.3.2. It is very difficult to

completely remove any particular class from the population if the social contacts are

following scale-free degree distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Degree-wise fraction of u, b and a with respect to degree k at steady-state
in case of (a) Random network; (c) Scale-free network; and (e) Jazz network. Fraction
of u, b and a in the neighborhood of a node with degree k in (b) Random network;
(d) Scale-free network; and (f) Jazz network. Parameter values for all these cases are
µ = 0.05, λ = 0.2, β= 0.5, and ρ = 0.08.
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Table 5.1: Comparison of steady state values of different classes for different networks
in presence of word-of-mouth awareness when R < Rc.

Steady state
fraction

Homogeneous
Setting

Random
Network

Scale-free
Network

Hamster
Network

Jazz
Network

Email
Network

u? 0.625 0.640 0.740 0.619 0.733 0.749
b? 0.375 0.360 0.210 0.381 0.228 0.216
a? 0 0 0.050 0 0.039 0.035

5.5.3 Simulation over Real Networks

In this section, we have shown the results of the diffusion dynamics on real networks.

Same parameter set, used in the analysis of model networks, has been used to plot

the temporal variation in u − b plane in Fig. 5.4 (c)-(d), for Jazz network. Although

the system finally reaches to a steady state closer to the prediction of homogeneous

model, considerable difference can be observed in the trajectory of temporal evolution

in real network and homogeneous setting shown in Figs. 5.4 (c)-(d) and 5.3 (a)-(b)

respectively. Steady state fraction of all three classes in case of different networks has

been shown in Tables 5.1 and 5.2, for R < Rc and R > Rc respectively. Degree-wise

steady state fraction of different classes and fraction of different class in neighborhood

of a degree k node, in case of Jazz network has been shown in Figs. 5.5 (e) and (f)

respectively. These degree specific results again show that in any real network, impact

of the diffusion process is more on higher degree nodes. These nodes have very high

probability to undergo a transition from one class to another. Once, they undergo

a behaviorial change, they can propagate this transition to a large number of nodes

connected to them. Hence, they are crucial in the diffusion process.

As we have seen in the previous chapters, we also observe here that the nature of

the steady-state values in homogeneous and heterogeneous populations closely resemble

each other. Moreover, the rate parameters have equivalent effects on the diffusion in
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Table 5.2: Comparison of steady state values of different classes for different networks
in presence of word-of-mouth awareness when R > Rc.

Steady state
fraction

Homogeneous
Setting

Random
Network

Scale-free
Network

Hamster
Network

Jazz
Network

Email
Network

u? 0.333 0.345 0.480 0.426 0.565 0.525
b? 0.500 0.485 0.340 0.441 0.271 0.319
a? 0.167 0.170 0.180 0.133 0.164 0.156

both the cases. The epidemic thresholds that control the final steady-state values of the

endemic classes are also analogous in homogeneous and heterogeneous mixing. Even

though word-of-mouth awareness model succeeds to control the outbreak of piracy in

a population, it is still difficult to eradicate the habit only using one-to-one awareness.

In practice, we also see many mass campaign programs to generate social awareness to

reduce piracy. This social enlightenment cannot be modeled using conventional one-to-

one awareness model. Rather, it requires a more complex model of the diffusion process

with more number of nonlinearities.

5.6 Proposed Model with Mass Media Awareness

In the last section, we analyzed the effect of word-of-mouth awareness in spreading

of online piracy habit. Though this approach has some effect on the diffusion dynamics,

it is certainly not very effective to minimize piracy in adverse conditions. In reality,

other means like law enforcement, advertisement, media campaign etc. can be also used

to reduce the severity of piracy. It can be observed that spreading awareness through

various means can significantly reduce the habit of piracy in a population. Several

researchers [108, 109, 112] have shown that the fear of punishment is one of the prime

factors that controls the habit of piracy.

In a recent survey [113] of more than 25000 people, 48% people informed that they would
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stop or watch less number of pirated contents after knowing the damages incurred by

piracy, and the probable punishments related to it. In [103], authors mentioned that

though a person associated with piracy can perceive momentary enjoyment and sense

of benefit, ethical efficacy and fear dominates one’s tendency to engage in piracy. Ac-

cording to Moore and Chang [114], this habit is guided by moral psychology which in

turn is controlled by externally received information. Also in [115], authors pointed out

legal and ethical concerns of an individual as one of the leading reasons that control

the habit of piracy. Both the aspects can be evoked using external influences like mass

campaigns or recent cases of active law enforcement [97]. The study of Cronan and

Sulaiman[116] also aligns with this finding. The study of Gupta et al. [117] had shown

that mere knowledge of the fact that piracy may lead to penalty does not often control

the habit of piracy. Thus, a word-of-mouth awareness might not be the optimal strategy

to control the habit of piracy. Rather several external factors control the attitude of

an individuals habit [103], and the diffusion of the habit of piracy should be analyzed

in the presence of active efforts from different sources to reduce piracy, along with the

word-of-mouth awareness process.

In the next section, we consider the external efforts other than word-of-mouth that are

made to reduce the severity of online piracy. Instead of distinguishing different param-

eters like media campaigns, advertisements, punishments, law enforcement, drives to

boost ethical and moral values etc., we combine them in a single time varying parameter,

and for sake of simplicity, we will call it as ‘effect of media’.
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Figure 5.6: Block diagram of the proposed model for the propagation of habit of on-line
piracy in presence of mass media awareness.

5.7 Homogeneous Analysis

Schematic diagram containing all transitions between different classes have been

shown in the Fig. 5.6. Cumulative density of awareness programs driven by the media

is denoted by m. Rate of change of media is given by the following differential equation

m′ = φb− φ0(m−m0)· (5.21)

As clear from this equation, extent of media program implementation is assumed to be

increasing linearly with proportion of bootleggers in the population at rate φ. Depletion

rate of these programs due to ineffectiveness of social barriers in the population is

φ0. Awareness level of the society before implementation of any awareness program is

denoted by m0. It shall be noted that m is always higher than m0. When m = m0,

then m′ = φb.

Effect of media awareness on bootleggers has been incorporated in the model by

introducing a new transition from bootlegger to aware at the rate γm where γ is the

success rate at which a person moves from Class B to class A. In presence of external

awareness programme, conversion rate from unaware to bootleggers also decreases. This
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reduction has been incorporated by multiplying ρ by a factor (1 − ψ) where ψ is m
c+m

.

The positive constant c limits the effect of awareness programs on unawares and known

as half saturation point for Holling type-II functional response [118]. Other parameters

are similar to the word-of-mouth awareness model as discussed in Sec. 5.2. Coupled

differential equations for the model are as following:

u′ = µ− ρ(1− ψ)ub− µu,

b′ = ρ(1− ψ)ub− βba+ λa− γmb− µb,

a′ = βba− λa+ γmb− µa, (5.22)

m′ = φb− φ0(m−m0)·

5.7.1 Equilibrium Analysis

After attaining the steady state, fraction of all the classes will remain static and rate

of change will be zero. Solving the eq. set 5.22, after equating every equation to zero,

we get

m? = m0 + zb?; u? =
(c+m0 + zb?)µ

(c+m0 + zb?)µ+ ρcb?
; a? =

(m0 + zb?)γb

λ+ µ− βb?
(5.23)

where z = φ
φ0
· Substituting the expression of u? and a? in (u? + b? + a? = 1) we get a

cubic equation in b? i.e., p(b?)3 + q(b?)2 + rb? = 0 where

p = (µz + ρc)(γz − β),

q = (µz + ρc)(λ+ µ+m0γ) + µ(c+m0)(γz − β) + ρcβ, (5.24)

r = µ(c+m0)(λ+ µ+m0γ)− ρc(λ+ µ)·

It can be observed from the equation that b? = 0 is always a solution. Corresponding

values of u? and a? are 1 and 0. Hence, E0(1, 0, 0) is always a steady state solution of
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the system. To Investigate other roots, we consider b? 6= 0 and are left with quadratic

equation p(b?)2 + qb? + r = 0, where on the basis of sign of the coefficient p there are

two different situations:

Case 1: p > 0 implies γz > β,which in turn also implies q > 0. There will be one (or

no) positive solution depending on whether r is negative (or positive). Hence, required

condition to have a positive solution of the quadratic equation is

ρc(λ+ µ) > µ(c+m0)(m0γ + λ+ µ)·

It gives the expression of reproduction number Rm. Here, m signifies that mass media

awareness has been included in the model. A single endemic steady state exists only

when

Rm =
ρc(λ+ µ)

µ(c+m0)(λ+ µ+m0γ)
> 1· (5.25)

otherwise, only a piracy free steady state E0 exists.

Case 2: When p < 0 i.e, γz < β. The case can be further divided in two sub-cases

depending on sign of r.

Sub-case 2.1: When r > 0 (Rm < 1), similar to Case 1, one of the roots is positive

and other is negative.

Sub-case 2.2: When r < 0 (Rm > 1), q will surely be positive. It can be observed

after a bit of rearrangement in expression of q and r given in eq. set 5.24.

q = (µz + ρc)(λ+ µ+m0γ) + µ(c+m0)γz − β(µc+ µm0 − ρc),

r = µ(c+m0)(m0γ) + (λ+ µ)(µc+ µm0 − ρc)·

Term responsible for negative sign of r i.e., (µc+ µm0 − ρc) is appearing in expression

of q with a negative sign resulting in positive q. With p < 0, q > 0 and r < 0 it is
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ensured that both roots of the quadratic equation will be positive.

Quadratic equation in b? tells that there will be one or two positive solutions when

(Rm < 1) or (Rm > 1), but it does not guarantee that all these solutions will be

physical (i.e., 0 ≤ b? ≤ 1). To investigate it further, along with the quadratic equation

in b?, we have also analyzed a quadratic equation in a?. At steady state, the rate of

change of all three classes will be zero. Equating third equation of the eq. set 5.22 to

zero, we get

βba− λa+ γmb− µa = 0·

At steady state, value of b, a, and m will be b?, a?, and m? respectively. Replacing b?

by (1− u?− a?) and substituting m? and a? from eq. 5.23, we get a quadratic equation

pa(a
?)2 + qaa

? + ra = 0 where

pa = (γz − β),

qa = (β − 2zγ)(1− u?)− γm0 − (µ+ λ), (5.26)

ra = γm0(1− u?) + γz − γzu(2− u?)·

As dra
du?

< 0 for 0 < u? < 1, hence the constant term ra is a strictly decreasing function

of u? in the interval [0,1] with values γ(m0 + z) and 0 at corresponding end points. For

a physical solution, u? can only vary from 0 to 1 and in this whole range ra is positive.

Opposite signs of pa and ra ensure that if roots of the above quadratic equation are real

then, only one root will be positive.

On the basis of above discussion, we conclude that there exists only one physical endemic

steady state beyond Rm > 1.

For Rm < 1, examining the roots of quadratic equations in b? and a? (eq. 5.24 and

5.27), it can be observed that one of the roots is positive and another is negative



5.7 Homogeneous Analysis 115

in both the cases. For any physical solution u?, b?, and a? must be in the range [0,1]

individually. For 0 ≤ u? < 1, quadratic equation in b? and a? gives two roots (b?1, b
?
2) and

(a?1, a
?
2) respectively which finally form steady state triplets (u?1, b

?
1, a

?
1) and (u?2, b

?
2, a

?
2).

For Rm < 1, if b?1 is positive then b?2 is negative or vice versa. As discussed earlier, the

statement also holds true for a?1 and a?2 in this range. To check the feasibility of the

triplets, let us assume that (u?1, b
?
1, a

?
1) is physical, i.e., u?1, b?1, and a?1 are in the range

0 to 1 individually, and u?1 + b?1 + a?1 = 1. However, if our assumption is true, then it

implies that b?2 and a?2 will surely be negative. But, for 0 ≤ u?2 < 1, along with negative

values of b?2 and a?2, the required condition of u?2 +b?2 +a?2 = 1 will never hold. Hence, our

initial assumption that both b?1 and a?1 are positive, is not right. Actually, for positive

b?1, a?1 will be negative and for negative b?1, a?1 will be positive. Hence, we conclude that

for Rm < 1, neither of the endemic state is physical and only piracy free steady state

prevails.

We conclude that scenario is same whether γz < β or γz > β. For Rm < 1 there

exist only piracy free steady state and for Rm > 1 there exist a unique endemic steady

state.

5.7.1.1 Sensitivity

Value of Rm depends on ρ, c, λ, m0, µ and γ. As discussed in Sec. 3.2.2, sensitivity

of Rm for any parameter x is defined as

ΓRmx =
x

Rm

· ∂Rm

∂x
(5.27)
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Using this definition, sensitivities of Rm for all six parameters are as follows:

ΓRmρ = 1,

ΓRmc =
m0

c+m0

,

ΓRmλ =
λ

λ+ µ

m0γ

λ+ µ+m0γ
,

ΓRmm0
= −(

m0γ

λ+ µ+m0γ
+

m0

c+m0

),

ΓRmµ = −(
λ

λ+ µ
+

µ

λ+ µ+moγ
),

ΓRmγ = − m0γ

λ+ µ+m0γ
·

5.7.2 Bifurcation

Bifurcation diagram for the system has been shown in Fig. 5.7. Forward transcritical

bifurcation occurs at Rm = 1, where endemic free equilibrium looses its stability and a

new endemic steady state appears. Main difference from the word-of-mouth awareness

model discussed in Sec. 5.6, is existence of a single endemic steady state for complete

range of reproduction number beyond Rm = 1, instead of two different steady states

before and after Rc. The endemic steady state where fraction of aware class was be-

coming zero (in the range R = [1,Rc] in case of word-of-mouth awareness model) does

not exist any more. Another important difference is population of class B in the steady

state. With considered parameter values, the steady state value of b, after applying

media becomes near by 5%, which is very small as compared to the model without

media.

Bifurcation diagram has been drawn for two different values of β and it can be observed

that steady state fraction of bootleggers dereases with increase in β.



5.7 Homogeneous Analysis 117

Figure 5.7: Variation in steady state fraction of b with reproduction number Rm for
two different values of β i.e., 0.3 and 0.5. Other parameter values are µ = 0.05, λ = 0.2,
γ = 0.08, φ = 0.05, φ0 = 0.01, c = 5 and m0 = 4. In the figure, green lines indicate
stable solutions and red lines indicate unstable solutions.

5.7.3 Effect of Mass Media

As discussed in the previous section, system behavior depends on value of Rm, which

in turn depends on other parameters of the model. To understand the effect of media

on the process, we have investigated the individual contribution of parameters c and

m0 which controls the effect of media campaign.

5.7.3.1 Effect of c

The parameter c controls the value of ψ which in turn modifies the rate of conversion

from class U to class B in presence of mass media awareness. For piracy habit to extinct

from the population, required condition is Rm < 1 i.e.,

Rm =
ρc(λ+ µ)

µ(c+m0)(λ+ µ+m0γ)
< 1·
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(a) (b)

Figure 5.8: Variation in steady state fraction of (a) bootleggers with constant c which
in turn changes the value of ψ and decides the rate of conversion from class U to B and
(b) unaware class with different initial level of intrinsic social awareness m0. Parameters
having same value in both the cases are µ = 0.05, ρ = 2, λ = 0.2, β = 0.3, γ = 0.08,
φ = 0.5, and φ0 = 0.1. In (a)m0 = 4 and in (b) c=5. Threshold cth in (a) is 0.24178
and m0th in (b) is 20.955.

Rearranging the above equation, we get the threshold condition on the value of c as

c <
moµ

(ρ− µ)− ( ρm0γ
λ+µ+m0γ

)
·

Right hand side of the inequality is denoted by cth. As shown in Fig. 5.8 (a), for c < cth

value of b is 0 , which means that complete population is in endemic free state and the

problem of piracy does not exist. For c greater than cth, non-zero value of b can be

observed, signifying the presence of people indulging the habit of piracy.

5.7.3.2 Effect of m0

Analyzing the effect of intrinsic level of social awareness m0, we get the following

quadratic expression from the threshold condition Rm < 1

µγm2
0 + µ(λ+ µ+ cγ)m0 + c(λ+ µ)(µ− ρ) > 0· (5.28)
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For (µ − ρ) > 0, both roots of m0 will be negative. It means for any positive value of

m0, the required condition for extinction of piracy will hold. For (µ − ρ) < 0, one of

the roots will be positive and that will be the threshold value of m0, denoted by m0th .

If value of intrinsic social awareness is more than this positive root of the quadratic

equation, the society will be free from piracy. In Fig. 5.8 (b), we can observe that

beyond this threshold value, fraction of unaware becomes 1 indicating the absence of

piracy.

5.8 Heterogeneous Analysis

Though the homogeneous model predicts the steady state of the system, it does

not give any information about the dynamics of a particular node. In this section, we

will analyze the diffusion of piracy habit in heterogeneous population incorporating its

network structure in the differential equation model. We will also see how nodes of

different degree behave in the diffusion process.

5.8.1 Degree Block Approximation

In terms of density functions, system of equations can be written as

u′k = µ− ρnk(1− ψ)ukΘb − µuk,

b′k = ρnk(1− ψ)ukΘb − βnkbkΘa + λak − γmbk − µbk,

a′k = βnkbkΘa − λak + γmbk − µak, (5.29)

m′ = φb− φ0(m−m0)·
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In heterogeneous setting, u, b, and a has been modified to uk, bk, and ak. But, the impact

of mass media has been considered same for all nodes irrespective of their degrees.

That’s why in expression of m′, we have used b , not bk. Here, b signifies the fraction of

bootlegger in entire population. Multiplying every equation of the eq. set 5.29 by kpk
〈k〉

and summing over k, we get

Θ′u = µ− ρn
∑
k

k2pk
〈k〉

uk
c

c+m
Θb − µΘu,

Θ′b = ρn
∑
k

k2pk
〈k〉

uk
c

c+m
Θb − βn

∑
k

k2pk
〈k〉

bkΘa + λΘa − γmΘb − µΘb, (5.30)

Θ′a = βn
∑
k

k2pk
〈k〉

bkΘa − λΘa + γmΘb − µΘa·

5.8.2 Early Stage Analysis

Similar to early stage analysis in word-of-mouth awareness model, here also we are

approximating uk by 1 and bk as well as ak is considered to be negligible. Using this

approximation to linearize the nonlinear terms, eq. set 5.30 is simplified to

Θ′u = µ− ρn
〈k2〉
〈k〉

c

c+m
Θb − µΘu,

Θ′b = (ρn
〈k2〉
〈k〉

c

c+m
− (γm+ µ))Θb + λΘa, (5.31)

Θ′a = −(λ+ µ)Θa + γmΘb·

Last two equation of the eq. set 5.31 forms a system of simultaneous linear differential

equations with constant coefficients.

Θ′b = C1Θb + C2Θa

Θ′a = C3Θa + C4Θb· (5.32)
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The equations are exactly the same, what we have got while analyzing the extended VM

model in Sec. 4.8.2. We will use the final result from the VM analysis that necessary

condition for initial growth in class B is C1C3 < C2C4. Substituting the expression of

all these constant terms, the condition modifies to

ρn
µ

(
c

c+m
)(

λ+ µ

λ+ µ+ γm
) >
〈k〉
〈k2〉
·

Replacing ρn by ρ
〈k〉 , we get

ρ

µ
(

c

c+m
)(

λ+ µ

λ+ µ+ γm
) = Rm >

〈k〉2

〈k2〉
·

Right hand side of the inequality is epidemic threshold in terms of network parameter.

First and second moment of degree distribution will depend on the network structure.

5.8.3 Steady State Analysis

In steady state, rate of change of uk, bk, ak and m will be zero. Equating last equation

of the eq. set 5.29 to zero we get m = m0 + zb where z = φ
φ0

. Using this expression of

m in eq. set 5.29, we get

uk =
µ(c+m0 + bz)

µ(c+m0 + bz) + ρnkcΘb

; ak =
βnkΘa + γ(m0 + bz)

λ+ µ
bk·

Substituting these expressions of uk and ak in (uk + bk + ak = 1), we get

bk = (
λ+ µ

λ+ µ+ βnkΘa + γ(m0 + bz)
)(

ρnkcΘb

ρnkcΘb + µ(c+m0 + bz)
)·

Multiplying above equation by kpk
〈k〉 and summing over k we get

Θb =
∑
k

kpk(λ+ µ)ρnkcΘb

〈k〉(λ+ µ+ βnkΘa + γ(m0 + bz))(ρnkcΘb + µ(c+m0 + bz))
· (5.33)

This is a self consistency equation of the form Θb = f(Θb,Θa) having 0 as an obvious

solution. At Θb = 1, which also implies b = 1

f(1,Θa) =
∑
k

kpk(λ+ µ)(ρnkc)

〈k〉(λ+ µ+ βnkΘa + γ(m0 + z))(ρnkc+ µ(c+m0 + z))
· (5.34)
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Observing the numerator and denominator of the eq. 5.34, we can see that for every

term in the numerator, there is a corresponding larger term in the denominator. Hence,

f(1,Θa) will surely be less than 1. To have a solution of eq. 5.33 in the interval

Θb = (0, 1), slope of the function f must be greater than 1 at the point (Θb = 0,Θa = 0).

Slope of the function is

∂f(Θa,Θb)

∂Θb

=
(λ+ µ)ρnc

〈k〉(λ+ µ+ βnkΘa + γ(m0 + bz))

∑
k

µ(c+m0 + bz)k2pk
(µ(c+m0 + bz) + ρnkcΘb)2

·

At point (Θb = 0,Θa = 0), value of the slope is

(λ+ µ)ρnc〈k2〉
(λ+ µ+ γm0)µ(c+m0)〈k〉

·

Hence, the required condition to have a desired solution for the eq. 5.33 is

ρn(λ+ µ)c

µ(λ+ µ+ γm0)(c+m0)
>
〈k〉
〈k2〉
·

Substituting ρn by ρ
〈k〉 , the condition is equivalent to

Rm >
〈k〉2

〈k2〉

which is the same condition we have obtained in the Sec. 5.8.2.

5.9 Numerical Results

In this section, we are going to discuss the results of spread of piracy habit after

applying mass media awareness in society. We will compare the results of homogeneous

and heterogeneous analysis. In heterogeneous part, along with model networks, results

over real networks will also be discussed.
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5.9.1 Simulation of Homogeneous Model

In Sec. 5.7.2, we found that after mass media awareness, people with habit of piracy

will exist only beyond Rm = 1. Comparing the reproduction number of word-of-mouth

awareness, R, with reproduction number of mass media awareness model, Rm, it can

be observed that both multiplying factors in Rm − λ+µ
λ+µ+γm0

and c
c+m0

are less than 1.

Hence, effective implementation of mass media awareness program makes it difficult to

cross the epidemic threshold and enter the endemic region.

Temporal evolution in u− b plane for different initial points have been shown in the

Fig. 5.9 (a), for Rm > 1. We can observe that at steady state, fraction of bootleggers

in the population is very less (around 5% in present case) as compared to its value in

case of word-of-mouth awareness.

5.9.2 Simulation over Model Networks

Just like homogeneous case, we are able to notice the significant decrement in steady

state fraction of bootleggers in case of model networks also. Temporal evolution for

random and scale-free network has been shown in Figs. 5.9 (a) and (b) respectively.

Steady state value in case of random network almost matches with homogeneous sce-

nario. Error in the steady-state fraction of different classes is bounded by 2 % for the

considered parameter set in case of random network. For scale-free network the error

is comparatively large attributed to the heterogeneity in its structure.

To understand the diffusion process from perspective of nodes with different degrees,

we have plotted the degree wise steady state fraction of different classes in Figs. 5.10

(a) and (c) for Random and Scale-free network respectively. Fraction of different classes
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(a) (b)

(c) (d)

Figure 5.9: Temporal variation of u and b in case of endemic steady state with different
initial conditions for parameter set µ = 0.05, ρ = 2, λ = 0.01, β = 0.3, γ = 0.08,
m0 = 4, c = 5, φ = 0.5 and φ0 = 0.1 in case of (a) homogeneous setting; (b) Random
network; (c) Scale-free network; and (d) Jazz network. Value of Rm for considered
parameter set is 3.5, which is greater than 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Degree wise fraction of u, b and i with respect to degree k at steady-state
in case of (a) Random network; (c) Scale-free network; and (e) Jazz network. Fraction
of u, b and i in the neighborhood of a node with degree k in (b) Random network; (d)
Scale-free network; and (f) Jazz network.
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Table 5.3: Comparison of steady state values of different classes for different networks
in presence of mass media awareness when R > Rm.

Steady state
fraction

Homogeneous
Setting

Random
Network

Scale-free
Network

Hamster
Network

Jazz
Network

Email
Network

u? 0.432 0.458 0.528 0.535 0.597 0.636
b? 0.061 0.059 0.051 0.050 0.042 0.038
a? 0.507 0.483 0.402 0.414 0.361 0.325

(a) (b)

Figure 5.11: (a) Temporal evolution of u, b, and a in presence of mass media awareness
with an initial condition (0.75,0.05,0.2) (b) Similar Variation of media level and popu-
lation of bootleggers with time. Parameter set for both the plots are µ = 0.05, ρ = 2,
λ = 0.2, β = 0.3, γ = 0.08, m0 = 4, c = 5, φ = 0.5, and φ0 = 0.1.

in neighborhood of a node with a particular degree has been plotted in Fig. 5.10 (b)

and (d) for random and scale-free network respectively. Results follow the same pattern

what we have observed in case of word-of-mouth awareness, with a difference that in

presence of mass media awareness, steady state fraction of aware class is very large and

fraction of bootleggers is very less as compared to word-of-mouth awareness.
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5.9.3 Simulation over Real Networks

All the results shown for model networks have been obtained for a real network also.

Steady state values of different classes under same parameter set, for all three real

networks (Hamster, Jazz, and Email) has been listed in Table 5.3. Temporal evolution

in u − b plane, for endemic scenario has been shown in Fig. 5.9 (d) for Jazz network.

Degree wise steady state fraction of all three classes has been shown in Fig. 5.10 (e).

Fraction of different classes in neighborhood of nodes with particular degree has been

shown in Fig. 5.10 (f). All the results obtained for Jazz network also confirm the crucial

role played by higher degree node in the diffusion process.

We have also shown the time evolution of u, b, and a in case of jazz network in Fig 5.11

(a) for a particular initial condition. In Fig. 5.11 (b), we have shown the variation of

media awareness level and the variation of bootleggers population in a single plot to

emphasize that for success of media awareness campaign, the level of media must be

adjusted proportionally with population of bootleggers in the society.

5.10 Summary

Piracy is a burning problem for any digital industry. Though several strategic

counter-measures are evolving, digital piracy is growing day by day. Even legal mea-

sures are not very effective to stop the spreading of the habit of online piracy globally.

In this chapter, we explore the effect of word-of-mouth awareness programs and mass

media awareness campaigns. Though we have explored the effect on the habit of online

media piracy, the approach can be adapted to model any adversarial habit or addiction

spreading in society. While analyzing word-of-mouth awareness, we observe that this

technique can resist the outbreak of the addiction. However, in severe conditions, only
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word-of-mouth awareness strategy may not be very useful to restrict the spreading of

the habit in the population. In both homogeneous and heterogeneous analyses, we ob-

serve similar kind of parameters thresholds that control the existence of endemic states.

Comparing both the models, we observe that the similarity between the homogeneous

approach and the heterogeneous approach do not break even after introducing more

number of nonlinear interactions. Obviously, the differences in the steady-state values

of homogeneous and heterogeneous populations change depending on the diffusion dy-

namics and network architectures. Moreover, we observe that for particular diffusion

parameters, the nature of the spreading and the steady state conditions closely resemble

in both the approaches. Our study also shows that along with word-of-mouth aware-

ness, the presence of mass media awareness program is much more effective to restrict

the spread of the habit. The study also reveals that in a society that initially has a

basic morality or awareness and law enforcement, the habit of piracy is relatively easier

to eradicate.



Chapter 6

Conclusion and Future Scope

In entire thesis, we have analyzed the process of diffusion observed in different phe-

nomena. Diffusion has been widely studied by the homogeneous approach based on

differential equations since eighteenth century. Recent development in network sci-

ence has helped us to understand the process using simulation based heterogeneous

approach. This approach includes the view point of network structure while analyzing

the diffusion process. Although a significant amount of work has recently been done by

heterogeneous approach also, but a comparison of both of them is still missing. In our

work, we have tried to bridge this gap and by highlighting the similarities, dissimilari-

ties and appropriateness of both the approaches. Starting from the spread of rumors in

society, we have studied the online propagation of viral marketing campaigns and the

propagation of the habit of online piracy.

6.1 Conclusion

We discussed the fundamental concepts required to analyze homogeneous and het-

erogeneous diffusion models in chapter 2. We also briefly explained the different termi-
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nologies associated with the heterogeneous network structures.

In chapter 3, we introduced a diffusion phenomenon using both homogeneous and

heterogeneous approach. We also exhibited that for a simple case, the steady state

values for diffusion process are quite similar in both the approaches, however, it still

remains unclear that what would be the major similarities and dissimilarities among

both these approaches.

In chapter 4, we proposed a new model for Viral marketing which also included a

backward transition. We concluded that by increasing the relapse parameter beyond

a particular threshold, a region of bistability can be observed. The bistable region

helps to sustain the online advertisement even in adverse conditions when reproduction

number is less than one. Apart from homogeneous settings, we were able to observe the

bistability in heterogeneous setting also, over a real network. The model was further

enhanced by considering the presence of rigidly inert people who are not interested in

taking part in the referral at any cost. We noticed that if considerable fraction of people

are rigid, in such a scenario, only way to sustain the campaign is to increase the overall

relapse from inert to broadcaster class. The model also suggests that special care of

rigidly inert people should be taken while designing the referral campaign.

In chapter 5, habit of online piracy has been modeled as an epidemic. We analyzed

the effectiveness of word-of-mouth awareness and media awareness to control the habit

of piracy in a society. We observe that though word-of-mouth awareness has effec-

tiveness to control the problem with limited scope, presence of media campaigns that

are proportional to the severity of the problem can play a crucial role to eliminate the

problem even in adverse conditions. Presence of media campaigns helps to maintain

the number of aware people in the population, and directly restricts the spread of the
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problem. We observe similar behavior of the population in both homogeneous and

heterogeneous analysis.

With a broad goal to compare the homogeneous and heterogeneous approaches in

diffusion modeling, we proposed different ways to model behavioral habits of individuals

that spread in a society due to their social contacts. In each case, we found the key

parameters and the limiting thresholds that control the nature of the diffusion. Com-

paring the homogeneous and heterogeneous diffusion processes, it can be concluded

that both the approaches have close resemblances with enough diversities. Execution of

homogeneous diffusion process is computationally fast and completely mathematically

tractable. Even a minute difference from two parameter settings can be well-observed

in homogeneous models. Heterogeneous models, being a better representation of the

actual social structures, depict the diffusion dynamics in more realistic way. However, a

straightforward analysis of complex heterogeneous models is not always possible, and we

had to rely on certain assumptions to simplify the problem. However, independent sim-

ulations for ideal networks and real networks show that the assumptions do not change

the conclusion that we had drawn from the heterogeneous analyses drastically. More-

over, we also observed that though the diffusion processes in homogeneous structures

and heterogeneous structures are not equivalent with time, the steady state conditions

are quite similar in both the cases. Even some critical behaviors, like bistability, bifur-

cation etc., that can be observed in homogeneous analysis can also be observed in the

diffusion process of heterogeneous structures. However, due to presence of structural

characteristics, the observability of the phenomena might either be difficult or can have

some fluctuations as compared to from their homogeneous counter parts.



132 Conclusion and Future Scope

6.2 Future Scope

In our entire thesis, we not only attempt to model some physical phenomena in the

light of epidemiological diffusion, but also draw a connection between homogeneous

analysis and heterogeneous analysis of such diffusion processes. In heterogeneous ap-

proach, we consider all our networks to be uncorrelated during our derivations for the

sake of simplicity. However, in real scenarios, this assumption may often fail. For ex-

ample, in social networks, people tend to interact with people having similar degree

whereas in biological networks, many a times, high degree nodes tend to attach to low

degree nodes. In future, the diffusion process for the correlated network structures can

be analyzed for more practical settings.

In this thesis we have overlooked some of the network structures that are observed in

the real world e.g., community network, directed network, adaptive network etc. These

network structures hold some typical network properties, and any diffusion process over

these types of networks might exhibit atypical behaviors. Thus, it will be interesting

to observe the diffusion spread over these kinds of networks in future.

All rate parameters in our current work are constant, but these contact rates may

change with time. Generally, in the beginning, people are more interested and excited

to spread any rumor or campaign, but their enthusiasms eventually decrease with time.

This decrement or change in the level of participation of an individual can be represented

by time varying rate parameters. In future, it will be more realistic to model these

phenomena with time varying rate parameters to gain more insight in the events under

study.
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[37] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60, 1960.
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