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Wireless sensor network (WSN) consists of a large number of tiny sensor nodes

with the limited power, computation, and wireless communication capabilities. Sensor

nodes will be deployed to monitor an environment or detect an event in unattended

and hostile environments. A typical task of the WSN is to measure some parameter of

interest such as humidity, temperature, pressure, etc. In centralized algorithms, sensor

nodes measure such parameters independently and delivery data to the fusion center.

The fusion center gathers data from different sensor nodes and makes the final decisions.

However, these algorithms require the proper organization of the sensor nodes and

sophisticated routing protocols to forward the data to the fusion center. Fusion centers

should be equipped with high energy and computational resources which increases the

cost of the large-scale WSNs. Node or link failures in WSNs lead to frequent topology

changes, and centralized algorithms are less resilient to topology changes. Because of
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these reasons, these algorithms are practically inefficient for WSN applications.

Consensus algorithms have attracted a lot of attention in the last two decades, due

to their ability to compute the desired global statistics by exchanging the information

only within the direct neighbors. In contrast to centralized algorithms, the underlying

distributed and decentralized philosophy avoids the need for a fusion center for gathering

the data. Primarily, these algorithms are suitable in the following situations: 1) global

network topology information is not known; 2) dynamic topology changes because of

the node or link failures, and network consists of resource constrained nodes. Hence,

consensus algorithms are more appealing to WSN scenarios.

However, consensus algorithms are inherently iterative, and the graph Laplacian

eigenvalues characterize the convergence rate. Consequently, estimating the conver-

gence rate of consensus algorithms is a computationally challenging task for large-scale

WSNs. Theoretical results play a significant role in the initial stage of WSN design and

also reliable than simulation-based studies. Although there have been several works on

consensus algorithms, the effect of WSN parameters on the convergence rate of con-

sensus algorithms is yet to be investigated. To gain the advantages of the consensus

algorithms for WSNs, it is essential to study the convergence of consensus algorithms

for large-scale WSNs and examine the effect of network parameters on the convergence

rate.

This thesis studies the convergence rate of the consensus algorithms for r-nearest

neighbor networks and one-dimensional lattice networks. These network models rep-

resent the notion of geographical proximity in the wireless sensor networks and fa-

cilitate the closed-form expressions of convergence rate for the consensus algorithms.

One-dimensional lattice networks and r-nearest neighbor networks allow the theoretical
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analysis that incorporates essential parameters like connectivity, scalability, network

size, transmission radius, link failures, asymmetric links and network dimension.

The first part of the thesis considers the undirected graph modeling and models

the WSN as an r-nearest neighbor ring, r-nearest neighbor torus, m-dimensional r-

nearest neighbor torus networks and derives the generalized expressions of convergence

rate for average consensus algorithms. This part studies the problem of the estimating

convergence rate of the average consensus algorithms for large-scale WSNs. Further,

the analytical expressions of convergence rate are derived in terms of the number of

nodes, transmission radius, and network dimension.

The second part of this thesis considers the directed graph modeling and models

the WSN as a ring, r-nearest neighbor ring, torus, and m-dimensional torus networks.

Further, we derive the closed-form expressions of the convergence rate for average con-

sensus algorithms. Subsequently, the effect of asymmetric links on the convergence rate

of average consensus algorithms has been studied. Further, this part examines the ab-

solute error introduced by the assumption of undirected graph modeling in analyzing

the average consensus algorithms.

Gossip algorithm is an asynchronous version of consensus algorithm, where the

global statistics will be computed using the local pair-wise communications. WSN has

been modeled as a one-dimensional lattice network and derived the closed-form expres-

sions of convergence rate for average periodic gossip algorithms. Next, using linear

weight updated approach, a generalized analytic expression for convergence rate has

been derived in terms of gossip weight and the number of nodes. Further, considering

the link failures in WSNs, we obtain the explicit expressions of convergence rate for

average periodic gossip algorithms in terms of the number of nodes and probability of
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link failures. Finally, the effect of the node’s transmission radius on the convergence

rate of periodic gossip algorithms has been studied using power-iteration and deflation

techniques.
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Chapter 1

Introduction

Wireless Sensor Networks(WSNs) have been utilized for the numerous applications

such as battlefield surveillance, target tracking, environmental monitoring, health care,

and disaster management (see, e.g., [1], [2], [3], [4], [5]). A typical task of the WSN is

to measure some parameter of interest such as humidity, temperature, pressure, etc. In

centralized algorithms, sensor nodes sense and measure such parameters independently

and delivery data to the fusion center. Fusion centers gather the data from different

sensor nodes and make the final decisions. However, these algorithms require the proper

organization of the sensor nodes and sophisticated routing protocols to forward the

data to the fusion center. Fusion centers should be equipped with high energy and

computational resources which increases the cost of the large-scale WSNs. Node or

link failures in WSNs lead to frequent topology changes, and centralized algorithms are

less resilient to topology changes. Hence, these algorithms are not suitable for WSN

applications. Consensus algorithms have attracted a lot of attention in the last two

decades [6], [7], [8], [9], [10], [11], [12] due to their ability to compute the desired global

statistics by exchanging the information only with the direct neighbors. In contrast to

centralized algorithms, the underlying distributed and decentralized philosophy avoids
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the need for a fusion center for gathering the data. This thesis modeled the WSN as an

r-nearest neighbor and one-dimensional lattice networks and derived the closed-form

expressions of convergence rate for consensus algorithms. In this chapter, we briefly

discuss the wireless sensor networks and present their applications in various areas. We

also discuss the advantages and disadvantages of centralized and distributed consensus

algorithms for wireless sensor network scenarios. Further, the problem statement of this

thesis work has been presented.

1.1 Wireless Sensor Networks

A WSN consists of a large number of low-cost tiny sensor nodes to measure the

properties of the environment such as temperature, pressure, humidity, light, etc. The

number of sensor nodes in WSNs may be on the order of thousands to millions depending

on the applications. A typical WSN is as shown in the Fig. 1.1. Sensor nodes sense,

measure, and gather information from the environment and transmit the sensed data

to the base station. Fig. 1.2 shows the schematic diagram of the major components

of a sensor node. A sensor node can collect the data and forward it to either specific

destination or the other sensors in the vicinity. In [1], [2], authors described the WSN

protocol stack and discussed the open research problems in WSNs. In [3], authors

surveyed the operating system, network services, applications, and deployment issues

in WSNs. Sensor nodes are small in size with the limited computational, sensing,

and wireless communication capabilities. These nodes may fail due to lack of power

or environmental issues. Therefore, routing protocols in WSNs should be designed to

improve the WSN’s performance with limited resources. In [13], [14], authors presented

a detailed survey of routing protocols for WSNs.
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Figure 1.1: Typical Wireless Sensor Network

Applications

WSNs consist of different type of sensors such as seismic, thermal, visual, infrared,

acoustic to measure the various parameters that include the temperature, humidity,

vehicular movement, lighting condition, pressure, soil quality, noise levels, etc. [1]. The

salient features of the WSNs lead to the wide range of applications that includes health,

military, disaster management, managing inventory, and monitoring product quality

[4]. Environmental applications of sensor networks include tracking the movements of

birds, animals, insects, monitoring the crops, irrigation, and forest fire detection, etc.

Health applications of sensor networks provides patient monitoring, drug inspection,

and surveillance of hospital premises (e.g., [1], [2],[3], [5]). In [4], [5] authors presented

a detailed survey on the applications of WSNs in various areas.
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Figure 1.2: Major Components of a Sensor Node

Power Consumption

Sensor nodes are equipped with the limited power resources and hence WSN’s lifetime

strongly depends on sensor nodes’ battery lifetime [1], [3]. Therefore, power conserva-

tion is a significant concern in the design of the routing algorithms for WSNs [13], [14].

The primary task of a sensor node in a WSN is to detect the events, perform the data

processing, and then transmit the data to either other sensor nodes or base station.

WSNs are prone to node or link failures due to lack of power resources or physical

damage. Node or link failures can cause significant network topological changes and

may affect the WSN performance. Sensor nodes consume power during sensing, com-

munication, and data processing operations. Nodes consume a substantial amount of

power in transmitting the data over sensing, processing, and receiving the data.

Centralized Algorithms

In centralized algorithms, sensor nodes form the clusters and transmit the data to a

cluster head as shown in the Fig. 1.3. Fusion center (FC) Receives data from cluster
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heads and make final decisions on the received data [15]. Here, FCs are less robust

to node or link failures and responsible for the reorganization of the WSNs. As FCs

need to aggregate the data, they need to be equipped with the more power and com-

putational resources over the normal sensor nodes. These algorithms suffer from the

following disadvantages [16], [17]: (1) Power consumption and communication overhead

is significant increases in large-scale networks; (2) Need of sophisticated routing pro-

tocols which are robust against the topology changes; (3) Fusion centers are expensive

among the normal nodes, hence cost of the network drastically increases in large-scale

WSNs; (4) Failure of cluster heads/Fusion centers lead to the failure of WSN services.

Thus, centralized algorithms are highly inefficient in terms of cost, energy consumption,

and scalability. Authors discussed the energy efficient centralized algorithms in [16]. In

[18], authors presented the advantages and disadvantages of centralized algorithms. In

[19], authors surveyed the recent work on data aggregation algorithms and discussed

the main features, advantages, and disadvantages.

1.2 Distributed Consensus Algorithms

In distributed consensus algorithms [20], nodes can organize themselves and perform

the computations with the neighboring nodes as shown in the Fig. 1.4. Every node

communicates the data with the direct neighbors and makes the decisions without the

need of any fusion center. Here, every sensor node needs to perform the sensing, com-

municating, and aggregating operations. These algorithms are suitable in the following

situations: 1) global network topology information is not known; 2)dynamic topology

changes because of frequent node failures; 3)network consists of resource constrained

nodes. Hence, these algorithms are more appealing to wireless sensor network (WSN)
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Figure 1.3: Centralized Algorithms in WSN

scenarios [21], [22], [23].

1.3 Problem Statement

Consensus algorithms are inherently iterative, and the convergence rate character-

izes their performance. The second largest eigenvalue of the weight matrix determines

the convergence rate of average periodic gossip algorithms. Computing eigenvalues for

large-dimensional matrices require sophisticated algorithms and high-performance com-

puting resources. Hence, it is difficult to predict the convergence rate of these algorithms

for large-scale networks. In this thesis, we study the convergence rate of the consensus
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Figure 1.4: Distributed Algorithms in WSN

algorithms for large-scale WSNs in terms of network parameters. We model the WSN

as an r-nearest neighbor network and one-dimensional lattice network and derive the

closed-form expressions of the convergence rate for average consensus algorithms and

periodic gossip algorithms. Theoretical results developed in this thesis reduce the com-

putational complexity drastically and also provides important insights for the design of

consensus algorithms on WSNs.
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1.4 Thesis Contributions and Organization

The thesis has been organized in the following six chapters.

Chapter 2 reviews the distributed consensus algorithms. The theory of the average

consensus algorithms has been presented. After that, gossip algorithms and periodic

gossip algorithms have been explored. Finally, this chapter explains the convergence

rate of the consensus algorithms.

In chapter 3, WSN has been modeled as an r-nearest neighbor ring, r-nearest neigh-

bor torus, and m-dimensional r-nearest neighbor torus network and derived the explicit

expressions of convergence rate for average consensus algorithms. In this chapter, WSN

has been modeled as an undirected graph, and the effect of the number of nodes, trans-

mission radius and network dimension on convergence rate has been studied.

Chapter 4 studies the effect of asymmetric links on the convergence rate. In this

chapter, WSN has been modeled as a directed graph, and the analytic expressions of

convergence rate of average consensus algorithms for the ring, torus, r-nearest neighbor

ring, and m-dimensional torus networks have been derived.

In chapter 5, WSN has been modeled as a one-dimensional lattice network, and the

closed-form expressions of convergence rate for average periodic gossip algorithms have

been derived. Next, using the linear weight update approach, a generalized analytic ex-

pression for convergence rate has been derived in terms of gossip weight and the number

of nodes. Further, explicit expressions of convergence rate of average periodic gossip

algorithms have been obtained in terms of the number of nodes and probability of link

failures. Finally, numerical results have been presented to investigate the effect of the

number of nodes, gossip weight, and the probability of link failures on the convergence

rate of periodic gossip algorithms.

In chapter 6, WSN has been modeled as an r-nearest neighbor ring network, and the
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effect of node’s transmission radius on the convergence rate of periodic gossip algorithms

has been studied. This chapter proposes the power-iteration and deflation techniques

to evaluate the convergence rate of periodic gossip algorithms.

Finally, chapter 7 presents the conclusions of the thesis and discusses the problems

which can be further studied.



Chapter 2

Distributed Consensus Algorithms

This chapter reviews the graph theory concepts and presents the important defini-

tions in graph theory. Further, we discuss the average consensus algorithms and defines

the convergence rate. Finally, this chapter reviews the gossip algorithms and also ex-

plains the periodic gossip algorithms.

2.1 Graph Theory Concepts

In this thesis, the information flow in the WSNs has been modeled by a graph.

The vertices of a graph represent the sensor nodes, and edges represent the connectiv-

ity among them. Laplacian matrix describes the connectivity of the network. Graph

Laplacian eigenvalues play a vital role in characterizing the convergence rate or conver-

gence time of consensus algorithms. Spectral graph theory studies the graph Laplacian

eigenvalues. This chapter presents the fundamental concepts of graph theory [24], [25]

and introduces the notations used in the forthcoming chapters.
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Definitions

Basic notations and definitions of graph theory concepts will be presented in this

section.

Definition 2.1.1. A graph G = (V,E) is a set of vertices V with the set of edges E

connecting some of the vertices.

Definition 2.1.2. The degree of a vertex υ is defined as the number of edges which

connect to the vertex.

Definition 2.1.3. Let G = (V,E) be a graph and υ ∈ V represents a node. If edge

e = {υ}, then edge is called self loop.

Definition 2.1.4. Two vertices υ1 and υ2 are said to be adjacent if there exists an edge

e ∈ E such that e = {υ1, υ2}.

Definition 2.1.5. Two edges e1 and e2 are said to be adjacent if there exists a vertex

υ so that υ is an element of both the edges.

Definition 2.1.1. Network Diameter of a graph is defined as the shortest distance of

two most distant vertices. Diameter of the graph can be computed as the longest of all

the shortest path lengths obtained from every vertex to all other vertices. It measures

the number of steps needed for convergence in distributed consensus algorithms [8], [11].

Example 2.1.1. Let us consider the graph in 2.1. The set of vertices for this graph

can be written as V = {1, 2, 3, 4, 5}. The set of edges can be written as

E = {{1, 2} , {2, 3} , {3, 4} , {4, 5} , {5, 1}}. Here, total number of edges and nodes are 5

and degree of each node is 2.
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Figure 2.1: Graph

Definition 2.1.6. The edge set consists of unordered pairs in a undirected graph and

ordered pairs in a directed graph. As shown in the 2.2, undirected graph and directed

graph model the symmetric and asymmetric network links respectively.

Definition 2.1.7. In a directed graph, in-degree of a vertex υ in G is the total number

of edges in E with the destination υ. Out-degree of υ is the total number of edges in E

with the source υ.

Definition 2.1.8. The adjacency matrix (A) of a graph G is the matrix that consists

of the following entries as

aij =

{
1 if (i, j) ∈ ε
0 Otherwise

(2.1.1)

Definition 2.1.9. The degree matrix (D) of a graph G is the matrix that consists of

the following entries as

dij =

{
di if i = j
0 Otherwise

where di is the degree of a vertex i.

Definition 2.1.10. The Laplacian matrix (L) describes the connectivity of the network.
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Figure 2.2: Example of undirected and directed graphs

This matrix consists of following entries

Lij =


di if i = j
−1 if i 6= j
0 otherwise

where di is the degree of a vertex ‘i’. The Laplacian matrix can be written as L = D−A.

Example 2.1.2. For the Fig. 2.1, adjacency matrix can be written as

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


Degree matrix of the Fig. 2.1 is written as

D =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


Finally, we can write the Laplacian matrix of the Fig. 2.1 as

L =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2


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Properties of Laplacian Matrix

Laplacian matrix plays a major role in the distributed algorithms. Especially, con-

vergence rate of the distributed algorithms is characterized by the graph Laplacian

eigenvalues. The properties of the Laplacian matrix summarized below [26]:

(1)L is a symmetric positive semidefinite matrix.

(2)The off-diagonal entries of ‘L’ are −1.

(3)The diagonal entries of ‘L’ are the vertex degrees and the row sums and the column

sums are all zero.

(4)The eigenvalues of a Laplacian matrix are as follows

0 = λ1 (L) ≤ λ2 (L) ≤ λ3 (L) .......... ≤ λN (L) .

(5)The graph topology is connected only if its zero eigenvalue has multiplicity one. The

second smallest eigenvalue λ2 (L) > 0 is the algebraic connectivity or the fiedler value

[27] of the network.

Standard Graph Models

In this section, some of the basic graph models will be discussed with examples

[25]. These models will be extremely useful in studying the real time networks such as

wireless sensor networks, adhoc networks, delay-tolerant networks. etc.

Regular Graphs

Let G = (V,E) be a graph with |V | = n. If the degree sequence of G is (l, l, l, ....l)

with l ≤ (n− 1), then ‘G’ is called a l-regular graph.
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Figure 2.3: Complete Graph

Complete Graphs

The complete graph is the undirected graph of ‘n’ vertices whose edge set consists

every possible edge as shown in the 2.3. The edge and vertex sets in a complete graph

are as follows

V = {ν1, ν2, ......νn}

E = {(νj, νk) |1 ≤ j ≤ (n− 1), (j + 1) ≤ k ≤ n}

|E| = n(n− 1)

2

Path Graphs

Path graphs are formed by stringing ‘n’ vertices together in a path structure as shown

in the 2.4. It has vertex and edge sets as follows

V = {ν1, ν2, ......νn}

E = {(νj, νj+1) |1 ≤ j ≤ n− 1}
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Figure 2.4: Path Graph

Figure 2.5: Cyclic Graph

Cyclic Graphs

In a cyclic graph, vertices are arranged in a ring format as shown in the Fig. 2.5.

The vertex and edge sets of a cyclic graph are as follows

V = {ν1, ν2, ......νn}

E = {(ν1, ν2) , (ν2, ν3) , ....... (νj, νj+1) , .... (νn−1, νn) , (νn, ν1)}
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Figure 2.6: Distributed Consensus Algorithm for Wireless Sensor Network

2.2 Consensus Algorithms

The consensus is a process to reach an agreement regarding a certain quantity of

interest that depends on the state of all the nodes. A consensus algorithm is an inter-

action rule that specifies the information exchange between a node and all of its direct

neighbors [6]. These algorithms have received a lot of attention due to their ability to

compute the desired global statistics by exchanging information only with the direct

neighbors. Average consensus algorithms have been extensively studied in distributed

agreement and synchronization problems in the multi-agent systems and load balanc-

ing in parallel computers [28]. They can also be utilized in the applications of mobile

autonomous agents [6], [9], [10] and distributed data fusion in sensor networks [15], [29].



2.2 Consensus Algorithms 18

Average Consensus algorithm

Let xi(0) be the real scalar assigned to the node i at t = 0. Average consensus

algorithm computes the average xavg =
∑n
i=1 xi(0)

n
at every node through a decentralized

approach which does not require the sink node/base station as shown in Fig. 2.6. At

each step, node ‘i’ carries out its update based on its local state and communication

with it’s direct neighbors.

xi(t+ 1) = xi(t) + h
∑
j∈Ni

(xj(t)− xi(t)), i = 1, ..., n, (2.2.1)

where h is a consensus parameter and Ni denotes neighbor set of node i. This iterative

method is expressed as the simple linear iteration

x(t+ 1) = Wx(t), t = 0, 1, 2..., (2.2.2)

where W denotes the weight matrix, and Wij is the weight associated with the edge

(i, j). If we assign equal weight h to each link in the network, then from [30], optimal

weight for a given topology is

Wij =


h if, (i, j) ∈ E,

1− hdeg(νi) if, i = j,
0 otherwise.

(2.2.3)

The optimal link weight or the consensus parameter [30] is defined as

h =
2

λ2(L) + λn(L)
. (2.2.4)

and weight matrix W is given by

W = I − hL. (2.2.5)
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where I is an n × n identity matrix. Let λn(W ) be the nth eigenvalue of W, then

λn(W ) = 1− hλn(L) satisfies

1 = λ1(W ) > λ2(W ) > λ3(W ).........λn(W ). (2.2.6)

The weight matrix W satisfies

W = W T ,W1 = 1,W ∈ S

where 1 denotes the [1, 1, ...1]T and S denotes the matrices

S =
{
W ∈ Rn×n |Wij = 0 if i 6= j and {i, j} /∈ ε

}
Node values to achieve asymptotic average consensus is expressed as

lim
t→∞

x(t) = lim
t→∞

W tx(0) =
11Tx(0)

n

Thus, the weight matrix should satisfy the following condition

lim
t→∞

W t =
11T

n
.

It can be also written as

‖W − J‖ < 1

Convergence rate of consensus algorithms is defined as the speed at which every node

converges to the average of the intial state values. To evaluate the convergence rate,

there are many algorithms available in the literature, such as best constant weights

algorithm, metropolis-hastings weights algorithm, max-degree weights algorithm [7].
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2.3 Best Constant Weights Algorithm

Best constant weights algorithm gives the fastest convergence rate among the other

uniform weight methods [12], [23]. In this thesis, we use this algorithm to derive the

closed-form expressions of convergence rate for regular graph models.

(1) Observe the second largest and smallest eigenvalues of W .

(2) Calculate h using |λ2(W )| = |λn(W )|, here λ2(W ) is a second largest eigenvalue of

W and λn(W ) is a smallest eigenvalue of W .

(3) Determine γ(W ) = max {|1− hλ2(L)| , |1− hλn(L)|}.

(4) Calculate the convergence rate [60]

R = 1− γ. (2.3.1)

Convergence time [7] of a consensus algorithm is defined as the number of steps to reach

the global average. Convergence time of a consensus algorithm is measured by

T =
1

log( 1
γ
)
. (2.3.2)

2.4 Metropolis-Hastings Weights Algorithm

In metropolis-hastings weights algorithm, weights between node i and j can be ex-

pressed as

Wij =


1

(d+1)
i 6= j, {i, j} ∈ ε

1− di
d+1

i = j

0 i 6= j, {i, j} ∈ ε

where di is the degree of the node i and d = max(di) is the degree of the graph. These

weights can be called as max-degree weights.
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2.5 Max-Degree Weights Algorithm

In max-degree weights algorithm, weights between node i and j can be expressed as

Wij =


1

max{di,dj}+1
i 6= j, {i, j} ∈ ε

1−
∑
j∈Ni

1
max{di,dj}+1

i = j

0 i 6= j, {i, j} /∈ ε

2.6 Gossip Algorithms

Gossip algorithm is an asynchronous consensus algorithm, where the node pairs

interact and update with the average of their previous state values in every iteration. It

is a distributed operation which enables the sensor nodes to asymptotically determine

the average of their initial gossip variables. Gossip algorithms [31], [32], [33], [34], [35],

[36], [37], [38], [39] have generated a lot of attention in the last decade due to their

ability to achieve the global average using pairwise communications between nodes.

They are quite suitable for data delivery in WSNs [21], [39] as they can be utilized

when the global network topology is highly dynamic, and the network consists of power

constrained nodes. In this algorithm, nodes do not broadcast the information to their

neighbors. To achieve the faster convergence rates, all disjoint pairs gossip at every

time instant considering the periodic gossip sequences. These algorithms are called

periodic gossip algorithms [36], [37]. In every step, periodic gossip sequences enable

the node pairs to participate simultaneously in the gossip process. If the period of a

periodic gossip sequence is equal to the chromatic index of the graph, then it is called as

an optimal periodic gossip sequence. An optimal periodic sequence ensures the faster

convergence rates using a minimum number of steps. As the gossip algorithms are

iterative, the convergence rate of the algorithms greatly influences the performance of
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the WSNs. Convergence rate of a periodic gossip algorithm is characterized by the

magnitude of the second largest eigenvalue of a gossip matrix [35].

Periodic Gossip Algorithms

The gossiping process can be modeled as a discrete time linear system [33] as

x(t+ 1) = M(t)x(t), t = 1, 2, .. (2.6.1)

where x is a vector of node variables, and M(t) denotes a doubly stochastic matrix. If

nodes i and j gossip at time t, then the values of nodes at time t+1 will be updated as

xi(t+ 1) = xj(t+ 1) =
xi(t) + xj(t)

2
. (2.6.2)

M(t) is expressed as M(t)=Pi,j, where Pij=[Plm]n×n for each step (i, j) with entries

defined as

plm =


1
2
, (l,m) ∈ (i, i), (i, j), (j, i), (j, j)

1, l = m, l 6= i, l 6= j;
0, otherwise.

(2.6.3)

A gossip sequence is defined as an sequence of edges for a given network in which each

pair appears exactly once in one time step. For a gossip sequence (i1, j1), (i2, j2), .............(ik, jk),

the gossip matrix is expressed as Pikjk .......Pi2j2Pi1j1 . For a periodic gossip sequence with

period T , if it, jt denotes tth gossip pair, then iT+k = ik for k = 1, 2, ....

Here, we can write variable x at (k + 1) as

x((k+1)T) = Wx(kT), k = 0, 1, 2...n,

where W is a doubly stochastic matrix. T also denotes the number of steps needed to

implement its one-period sub-sequence E.

The subset of edges is such that no two edges are adjacent to the same node and the
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gossips on these edges can be performed simultaneously in one-time step is defined

as multi-gossip. The minimum value of T is defined by the chromatic index. The

value of the chromatic index is either dmax or dmax + 1, where dmax is the maximum

degree of a graph. When multi-gossip is allowed, a periodic gossip sequence E,E,E with

T=chromatic index is called an optimal periodic gossip sequence [35].

Convergence rate

Convergence rate [33], [35] of the periodic gossip algorithms is characterized by the

second largest eigenvalue of weight matrix. Convergence rate (R) at which gossip vari-

able converges to a rank one matrix is determined by the spectral gap [31], [32]

R = 1− |λ2(W )| . (2.6.4)

Convergence time of a gossip algorithm is defined as the number of steps to reach the

global average. It is measured by [40]

T =
1

log( 1
γ
)
. (2.6.5)



Chapter 3

Analysis of Average Consensus
Algorithm for Wireless Sensor
Networks

3.1 Introduction

Distributed average consensus algorithms can be applied to WSNs for data fusion

[15], [21], [22], [23], [29], [41], [42], [43]. As the consensus algorithms are iterative in

nature, the convergence rate of the algorithms greatly influences the performance of the

WSNs, and it is lower bounded by the second smallest eigenvalue of the graph Lapla-

cian [27]. To make this algorithm useful to WSN scenarios, it is necessary to study the

convergence rate for large-scale networks. In [15], authors studied the convergence of

the consensus algorithm for WSNs using random topologies. In [22], authors proposed

the approach for consensus and derived the performance bounds in terms of eigenval-

ues. In [23], authors proposed a new average consensus algorithm and shown that their

algorithm shows faster convergence rate for realistic topologies over existing consensus

protocols. A distributed iterative algorithm based on average consensus has been pro-

posed in [29], to compute the maximum-likelihood estimate of the parameters. In [17],
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the distributed average consensus has been considered when the topology is random,

and the communication in the channels is corrupted by additive noise. It was proved

that running the consensus for a long time reduces the bias of the final average estimate

but increases its variance. A closed-form expression for the mean square error of the

state and the optimum choice of parameters have been derived in [43] to guarantee

the fastest convergence. Consensus on small world and Ramanujan networks has been

studied in [44], [45] and it has been proved that the convergence rate is maximized for

these topologies. Optimal topology framework which increases the convergence rate

and minimizes the energy consumption has been studied in [46]. In our work, we study

the convergence of the consensus algorithm for finite distance-regular networks with the

varying number of nearest neighbors1. These finite sized networks represent the notion

of geographical proximity in the practical WSNs. The main motivation for using the

regular graph model is that most of the practical WSNs are finite sized which cannot

be studied by asymptotic results existing in the literature. In r-nearest neighbor ring

and torus network, an edge exists between every pair of neighbors that are ‘r’ hops

away. If a node’s transmission radius is increased, it will able to communicate with

more number of nodes. So, the variable ‘r’ can model the transmission radius and in

WSNs. Most of the WSN applications, such as space monitoring, cave monitoring, and

underwater ecosystems operate in multiple dimensions. So without loss of generality,

we have also derived the expressions for closed-form expressions of convergence rate

for m-dimensional r-nearest neighbor torus networks. Distributed average consensus

algorithms are simple to implement for WSNs. But, it is generally difficult to predict

its convergence rate for large-scale networks. Although there have been several stud-

ies in the literature, analytic tools to control the network performance for large-scale

1Sateeshkrishna Dhuli, Kumar Gaurav and Y. N. Singh, “Convergence analysis for regular wire-
less consensus networks,” IEEE Sensors Journal , vol. 15, no. 8, pp. 4522-4531, Aug 2015.
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Figure 3.1: 1-nearest neighbor ring network.

WSNs are still inadequate. In this chapter, we derive the generalized expressions of

convergence rate for large-scale WSNs. This kind of analysis helps in estimating the

convergence rate efficiently as it avoids usage of computationally expensive algorithms

which depends on thousands of simulation trials.

Organization

This chapter is organized as follows. In section 3.2, we derive the closed-form ex-

pressions of convergence rate of average consensus algorithm for r-nearest neighbor ring

network. In section 3.3, we derive the closed-form expressions of convergence rate for

r-nearest neighbor torus networks. In section 3.4, we provide the convergence rate ex-

pressions for m-dimensional r-nearest neighbor networks. Numerical results have been

presented in section 3.5. Finally, we discuss the conclusions of this chapter in section

3.6.
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Figure 3.2: 2-nearest neighbor ring network.

3.2 r-Nearest Neighbor Ring Networks

In this section, we derive the convergence rate of average consensus algorithms for

r-nearest neighbor network. A ring network or 1-nearest neighbor ring network is as

shown in the Fig. 3.1. In a 2-nearest neighbor ring network, nodes are connected to

direct neighbors and also to the nodes which are 2-hops away as shown in the Fig. 3.2.

In a r-nearest neighbor ring network, nodes are connected to the nodes which are r-hops

away. Ring network can be represented by a circulant matrix as
a1 a2 ........an−1 an
an a1 .... ....an−2 an−1
. . . .
. . . .
a3 a4 ...........a1 a2
a2 a3 .............an a1

 . (3.2.1)

where at, t = 1 to n represents the topology coefficients.

Definition 3.2.1. The (k+ 1)th eigenvalue [47] of a circulant matrix circ(a1, a2......an)

is defined as

λk = a1 + a2ω
k + ..............+ anω

(n−1)k, k = 0, 1....n− 1 (3.2.2)
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where ω is the nth root of 1, given by ω = e
2πi
n .

The ring network and 2-nearest neighbor ring network are shown in Fig. 3.1 and

Fig. 3.2 respectively. Then adjacency matrix (A) of a ring network is

A =


0 1 0 ..............0 1
1 0 1 ..............0 0
. . . . .
. . . . .
0 0 0 ..............0 1
1 0 0 ..............1 0

 , (3.2.3)

and degree matrix (D) of a ring network is expressed as

D =


2 0 0 ............0 0
0 2 0 .... ........0 0
. . . .
. . . .
0 0 ...............2 0
0 0 ...............0 2

 . (3.2.4)

Lemma 3.2.1. The (k + 1)th eigenvalue of a weight matrix (W ) for ring network [28]

is

λk(W ) = (1− 2h) + 2hcos
(
2πk
n

)
, (3.2.5)

where k = 0, 1, ...(n− 1).

Proof. Using (3.2.3) and (3.2.4), Laplacian matrix for a ring network is expressed as

L =


2 − 1 0 .............0 − 1
−1 2 − 1 .............0 0
. . . . .
. . . . .
0 0 0 .............2 − 1
−1 0 0 .........− 1 2

 . (3.2.6)
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Using (2.2.5) and (3.2.6), we get

W = (I − Lh) =


(1− 2h) h 0 ................0 h

h (1− 2h) h ................0 0
. . . . .
. . . . .

0 0 0 ............(1− 2h) h
h 0 0 ...............h (1− 2h)

. (3.2.7)

(3.2.7) is a circulant matrix. Hence (k+1)th eigenvalue of W is simplified as (3.2.5). �

Theorem 3.2.1. The (k+1)th eigenvalue of a weight matrix (W ) for r-nearest neighbor

ring network is

λk(W ) = (1− 2rh) + 2h
r∑
j=1

cos
(
2πkj
n

)
, (3.2.8)

where k = 0, 1, ...(n− 1).

Proof. The Adjacency matrix (A) of a r-nearest neighbor ring network is

A = circ(0, 1, 1, .., 1︸ ︷︷ ︸
r terms

, 0, 0, .., 0︸ ︷︷ ︸
n−2r−1 terms

, 1, 1, .., 1︸ ︷︷ ︸
r terms

), (3.2.9)

Similarly, degree matrix (D) of a r-nearest neighbor ring network is

D = circ(2r, 0, 0, 0, ....0), (3.2.10)

From (3.2.9) and (3.2.10), the Laplacian matrix (L) is expressed as

L = circ(2r,−1,−1, ..,−1︸ ︷︷ ︸
r terms

, 0, 0, ..., 0︸ ︷︷ ︸
n−2r−1 terms

,−1,−1, ...,−1︸ ︷︷ ︸
r terms

), (3.2.11)

Using (3.2.11) and (2.2.5), weight matrix W for r-nearest neighbor ring network is

expressed as

W = circ(1− 2rh, h, h, ..., h︸ ︷︷ ︸
r terms

, 0, 0, ..., 0︸ ︷︷ ︸
n−2r−1 terms

, h, h, ...., h︸ ︷︷ ︸
r terms

), (3.2.12)
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Applying (3.2.2) on (3.2.12) gives the (k + 1)th eigenvalue of W for r-nearest neighbor

ring network as (3.2.8). �

Theorem 3.2.2. The convergence rate R of an r-nearest neighbor ring network Cr
n for

even number of nodes is expressed as

R = 1−

∣∣∣∣∣∣∣∣
(

sin( (2r+1)π
n )

sin π
n

− cos(πr)

)
4r + 2−

(
sin( (2r+1)π

n )
sin π

n
+ cos(πr)

)
∣∣∣∣∣∣∣∣ . (3.2.13)

Proof. From (3.2.8), second largest eigenvalue of weight matrix for even number of

nodes can be written as

λ1(W ) = (1− 2rh) + 2h
r∑
j=1

cos

(
2πj

n

)
, (3.2.14)

Similarly, smallest eigenvalue of a weight matrix for even number of nodes can be written

as

λn
2
(W ) = (1− 2rh) + 2h

r∑
j=1

cos (πj), (3.2.15)

From best-constant algorithm, γ is minimum, when

|λ1(W )| =
∣∣λn

2
(W )

∣∣ . (3.2.16)

Substitution of (3.2.14) and (3.2.15) in (3.2.16), results in

h =
1

2r + 0.5−
r∑
j=1

cos
(
2πj
n

)
−

r∑
j=1

cos (πj)
. (3.2.17)

Definition 3.2.2. Dirichlet kernel is defined as

1 + 2
r∑
j=1

cos (jx) =
sin
(
r + 1

2

)
x

sin x
2

. (3.2.18)
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Using (3.2.18), h can be rewritten as

h = 1

2r+1− 1
2

(
sin( (2r+1)π

n )
sin πn

−
cos(π(2r+1)

2n )
cos π

2n

) . (3.2.19)

Finally, substitution of (3.2.19) in (3.2.14) gives γ as

γ =

(
sin( (2r+1)π

n )
sin π

n
− cos(πr)

)
4r + 2−

(
sin( (2r+1)π

n )
sin π

n
+ cos(πr)

) . (3.2.20)

Substituting (3.2.20) in (2.3.1) proves the Theorem. �

Theorem 3.2.3. Convergence rate of a r-nearest neighbor ring network Cr
n for n = odd

is expressed as

R = 1−

∣∣∣∣∣∣∣
(

sin( (2r+1)π
n )

sin πn
+

cos(π(2r+1)
2n )

cos π
2n

)

4r+2−
(

sin( (2r+1)π
n )

sin πn
−

cos(π(2r+1)
2n )

cos π
2n

)
∣∣∣∣∣∣∣. (3.2.21)

Proof. From (3.2.8), second largest eigenvalue of weight matrix for n=odd can be writ-

ten as

λ1(W ) = (1− 2rh) + 2h
r∑
j=1

cos

(
2πj

n

)
, (3.2.22)

Similarly, smallest eigenvalue of a weight matrix for n=odd can be written as

λ (n−1)
2

(W ) = (1− 2hr) + 2h
r∑
j=1

cos

(
πj(n− 1)

n

)
, (3.2.23)

γ is minimum, when

|λ1(W )| =
∣∣∣λ (n−1)

2

(W )
∣∣∣ . (3.2.24)
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Substitution of (3.2.22) and (3.2.23) in (3.2.24), results in

h =
1

2r −
r∑
j=1

cos
(
2πj
n

)
−

r∑
j=1

cos
(
πj(n−2)

n

) , (3.2.25)

By using (3.2.18), we can rewrite the h as

h = 1

2r+1− 1
2

(
sin( (2r+1)π

n )
sin πn

−
cos(π(2r+1)

2n )
cos π

2n

) . (3.2.26)

Substituting the (3.2.26) in (3.2.22) results in

γ =

(
sin( (2r+1)π

n )
sin πn

+
cos(π(2r+1)

2n )
cos π

2n

)

4r+2−
(

sin( (2r+1)π
n )

sin πn
−

cos(π(2r+1)
2n )

cos π
2n

) . (3.2.27)

Substituting the (3.2.27) in (2.6.1) proves the theorem. �

3.3 r-Nearest Neighbor Torus Network

A torus network or 1-nearest neighbor torus is as shown in the Fig. 3.3. In a 2-

nearest neighbor torus network, nodes are connected to direct neighbors and also to the

nodes which are 2-hops away as shown in the Fig. 3.4. Similarly, nodes are connected

to direct neighbors and also to the nodes which are r-hops away in a r-nearest neighbor

torus network. A torus network can be represented by n× n block circulant matrix A

as

A =


A0 A1 ........An1−2 An1−1
An1−1 A0 .... ....An1−3An1−2
. . . .
. . . .
A1 A2 ..........An1−1 A0

 , (3.3.1)
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Figure 3.3: Torus Network

Figure 3.4: 2-Nearest Neighbor Torus Network

Let the number of nodes n = n2
1, then each block Ai, for i = 0, 1...(n1 − 1) represents

n1 × n1 circulant matrices.
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Lemma 3.3.1. The eigenvalue λj1,j2 of Wk1,k2 of 1-nearest neighbor torus [28] is

λj1,j2(Wk1,k2) = 1− 4h+ 2h cos

(
2πj1
k1

)
+ 2h cos

(
2πj2
k2

)
, (3.3.2)

where j1 = 0, 1, 2, ...(k1 − 1), j2 = 0, 1, 2, ...(k2 − 1).

Proof. A torus network Tk1,k2 is a result of the Cartesian product of two ring networks

Ck1 and Ck2 with k1 and k2 nodes respectively. The eigenvalue expression for Laplacian

of a torus network is the addition of corresponding eigenvalues of Laplacian of two

circulant networks with k1 and k2 nodes [28]. The (j1 + 1)th eigenvalue of a Laplacian

matrix (L) for a ring network is

λj1(L) = 2− 2 cos
2πj1
k1

, (3.3.3)

The (j2 + 1)th eigenvalue of a Laplacian matrix (L) for a ring network is

λj2(L) = 2− 2 cos
2πj2
k2

, (3.3.4)

Using (3.3.3) and (3.3.4), we can write the eigenvalue of a Laplacian matrix for a torus

network is

λj1,j2(L) = 4− 2 cos
2πj1
k1
− 2 cos

2πj2
k2

(3.3.5)

From (3.3.5), (2.2.5), we can write the eigenvalue of a Wk1,k2 for a torus network as

(3.3.2). �

Theorem 3.3.1. The eigenvalue λj1,j2 of Wk1,k2 for r-nearest neighbor torus is

λj1,j2(Wk1,k2) = (1− 4rh) + 2h
r∑
j=1

cos
(

2πj1j
k1

)
+ 2h

r∑
j=1

cos
(

2πj2j
k2

)
, (3.3.6)

where j1 = 0, 1, 2, ...(k1 − 1), j2 = 0, 1, 2, ...(k2 − 1).
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Proof. The weight matrix for r-nearest neighbor torus is

W = circ(Wk1−2rhIk1 , hIk1 , hIk1 , ...hIk1︸ ︷︷ ︸
r terms

, ... 0, 0, 0, 0, ...0︸ ︷︷ ︸
k2−2r−1 terms

.. hIk1 , hIk1 , ...hIk1︸ ︷︷ ︸
r terms

), (3.3.7)

From (3.2.2) and (3.3.7), we obtain

λj1,j2(Wk1,k2) = λ (Wk1)− 2rh+ 2rh
r∑
j=1

cos

(
2πjj2
k2

)
, (3.3.8)

The (j1 + 1)th eigenvalue of a weight matrix (Wk1) is

λj1(Wk1) = (1− 2rh) + 2h
r∑
j=1

cos
(

2πj1j
k1

)
, (3.3.9)

Therefore, substitution of (3.3.9) in (3.3.8) results in (3.3.6). �

Theorem 3.3.2. Convergence rate of an r-nearest neighbor torus T rk1,k2 for k1 = k2 =

even, is expressed as

R = 1−

∣∣∣∣∣∣∣∣
r + 0.5 + 0.5

(
sin( (2r+1)π

kmax
)

sin( π
kmax

)
− 2 cosπr

)
(1.5 + 3r)− 0.5

(
sin( (2r+1)π

kmax
)

sin( π
kmax

)
+ 2 cosπr

)
∣∣∣∣∣∣∣∣ . (3.3.10)

Proof. Using (3.3.6), we can write the second largest eigenvalue of a weight matrix for

k1 = k2 = even can be written as

(1− 2hr) + 2h
r∑
j=1

cos

(
2πj

kmax

)
, (3.3.11)

where kmax = max(k1, k2).

Using (3.3.6), the smallest eigenvalue of a weight matrix for k1 = k2 = even can be

written as

λ k1
2
,
k2
2

(W ) = (1− 4hr) + 4h
r∑
j=1

cos (πj), (3.3.12)
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γ is minimum, when

SLEM =
∣∣∣λ k1

2
,
k2
2

(W )
∣∣∣ . (3.3.13)

Here, SLEM is abbreviated as second largest eigenvalue modulus.

Substitution of (3.3.11) and (3.3.12) in (3.3.13) results in

h =
1

3r −
r∑
i=1

cos
(

2πi
kmax

)
− 2

r∑
i=1

cos (πi)
, (3.3.14)

Substitution of (3.3.14) in (3.3.11) results in

γ =

r + 0.5 + 0.5

(
sin( (2r+1)π

kmax
)

sin( π
kmax

)
− 2 cosπr

)
(1.5 + 3r)− 0.5

(
sin( (2r+1)π

kmax
)

sin( π
kmax

)
+ 2 cosπr

) . (3.3.15)

Finally, we can prove the theorem using (3.3.15) and (2.3.1). �

Theorem 3.3.3. Convergence rate of an r-nearest neighbor torus T rk1,k2 for k1 = k2 =

odd, is expressed as

R = 1−

∣∣∣∣∣∣∣∣
r+0.5+0.5

 sin

(
π(2r+1)(k1−1)

2k1

)
sin

(
π(k1−1)

2k1

) −
sin( (2r+1)π

kmax )
sin( π

kmax )
+

sin

(
π(2r+1)(k2−1)

2k2

)
sin

(
π(k2−1)

2k2

)


(1.5+3r)−0.5

 sin

(
π(2r+1)(k1−1)

2k1

)
sin

(
π(k1−1)

2k1

) +
sin( (2r+1)π

kmax )
sin( π

kmax )
+

sin

(
π(2r+1)(k2−1)

2k2

)
sin

(
π(k2−1)

2k2

)


∣∣∣∣∣∣∣∣. (3.3.16)

Proof. Using (3.3.6), we can write the second largest eigenvalue of a weight matrix for

k1 = k2 = odd as

(1− 2hr) + 2h
r∑
j=1

cos

(
2πj

kmax

)
, (3.3.17)

where kmax = max(k1, k2).
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Similarly, smallest eigenvalue of a weight matrix for k1 = k2 = odd as

λ (k1−1)
2

,
(k2−1)

2

(W ) = (1− 4hr) + 2h
r∑
j=1

cos
(
πj(k1−1)

k1

)
+ 2h

r∑
j=1

cos
(
πj(k2−1)

k2

)
. (3.3.18)

Convergence factor γ is minimum when,

SLEM =
∣∣∣λ (k1−1)

2
,
(k2−1)

2

(W )
∣∣∣ . (3.3.19)

Substitution of (3.3.17) and (3.3.18) in (3.3.19) results in

h = 1

3r−
r∑
i=1

cos
(

2πi
k2

)
−

r∑
i=1

cos
(
πi(k1−1)

k1

)
−

r∑
i=1

cos
(
πi(k2−1)

k2

) . (3.3.20)

Using (3.2.18), h can be further simplified as

h = 1

1.5+3r−0.5

 sin( (2r+1)π
kmax )

sin( π
kmax )

+
sin

(
π(2r+1)(k1−1)

2k1

)
sin

(
π(k1−1)

2k1

) +
sin

(
π(2r+1)(k2−1)

2k2

)
sin

(
π(k2−1)

2k2

)
 . (3.3.21)

Substitution of (3.3.21) in (3.3.17) results in γ as

γ =

r+0.5+0.5

 sin

(
π(2r+1)(k1−1)

2k1

)
sin

(
π(k1−1)

2k1

) −
sin( (2r+1)π

kmax )
sin( π

kmax )
+

sin

(
π(2r+1)(k2−1)

2k2

)
sin

(
π(k2−1)

2k2

)


(1.5+3r)−0.5

 sin

(
π(2r+1)(k1−1)

2k1

)
sin

(
π(k1−1)

2k1

) +
sin( (2r+1)π

kmax )
sin( π

kmax )
+

sin

(
π(2r+1)(k2−1)

2k2

)
sin

(
π(k2−1)

2k2

)
 . (3.3.22)

Finally, substitution of γ in (2.3.1) proves the theorem. �

3.4 m-Dimensional r-Nearest Neighbor Torus Net-

work

In some WSN applications, nodes need to operate in more than two dimensions such

as under water WSNs, WSNs on remote hilly areas. This section investigates the effect

of network dimension on convergence rate for average consensus algorithms.
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Theorem 3.4.1. The eigenvalues λj1,j2.....jm of weight matrix Wk1,k2,....km for m-dimensional

r-nearest neighbor torus is

λj1,j2.....jm(W ) = (1− 2mrh) + 2h
r∑
j=1

m∑
l=1

cos

(
2πjl
kl

)
, (3.4.1)

where jl = 0, 1, 2, ...(kl − 1).

Proof. From (3.3.5), the eigenvalue expression for two dimensional r-nearest neighbor

torus is

λj1,j2(Wk1,k2) = (1− 4rh) + 2h
r∑
l=1

cos
(

2πj1l
k1

)
+ 2h

r∑
l=1

cos
(

2πj2l
k2

)
, (3.4.2)

Similarly, eigenvalue expression for three dimensional r-nearest neighbor torus can be

expressed as

λj1,j2,j3(Wk1,k2,k3) = (1− 6rh) + 2rh
r∑
l=1

cos
(

2πj1l
k1

)
+ 2rh

r∑
l=1

cos
(

2πj2l
k2

)
+ 2rh

r∑
l=1

cos
(

2πj3l
k3

)
,

(3.4.3)

Hence, without loss of generality, from (3.4.2) and (3.4.3), the eigenvalue expression of

m-dimensional r-nearest neighbor torus can be written as (3.4.1). �

Theorem 3.4.2. Convergence rate of a m-dimensional r-nearest neighbor torus for

k1 = k2 = .... = km = even is expressed as

R = 1−

∣∣∣∣∣∣∣
(m−1)(r+0.5)+

0.5 sin( (2r+1)π
kmax )

sin( π
kmax )

−m
2
cos(πr)

(m+1)(r+0.5)−
0.5 sin( (2r+1)π

kmax )
sin( π

kmax )
−m

2
cos(πr)

∣∣∣∣∣∣∣. (3.4.4)

Proof. From (3.4.1), second largest eigenvalue of a weight matrix can be written as
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(1−mhr) + 2h
r∑
j=1

cos
(

2πj
kmax

)
, (3.4.5)

, where kmax = max(k1, k2).

Similarly, smallest eigenvalue of a weight matrix can be written as

λ k1
2
,
k2
2
.... km

2

(W ) = (1− 2mhr) + 2mh
r∑
j=1

cos (πj), (3.4.6)

Convergence parameter γ is minimum when

SLEM =
∣∣∣λ k1

2
,
k2
2
,........ km

2

(W )
∣∣∣ . (3.4.7)

Substitution of (3.4.5) and (3.4.6) in (3.4.7) results in

h =
1

r(m+ 1)−
r∑
j=1

cos
(

2πi
kmax

)
−m

r∑
j=1

cos (πi)
, (3.4.8)

where kmax = max(k1, k2...km).

Using (3.2.18), h can be further simplified as

h =
1

(m+ 1)(r + 0.5)− 0.5 sin( (2r+1)π
kmax

)
sin( π

kmax
)
− m cosπr

2

. (3.4.9)

Substitution of (3.4.9) in (3.4.5) results in γ as

γ =
(m−1)(r+0.5)+

0.5 sin( (2r+1)π
kmax )

sin( π
kmax )

−m
2
cos(πr)

(m+1)(r+0.5)−
0.5 sin( (2r+1)π

kmax )
sin( π

kmax )
−m

2
cos(πr)

. (3.4.10)

Finally, substitution of γ in (2.3.1) proves the theorem.

�
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Theorem 3.4.3. Convergence rate of a m-dimensional r-nearest neighbor torus for

k1 = k2 = .... = km = odd is expressed as

R = 1−

∣∣∣∣∣∣∣∣
(m−1)(r+0.5)+ 1

2

 sin
(r+0.5)2π
kmax

sin π
kmax

−
m∑
l=1

sin
(r+0.5)π(kl−1)

kl

sin
π(kl−1)

2kl


(m+1)(r+0.5)− 1

2

 sin
(r+0.5)2π
kmax

sin π
kmax

+
m∑
l=1

sin
(r+0.5)π(kl−1)

kl

sin
π(kl−1)

2kl



∣∣∣∣∣∣∣∣. (3.4.11)

Proof. From (3.4.1), second largest eigenvalue of a weight matrix can be written as

(1− 2hr) + 2h
r∑
j=1

cos
(

2πj
k1

)
, (3.4.12)

Similarly, smallest eigenvalue of a weight matrix can be written as

λ (k1−1)
2

,
(k2−1)

2
....

(km−1)
2

(W ) = (1− 2mhr) + 2h
m∑
l=1

r∑
j=1

cos
(
πj(kl−1)

kl

)
. (3.4.13)

Convergence parameter γ is minimum when

SLEM =
∣∣∣λ (k1−1)

2
,
(k2−1)

2
,.......,

(km−1)
2

(W )
∣∣∣ . (3.4.14)

Finally, substitution of (3.4.12) and (3.4.13) in (3.4.14) results in

h =
1

r(m+ 1)−
r∑
l=1

cos
(

2πl
kmax

)
−

m∑
j=1

r∑
i=1

cos
(
πi(kj−1)

kj

) . (3.4.15)

Using (3.2.18), h can be further simplified as

h = 1

(m+1)(r+0.5)−
0.5 sin( (2r+1)π

kmax )
sin( π

kmax )
−
m∑
l=1

0.5 sin

(
(2r+1)π(kl−1)

2kl

)
sin

(
π(kl−1)

2kl

)
. (3.4.16)

Substitution of (3.4.16) in (3.4.12) results in γ as

γ =

(m−1)(r+0.5)+ 1
2

 sin
(r+0.5)2π
kmax

sin π
kmax

−
m∑
l=1

sin
(r+0.5)π(kl−1)

kl

sin
π(kl−1)

2kl


(m+1)(r+0.5)− 1

2

 sin
(r+0.5)2π
kmax

sin π
kmax

+
m∑
l=1

sin
(r+0.5)π(kl−1)

kl

sin
π(kl−1)

2kl

 . (3.4.17)
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Finally, substitution of (3.4.17) in (2.3.1) completes the proof. �

3.5 Numerical Results and Discussion

In this section, we present the numerical results to examine the effect of n, m, and r on

convergence rate of average consensus algorithms. We have varied the network size from

n= 22 to 500 and r from 2 to 10. Plots of the h versus n for the r-nearest neighbor ring

network are shown in Fig. 3.5. We can observe that h increases with n for small-scale

networks. From n = 40, convergence rate becomes constant for large-scale networks.

As r values are varied from 2 to 10, h decreases with the values of r. Increase in r

results improves the connectivity in the network which helps to reach the convergence

rate with low h values. Plots of γ versus n are shown in the Fig. 3.6. We can notice that

for small scale networks, γ is increasing with n in small-scale networks. As shown in the

Fig. 3.6, γ values approaches to unity for large-scale networks. However, it has been

observed that increase in node’s transmission radius decreases the γ values. To examine

the effect of n and r on convergence rate, Fig. 3.7 has been plotted. We can observe

that, convergence rate of average consensus algorithms decreases with the number of

nodes exponentially and increases with the node’s transmission radius. Hence, it is

essential to increase the node’s transmission radius for fast convergence rates in large-

scale WSNs. Fig. 3.8, Fig .3.9, and Fig. 3.10 have been plotted to investigate the effect

of number of nodes on h, γ, and R respectively in a torus network. It has been observed

that, consensus parameter increases with the n initially and becomes constant for high

values of n. Convergence parameter becomes constant and approaches unity for large-

scale WSNs. As shown in the Fig. 3.10, convergence rate decreases with the increase

in the values of k1 and k2. Fig. 3.11, Fig. 3.12, and Fig. 3.13 have been plotted
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to understand the effect of network dimension on consensus parameter, convergence

parameter, and convergence rate respectively. We observe that, consensus parameter

decreases with the network dimension exponentially. Convergence parameter increases

with the network dimension and approaches unity for large-scale WSNs. From Fig. 3.13,

we can see that convergence rate decreases with the network dimension exponentially.

However, for high r values convergence rates are significantly improved.

Convergence rate and Transmission Radius Optimization

Numerical results demonstrated that nearest neighbors or node’s transmission radius

increases the convergence rate, which is a primary objective of consensus algorithm.

However, the node’s power consumption [48] is

P =

(
r√
n

)α
where α is a path-loss exponent. Node’s transmission radius is directly proportional to

node’s power consumption. Increase in r values improve the convergence rate of average

consensus algorithm significantly but at the cost of node’s power consumption. Hence,

it is essential to compute the optimal transmission radius in large-scale WSNs which

can improve the convergence rate by considering the node’s power consumption.

maximize R

subject to P ≤ Pmax, n ≤ nmax,

where Pmax is a maximum power consumption defined based on the WSN resource

requirements.
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Figure 3.5: Effect of number of nodes on consensus parameter for r-nearest neighbor
ring network.

Figure 3.6: Effect of number of nodes on convergence parameter for r-nearest neighbor
ring network.

3.6 Conclusions

In this chapter, the analytic expressions for optimal consensus parameter, opti-

mal convergence parameter have been derived to estimate the convergence rate of m-
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Figure 3.7: Effect of number of nodes on convergence rate for r-nearest neighbor ring
network.
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Figure 3.8: Effect of k1 and k2 on consensus parameter for torus network for r=1.

dimensional WSNs. It has been investigated that nodes in multidimensional WSNs

require more nearest neighbors or large transmission radius without affecting the power

consumption. An optimization framework has been proposed to design and control the
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Figure 3.9: Effect of k1 and k2 on convergence parameter for torus network for r=1.
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Figure 3.10: Effect of k1 and k2 on convergence rate for torus network for r=1.

performance of the consensus algorithm on WSNs. Furthermore, the analytic expres-

sions derived in this chapter are extremely useful to exactly estimate the convergence

rate for large WSNs with less computational complexity.



3.6 Conclusions 46

Figure 3.11: Effect of network dimension on consensus parameter for m-dimensional
torus network for k1 = 16, k2 = 18, k3 = 20, k4 = 22, k5 = 24 and k6 = 26.

Figure 3.12: Effect of network dimension on convergence parameter for m-dimensional
torus network for k1 = 16, k2 = 18, k3 = 20, k4 = 22, k5 = 24 and k6 = 26.
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Figure 3.13: Effect of network dimension on convergence rate for m-dimensional torus
network for k1 = 16, k2 = 18, k3 = 20, k4 = 22, k5 = 24 and k6 = 26.



Chapter 4

Analysis of Average Consensus
Algorithms for Asymmetric Regular
Networks

4.1 Introduction

Convergence rate of the consensus algorithms has been widely studied in the liter-

ature. However, most of the prior works have modeled the networks as an undirected

graph due to the computational tractability [7], [48], [30], [46], [49], [50]. The undi-

rected graph cannot model the applications which involve asymmetric links and may

not characterize the actual networks performance. In practice, wireless channels in low

power wireless networks such as WSNs are known to be time-varying, unreliable, and

asymmetric [51], [52], [53], [54], [55], [56], [57]. Therefore, it is important to consider

the WSN as a directed graph to accurately estimate the convergence rate. Convergence

rate is characterized by the second largest eigenvalue of Laplacian matrix [58], [59].

But, determining the convergence rate for large-scale networks is a computationally

challenging task. To evaluate the convergence rate, there are many algorithms available

in the literature, such as best constant weights algorithm, metropolis-hastings weights
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algorithm, max-degree weights algorithm [7].

In this chapter, we use the best constant weights algorithm to derive the explicit expres-

sions of convergence rate. In [49], authors modeled the WSN as an r-nearest neighbor

network and derived the explicit expressions for convergence time of average consensus

algorithms. However, they considered the undirected graph model which cannot study

the time-varying wireless channels of WSNs. In [60], authors modeled the WSN as a di-

rected graph and derived the explicit expressions of convergence rate for m-dimensional

lattice networks. In [58], authors modeled the network as a weighted directed graph

and studied the expected rate of convergence in an asymmetric network.

In this chapter, we model the WSN as a directed graph and derive the explicit ex-

pressions of convergence rate 2 for regular graphs. Regular graph models are simple

structures which allow the theoretical analysis that incorporates important parameters

like connectivity, scalability, network size, node overhead, and network dimension [48],

[61], [49]. These models represent the geographical proximity in the practical wireless

sensor networks. In this chapter, we model the WSN as a ring, torus, r-nearest neighbor

network, m-dimensional torus networks and derive the explicit expressions for conver-

gence rate. Node’s transmission radius or node overhead can be modeled by the nearest

neighbors. Finally, we measure the absolute error to examine the accuracy of directed

graph modeling over undirected graph modeling.

Organization

This chapter is organized as follows. In section 4.2, we model the WSN as a ring

and derive the explicit expressions of convergence rate in terms of the number of nodes

2Sateeshkrishna Dhuli and Yatindra. Nath. Singh, “Analysis of Average Consensus Algorithm
for Asymmetric Regular Networks,” arXiv preprint arXiv:1806.03932 , 2018.
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and network overhead. In section 4.3, we model the WSN as a torus network and m-

dimensional torus network and derive the explicit expressions of convergence rate in

terms of the number of nodes and network dimension. In section 4.4, we model the

WSN as a r-neighbor ring network and derive the explicit expressions of convergence

rate in terms of nearest neighbors and number of nodes. In section 4.5, we present the

numerical results and study the effect of network parameters on the convergence rate.

Finally, we present the conclusions of this chapter in section 4.6.

4.2 Explicit Formulas of Convergence rate for Ring

Networks

In this section, we derive the explicit expressions of convergence rate for a ring

network. Ring network with asymmetric links is as shown in the Fig. 4.1. We assume

that forward link weight is 1−a
2

and backward link weight is 1+a
2

, here ‘a’ denotes the

asymmetric link factor. In this chapter, we model the WSN as a weighted graph.

Let G = (V,E), be a directed graph with node set V = {1, 2, ......n} and an edge set

E ⊆ V ×V . In a weighted network, the entries [62] of the Laplacian matrix G is defined

as

Li,j =


−li,j i 6= j (i, j) ∈ E,∑N
k=1 li,k i = j (i, k) ∈ E,

0 Otherwise
(4.2.1)

where li,k represents the link weight between node i and k.

Theorem 4.2.1. The (j + 1)th eigenvalue of Laplacian matrix for a ring network is

expressed as

λj(L) = 1− cos
2πj

n
+ ai sin

2πj

n
(4.2.2)
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Figure 4.1: Asymmetric Ring Network

Proof. Asymmetric ring network is as shown in the Fig. 4.1. Thus, Laplacian matrix

can be written as

L = circ(1,
−1 + a

2
, 0, 0, .., 0︸ ︷︷ ︸
n−3 terms

,
−1− a

2
) (4.2.3)

Applying (3.2.2), (j + 1)th eigenvalue of the Laplacian matrix can be written as

λj(L) = 1− cos
2πj

n
+ ai sin

2πj

n
(4.2.4)

�

Theorem 4.2.2. Convergence rate of a ring network for even number of nodes is ex-

pressed as

R = 1−
∣∣∣∣2− 2a2 − 2 cos 2π

n
+ 2a2 cos 2π

n

3− a2 + (−1 + a2) cos 2π
n

∣∣∣∣ . (4.2.5)

Proof. For n=even, λ1(L) is the second smallest value of Laplacian matrix and λn
2
(L)

is the largest of the Laplacian matrix.
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From best-constant algorithm, γ is minimum, when

|1− hλ1(L)| =
∣∣1− hλn

2
(L)
∣∣ (4.2.6)

Substituting the expressions of λ1(L) and λn
2
(L) in (4.2.6), gives the

h =
2 + 2 cos 2π

n

3− cos2 2π
n

+ 2 cos 2π
n
− a2 sin2 2π

n

. (4.2.7)

Thus, convergence factor (γ) is expressed as

γ =

∣∣∣∣1− h(1− cos

(
2π

n

)
+ ia sin

(
2π

n

))∣∣∣∣ (4.2.8)

Substituting the γ in (2.3.1) completes the proof. �

Theorem 4.2.3. Convergence rate of a ring network for odd number of nodes is ex-

pressed as

R = 1−
∣∣∣∣√2+4a2+2a4−2(−1+a4) cos π

n
+(−1+a2)2 cos 2π

n
+2 cos 3π

n
−2a4 cos 3π

n
+cos 4π

n
−2a2 cos 4π

n
+a4 cos 4π

n√
2(2−(−1+a2) cos πn+(−1+a2) cos 2π

n )

∣∣∣∣.
(4.2.9)

Proof. For n=odd, λ1(L) is the second smallest eigenvalue of Laplacian matrix and

λn−1
2

(L) is the largest eigenvalue of a Laplacian matrix.

Thus, from best constant algorithm γ is minimum when

|1− hλ1(L)| =
∣∣∣1− hλn−1

2
(L)
∣∣∣ (4.2.10)

Substituting the λ1(L) and λn−1
2

(L) expressions in (4.2.10) results

∣∣1− h (1− cos 2π
n

+ ia sin 2π
n

)∣∣ =
∣∣1− h (1 + cos π

n
+ ia sin π

n

)∣∣ (4.2.11)
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Figure 4.2: Asymmetric Torus Network

Thus, we obtain

h =
2(cos πn+cos 2π

n )
− cos2 2π

n
+2 cos 2π

n
−a2 sin2 2π

n
+cos2 π

n
+a2 sin2 π

n
+2 cos π

n

(4.2.12)

Finally, we get γ as

γ =

∣∣∣∣1− h(1− cos

(
2π

n

)
+ ia sin

(
2π

n

))∣∣∣∣ (4.2.13)

Substituting the (4.2.13) value in (2.3.1) completes the proof. �

4.3 Explicit Formulas of Convergence rate for Torus

Networks

Torus network with asymmetric links is shown in Fig. 4.2. In this section, we derive

the explicit expressions of convergence rate for a torus network and m-dimensional torus
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networks.

Theorem 4.3.1. The eigenvalue of a torus network is expressed as

λj1,j2(L) = 2− cos 2πj1
k1
− cos 2πj2

k2
+ ia

(
sin 2πj1

k1
+ sin 2πj2

k2

)
. (4.3.1)

Proof. A torus network is formed by the cartesian product of two ring networks. The

eigenvalue of a torus network will be the addition of eigenvalues of the corresponding

ring networks [28].

λj1,j2(L) = λj1(L) + λj2(L) (4.3.2)

Here, we assume that the torus is formed by two ring networks with k1 and k2 nodes

respectively. Then (j1 + 1)th eigenvalue of the Laplacian matrix for a ring network can

be expressed as

λj1(L) = 1− cos
2πj1
k1

+ ia sin
2πj1
k1

(4.3.3)

Similarly, (j2 + 1)th eigenvalue of the Laplacian matrix for ring network is expressed as

λj2(L) = 1− cos
2πj2
k2

+ ia sin
2πj2
k2

(4.3.4)

Finally, we obtain (4.3.1) using (4.3.2), (4.3.3), and (4.3.4) . �
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Theorem 4.3.2. Convergence rate of a torus network for k1 = even and k2 = even is

expressed as

R = 1−

∣∣∣∣∣∣
a2 sin2

(
2π
kmax

)
+ cos2

(
2π
kmax

)
+ 6 cos

(
2π
kmax

)
+ 9

a2 sin2
(

2π
kmax

)
+ cos2

(
2π
kmax

)
− 2 cos

(
2π
kmax

)
− 15

∣∣∣∣∣∣ , (4.3.5)

where kmax=max(k1, k2).

Proof. For k1 = even and k2 = even, λ k1
2
,
k2
2

(L) is the largest eigenvalue of the Laplacian

matrix. Thus, γ is minimum when

SLEM =
∣∣∣1− hλ k1

2
,
k2
2

(L)
∣∣∣ (4.3.6)

Substituting the second smallest eigenvalue of Laplacian matrix and λ k1
2
,
k2
2

(L) in (4.3.6),

results in∣∣∣∣1− h(1− cos
2π

kmax
+ ia sin

2π

kmax

)∣∣∣∣ = |1− 4h| (4.3.7)

where kmax=max(k1, k2).

Simplifying (4.3.7) to obtain

h =
6 + 2 cos 2π

kmax

15− cos2 2π
kmax

+ 2 cos 2π
kmax
− a2 sin2 2π

kmax

(4.3.8)

Finally, we obtain the convergence parameter γ as

γ =

∣∣∣∣1− h(1− cos
2π

kmax
+ ia sin

2π

kmax

)∣∣∣∣ (4.3.9)

Thus, substituting (4.3.9) in (2.3.1) proves the Theorem.

�
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Theorem 4.3.3. Convergence rate of a torus network for k1 = odd and k2 = odd is

expressed as

R = 1−

∣∣∣∣∣∣∣
√√√√a2p21 sin2 2π

kmax

q21
+

(
1−

p1 sin2 π
kmax

q1

)2

∣∣∣∣∣∣∣ . (4.3.10)

where

p1 = 4

(
2 cos

(
π

k1

)
+ cos

(
π

k2

)
+ cos

(
2π

k2

)
+ 1

)
,

q1 = − a2 sin2

(
2π

k2

)
+ a2

(
sin

(
π

k1

)
+ sin

(
π

k2

))
2

− cos2
(

2π

k2

)
+

(
2 cos

(
π

k1

)
+ cos

(
π

k2

))
2

+ 8 cos

(
π

k1

)
+ 4 cos

(
π

k2

)
+ 2 cos

(
2π

k2

)
+ 3,

where kmax=max(k1, k2, ...km).

Proof. For k1 = odd and k2 = odd, λ1,0(L) is the second smallest eigenvalue and

λ k1−1
2

,
k2−1

2

(L) is the largest eigenvalue of the Laplacian matrix. Thus, γ is minimum

when

SLEM =
∣∣∣1− hλ k1−1

2
,
k2−1

2

(L)
∣∣∣ (4.3.11)

Substitute the expressions of second largest eigenvalue of Laplacian matrix and λ k1−1
2

,
k2−1

2

(L)

in (4.3.11) results in

∣∣∣1− h(1− cos 2π
kmax

+ ia sin 2π
kmax

)∣∣∣ =
∣∣∣1− h(2− cos π(k1−1)

k1
− cos π(k2−1)

k2
+ ia

(
sin π(k1−1)

k1
+ sin π(k2−1)

k2

))∣∣∣
(4.3.12)

where kmax=max(k1, k2, ...km).
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Thus, we get

h =
−2 cos( 2π

kmax
)+2

(
2 cos

(
π(k1−1)

k1

)
+cos

(
π(k2−1)

k2

))
−2

0.16 sin2( 2π
kmax

)−0.16
(
sin
(
π(k1−1)

k1

)
+sin(π(kmax−1)

kmax
)
)
2+cos2( 2π

kmax
)−2 cos( 2π

kmax
)−
(
2 cos

(
π(k1−1)

k1

)
+cos

(
π(k2−1)

k2

))
2+4

(
2 cos

(
π(k1−1)

k1

)
+cos

(
π(k2−1)

k2

))
−3

(4.3.13)

Finally, we obtain the convergence parameter γ as

γ =

∣∣∣∣1− h(1− cos
2π

kmax
+ ia sin

2π

kmax

)∣∣∣∣ (4.3.14)

Substituting the (4.3.14) in (2.3.1) results in (4.3.10). �

Theorem 4.3.4. The eigenvalue of an m-dimensional torus network is expressed as

λj1,j2.....jm(L) = m−
m∑
l=1

cos
2πjl
kl

+ ia

(
m∑
l=1

sin
2πjl
kl

)
. (4.3.15)

Proof. Cartesian product of ‘m’ ring networks results in m-dimenional torus network.

The eigenvalue of a torus network will be the addition of eigenvalues of corresponding

‘m’ ring networks [28].

λj1,j2.....jm(L) = λj1(L) + λj2(L) + ....+ λj1(L) + λjm(L) (4.3.16)

Here, we assume that the torus is formed by cartesian product of ’m’ ring networks

with km nodes, m = 1, 2..... Then (j1 + 1)th eigenvalue of the Laplacian matrix for ring

network with k1 nodes can be expressed as

λj1(L) = 1− cos
2πj1
k1

+ ia sin
2πj1
k1

(4.3.17)

The (j2 + 1)th eigenvalue of the Laplacian matrix for ring network with k2 nodes is

expressed as

λj2(L) = 1− cos
2πj2
k2

+ ia sin
2πj2
k2

(4.3.18)
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Similarly, (jm + 1)th eigenvalue of a Laplacian matrix for ring network with km nodes

is expressed as

λjm(L) = 1− cos
2πjm
km

+ ia sin
2πjm
km

(4.3.19)

We can write the eigenvalue of a m-dimensional torus network as (4.3.15) using (4.3.16),

(4.3.17), (4.3.18), and (4.3.19) . �

Theorem 4.3.5. Convergence rate of an m-dimensional torus network for k1 = k2 =

...km = even is expressed as

R = 1−
∣∣∣∣a2 sin2( 2π

k1

)
+(4m−2) cos

(
2π
k1

)
+cos2

(
2π
k1

)
+(1−2m)2

a2 sin2
(

2π
k1

)
+cos2

(
2π
k1

)
−2 cos

(
2π
k1

)
−4m2+1

∣∣∣∣. (4.3.20)

Proof. For k1 = k2 = ..... = km = even, largest eigenvalue of Laplacian matrix is

λ k1
2
,
k2
2
,..... kn

2

(L). Thus, γ is minimum when

SLEM =
∣∣∣1− hλ k1

2
,
k2
2
,..... kn

2

(L)
∣∣∣ (4.3.21)

Substituting the second largest eigenvalue of Laplacian matrix and λ k1
2
,
k2
2
,..... kn

2

(L) in

(4.3.21) results in

SLEM = |1− 2mh| (4.3.22)

Thus, we obtain

h =
2− 2 cos 2π

kmax
− 4m

1− 4m2 + cos2 2π
kmax
− 2 cos 2π

kmax
+ a2 sin2 2π

kmax

(4.3.23)

Substituting the h in
∣∣∣1− h(1− cos 2π

kmax
+ ia sin 2π

kmax

)∣∣∣ gives γ. Finally, substituting

γ value in (2.3.1) results in (4.3.20). �
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4.4 Explicit Formulas of Convergence rate for r-

Nearest Neighbor Networks

In this section, we derive the explicit expressions of convergence rate for r-nearest

neighbor networks. In this network, nodes with in the distance ‘r ’ hops in the ring

network are connected. The variable ‘r ’ models the nodes’ transmission radius or node

overhead in WSNs.

Theorem 4.4.1. The (j + 1)th eigenvalue of a r-nearest neighbor ring network is ex-

pressed as

λj(L) = r −
r∑

k=1

cos
2πjk

n
+ ia

r∑
k=1

sin
2πjk

n
(4.4.1)

Proof. Laplacian matrix of a r-nearest neighbor ring network with n can be written as

L = circ

r, −1 + a

2
,
−1 + a

2
, ...,
−1 + a

2
,︸ ︷︷ ︸

r terms

0, 0, ..., 0,︸ ︷︷ ︸
n−2r−1 terms

−1− a
2

,
−1− a

2
, ....,

−1− a
2︸ ︷︷ ︸

r terms

 (4.4.2)

From (3.2.2) and (4.4.2), we obtain (4.4.1). �

Theorem 4.4.2. Convergence rate of a r-nearest neighbor ring network for n = even

is expressed as

R = 1−

∣∣∣∣∣∣
√(

p2q2
s2

)2

+
r2q2
s2

+ 1

∣∣∣∣∣∣ . (4.4.3)
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, where

p2 =
a sin π

n
cos (2r+1)π

n
− 0.5a sin 2π

n

cos 2π
n
− 1

,

q2 =
sin (2r+1)π

n

sin π
n

− cosπr,

r2 =
sin π

n
sin (2r+1)π

n

cos 2π
n
− 1

+ r + 0.5,

and

s2 =
0.25a2

(
2 sin

(
π
n

)
cos
(
2πr+π
n

)
− sin

(
2π
n

))2(
cos
(
2π
n

)
− 1
)2

+
sin2

(
π
n

)
sin2

(
2πr+π
n

)(
cos
(
2π
n

)
− 1
)2

+ (r + 0.5)

(
cos(πr)− csc

(π
n

)
sin

(
2πr + π

n

))
− 0.25 cos2(πr).

Proof. For n=even, λ1(L) is the second smallest value of Laplacian matrix and λn
2
(L)

is the largest eigenvalue of the Laplacian matrix. Thus, γ is minimum when

|1− hλ1(L)| =
∣∣1− hλn

2
(L)
∣∣ (4.4.4)

Substituting the λ1(L) and λn
2
(L) in (4.4.4), results in∣∣∣∣1− h(r + 0.5− sin

(2r+1)π
n

2 sin π
n

+ ia
2

(
cot π

n
− cos

(2r+1)π
n

sin π
n

))∣∣∣∣ = |1− h (r + 0.5− 0.5 cosπr)| (4.4.5)

Thus, we get

h =
cosπr− sin

(2r+1)π
n

sin πn

1
4

(
sin

(2r+1)π
n

sin πn

)2

−(r+0.5)

(
sin

(2r+1)π
n

sin πn
−cosπr

)
− cos2 πr

4
+ e2

4

(
cot π

n
− cos

(2r+1)π
n

sin πn

)2 (4.4.6)
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Thus, convergence factor is expressed as

γ =

∣∣∣∣1− h(r + 0.5− sin
(2r+1)π

n

2 sin π
n

+ ia
2

(
cot π

n
− cos

(2r+1)π
n

sin π
n

))∣∣∣∣ (4.4.7)

Substitute (4.4.7) in (2.3.1) proves the Theorem. �

Theorem 4.4.3. Convergence rate of a r-nearest neighbor ring network for n = odd is

expressed as

R = 1−

∣∣∣∣∣∣
√(

p3q3
s3

)2

+
r3q3
s3

+ 1

∣∣∣∣∣∣ . (4.4.8)

, where

p3 =
−a sin π

n
cos (2r+1)π

n
+ 0.5a sin 2π

n

cos 2π
n
− 1

,

q3 = −
sin (2r+1)π

n

sin π
n

+
sin π(n−1)(2r+1)

2n

cos π
2n

,

r3 = −
sin π

n
sin (2r+1)π

n

cos 2π
n
− 1

− r − 0.5,

and

s3 = −
0.25a2

(
2 cos

(
π
2n

)
cos
(
π(n−1)(2r+1)

2n

)
− sin

(
π
n

))2
(
cos
(
π
n

)
+ 1
)2

+
0.25a2

(
2 sin

(
π
n

)
cos
(
2πr+π
n

)
− sin

(
2π
n

))2(
cos
(
2π
n

)
− 1
)2

−
cos2

(
π
2n

)
sin2

(
π(n−1)(2r+1)

2n

)
(
cos
(
π
n

)
+ 1
)2 +

sin2
(
π
n

)
sin2

(
2πr+π
n

)(
cos
(
2π
n

)
− 1
)2

+ (r + 0.5)

(
sin π(n−1)(2r+1)

2n

cos π
2n

−
sin (2r+1)π

n

sin π
n

)
.

Proof. For n=odd, λ1(L) is the second smallest eigenvalue and λn−1
2

(L) is the largest

eigenvalue of the Laplacian matrix.
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Thus, γ is minimum when

|1− hλ1(L)| =
∣∣∣1− hλn−1

2
(L)
∣∣∣ (4.4.9)

After substituting the λ1(L) and λn−1
2

(L) expressions in (4.4.9), we obtain

∣∣∣∣1− h(r + 0.5− sin
(2r+1)π

n

2 sin π
n

+ ia
2

(
cot π

n
− cos

(2r+1)π
n

sin π
n

))∣∣∣∣ =

∣∣∣∣1− h(r + 0.5− sin
(2r+1)π(n−1)

2n

sin
π(n−1)

2n

+ ia
2

(
cot π(n−1)

2n
− cos

(2r+1)π(n−1)
2n

sin
π(n−1)

2n

))∣∣∣∣
(4.4.10)

Thus, we obtain

h =

sin
(2r+1)π(n−1)

2n

sin
π(n−1)

2n

− sin
(2r+1)π

n
sin πn

1
4

(
sin

(2r+1)π
n

sin πn

)2

+(r+0.5)

(
− sin

(2r+1)π(n−1)
2n

sin
π(n−1)

2n

+
sin

(2r+1)π
n

sin πn

)
− 1

4

(
sin

(2r+1)π(n−1)
2n

sin
π(n−1)

2n

)2

+ e2

4

(
cot π

n
− cos

(2r+1)π
n

sin πn

)2

− e2
4

(
cot

π(n−1)
2n

− cos
(2r+1)π(n−1)

2n

sin
π(n−1)

2n

)2

(4.4.11)

Finally, convergence factor γ is expressed as

γ =

∣∣∣∣1− h(r + 0.5− sin
(2r+1)π

n

2 sin π
n

+ ia
2

(
cot π

n
− cos

(2r+1)π
n

sin π
n

))∣∣∣∣ (4.4.12)

Substituting the (4.4.12) in (2.3.1) proves the Theorem. �

4.5 Numerical Results and Discussion

In this section, we present the numerical results to investigate the effect of asymmetric

link factor, network dimension, number of nodes, and node overhead on the convergence

rate of the average consensus algorithm. We have used the Wolfram Mathematica to

solve the analytical expressions. Fig. 4.3 shows the comparison of convergence rates of

average consensus algorithms for asymmetric and symmetric ring networks. We have

observed that the convergence rate decreases exponentially with both the number of

nodes and asymmetric link factor. In large-scale WSNs, convergence rate approaches
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0 as shown in the Fig. 4.3. Fig. 4.4 shows the convergence rate versus k1 and k2 in

torus network. Here, convergence rate decreases with k1 and k2 exponentially. Fig. 4.5

shows the convergence rate versus asymmetric link factor for different values of r. We

have noted that the convergence rate increases with the nodes’ transmission radius and

decreases with asymmetric link factor. To understand the effect of network dimension

on the convergence rate, we plotted the Fig. 4.6. We have observed that the convergence

rate decreases with the network dimension. To compute the error introduced by the

symmetric network modeling, we compute the absolute error Rs−Ra, where Rs and Ra

denote the convergence rates of symmetric and asymmetric networks respectively. Fig.

4.7 shows the Absolute Error versus Number of nodes. Here, the absolute error decreases

with the number of nodes. Also, the absolute error is significant for large values of

asymmetric link factors. The effect of asymmetric link modeling on the convergence

rate is high in small-scale networks.

4.6 Conclusions

In this chapter, we modeled the WSN as a directed graph and derived the explicit

formulas for the ring, torus, r-nearest neighbor ring, and m-dimensional torus networks.

Numerical results demonstrated that the convergence rate decreases significantly with

the increase of asymmetrical link factor in small-scale WSNs. In large-scale WSNs,

the effect of asymmetrical links on convergence rate exponentially decreases with the

number of nodes. Further, we have studied the impact of the network size, network

dimension, and nodes’ transmission radius on the convergence rate of average consensus

algorithms.
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Figure 4.3: Comparison of convergence rates in asymmetric and symmetric ring net-
works.

Figure 4.4: Convergence rate versus k1 and k2 for a torus network for n=odd.
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Figure 4.5: Convergence rate versus Asymmetric Link Factor of a r-nearest neighbor
network for n=400.

Figure 4.6: Convergence rate versus Network Dimension for m-dimensional torus net-
work.
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Figure 4.7: Absolute Error versus Number of nodes for a = 0.3, and a = 0.9.



Chapter 5

Closed-Form Expressions of
Convergence rate for
One-Dimensional Lattice Networks

5.1 Introduction

Gossip algorithms are considered as an asynchronous version of the consensus algo-

rithms [31], [32], [33], [34], [35], [36], [37], [38]. These algorithms have faster convergence

rates with the use of periodic gossip sequences, and such algorithms are termed periodic

gossip algorithms [32], [39]. Convergence rate of a periodic gossip algorithm is charac-

terized by the magnitude of the second largest eigenvalue of a gossip matrix [35]. How-

ever, computing the second largest eigenvalue requires huge computational resources

for large-scale networks. In [35], authors derived the explicit expressions of convergence

rate for a ring network of the average periodic gossip algorithms. In this chapter, the

convergence rate of the periodic gossip algorithms for one-dimensional lattice network

has been derived. WSNs can be modeled by the lattice networks . Lattice networks

represent the notion of geographical proximity in the practical WSNs, and they have

been extensively used in the WSN applications for measuring and monitoring purposes
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[63], [64], [65], [61], [66]. Lattice networks facilitate the closed-form solutions which can

be generalized to higher dimensions. These structures also play a fundamental role in

analyzing the connectivity, scalability, network size, and node failures in WSNs.

In [31], authors proposed a framework for distributed averaging problem using arbitrary

networks. In [32], authors discussed the convergence rate of gossip algorithms and sur-

veyed the recent works of gossip algorithms for WSNs. A finite distributive algorithm

is proposed in [34] for ring networks of agents with gossip constraint. In this chapter,

we model the WSN as a one-dimensional lattice network and obtain the explicit for-

mulas of convergence rate 3 for the periodic gossip algorithms by considering both even

and the odd number of nodes. This work avoids the use of computationally expensive

algorithms for studying the large-scale wireless sensor networks.

Organization

This chapter is organized as follows. In section 5.2, closed-form expressions of con-

vergence rate have been derived for average periodic gossip algorithms. To examine the

effect of gossip weight on convergence rate, we used the linear weight updated approach

and derived the closed-form expressions of convergence rate in section 5.3. In section

5.4, we considered the case of communication link failures and derived the explicit

formulas of convergence rate for average periodic gossip algorithms. In section 5.5, we

demonstrated the numerical results using MATLAB. Finally, we discuss the conclusions

of this chapter in section 5.6.

3S. Kouachi, Sateeshkrishna Dhuli, and Yatindra. Nath. Singh, “Convergence Rate Analysis for
Periodic Gossip Algorithms in Wireless Sensor Networks,” arXiv preprint arXiv:1806.03932 , 2018.
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Figure 5.1: One-Dimensional lattice Network

5.2 Average Periodic Gossip Algorithm for a One-

Dimensional Lattice Network

As shown in the Fig. 5.1, WSN is modeled as a one-dimensional lattice network. We

obtain the optimal periodic sub-sequences to evaluate the primitive gossip matrices.

In this algorithm, each pair of nodes at each iteration participate in the gossip process

to update with the average of their previous state values to obtain the global average.

Theorem 5.2.1. Convergence rate of a periodic average gossip algorithm for an one-

dimensional lattice network for n=even is expressed as

R = 1− sin2 (n−2)π
2n

. (5.2.1)

Proof. The possible pairs for one-dimensional lattice network can be expressed as

{(1, 2)(2, 3)(3, 4)...........(n− 2, n− 1), (n− 1, n)}

In this case, the chromatic index is either 2 or 3. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2,

where, E1 = {(2, 3)(4, 5).....(n− 2, n− 1)} and

E2 = {(1, 2)(3, 4)(5, 6)..........(n− 1, n)} are two disjoint sets.

Primitive gossip matrix (W ) is expressed as
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W = S1S2 or W = S2S1, where

S1 = P2,3P4,5......P(n−1),n,

S2 = P1,2P3,4P5,6....P(n−2),(n−1).

Hence, gossip matrix (W ) for n=even can be computed as

W =



1
2

1
4

1
4

0 · · · 0
1
2

1
4

. . . 0 · · · ...

0 1
4

1
4

. . . 1
4

...
... 1

4

. . . 1
4

1
4

0
... · · · 0

. . . 1
4

1
2

0 · · · 0 1
4

1
4

1
2


(5.2.2)

The above matrix structure is in perturbed pentadiagonal format.

Definition 5.2.1. The eigenvalues of the matrices [67]

A2m =



e− α b c 0 . . . . . . . . . 0

d e b 0 . . . . . . . . .
...

0 b e b
. . . 0 . . .

...
... c b e b

. . . . . .
...

... . . .
. . . b e b c

...
... . . . 0

. . . b e b 0
... . . . . . . . . . 0 b e d
0 . . . . . . . . . 0 c b e− β


(5.2.3)

are the couples λi,k = e− Yi,k, i = 1, 2 and k = 0, 1, ...,m− 1, where{
Y1,0 = c, Y2,0 = −2b− c,
Y 2
i,k − 2 (cYi,k − b2) cos kπ

m
+ (2b2 − c2) = 0, k = 1, 2, ...,m− 1.

(5.2.4)
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From (5.2.4), we can write the

λ2i,k−2eλi,k+e2−2cecos

(
kπ

m

)
+2cλi,kcos

(
kπ

m

)
+2b2cos

(
kπ

m

)
−2b2+c2 = 0 (5.2.5)

Comparing the (5.2.2) and (5.2.3), we can observe that α = −1
4

, β = −1
4

, c = 1
4
, e = 1

4
,

and b = 1
4
. Therefore, (5.2.10) can be rewritten as

λi,k = sin2kπ

n
(5.2.6)

when k = n
2
, λi,k = 1. Then, second largest eigenvalue can be obtained at n−2

2
. There-

fore, second largest eigenvalue is expressed as

λi,n−2
2

= sin2 (n− 2)π

2n
(5.2.7)

Substituting (5.2.7) in (2.6.4) completes the proof. �

Theorem 5.2.2. Convergence rate of a periodic average gossip algorithm for an one-

dimensional lattice network for n=odd is expressed as

R = 1− sin2 (n−2)π
2n

. (5.2.8)

Proof. In this case, optimal periodic sub-sequence (E) is expressed as

E = E1E2, (5.2.9)

where, E1={(2, 3)(4, 5).....(n− 2, n− 1)} and

E2={(1, 2)(3, 4)(5, 6)..........(n− 1, n)} are two disjoint sets.

Gossip matrix (W ) for n=odd is defined as

W = S1S2 or W = S2S1, where

S1 = P1,2P3,4......P(n−1),n

S2 = P2,3P4,5P6,7....P(n−2),(n−1) Hence, gossip matrix (W ) for n=odd can be computed
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as

W =



1
2

1
4

1
4

0 · · · 0
1
2

1
4

. . . 0 · · · ...

0 1
4

1
4

. . . 1
4

...
... 1

4

. . . 1
4

1
4

0
... · · · 0

. . . 1
4

1
4

0 · · · 0 0 1
2

1
2


(5.2.10)

Definition 5.2.2. The eigenvalues of the matrices [67]

A2m+1 =



e− α b c 0 . . . . . . . . . 0 0

d e b 0 . . . . . . . . .
...

...

0 b e b
. . . 0 . . .

...
...

... c b e b
. . . . . .

...
...

... . . .
. . . b e b c

...
...

... . . . 0
. . . b e b 0 0

... . . . . . . . . . 0 b e b c
0 . . . . . . . . . 0 c b e b
0 . . . . . . . . . . . . . . . 0 d e− β


(5.2.11)

are the couples λi,k = e− Yi,k, i = 1, 2 and k = 0, 1, ...,m− 1, where{
Y1,0 = − (2b+ c) , Y2,0 = b2

c
,

Y 2
i,k − 2 (cYi,k − b2) cos (2k+1)π

2m+1
+ (2b2 − c2) = 0, k = 1, 2, ...,m− 1.

(5.2.12)

From (5.2.12), we can write

λ2i,k − 2eλi,k + e2 − 2cecos
(

(2k+1)π
2m+1

)
+ 2cλi,kcos

(
(2k+1)π
2m+1

)
+ 2b2cos

(
(2k+1)π
2m+1

)
− 2b2 + c2 = 0 (5.2.13)

Comparing (5.2.11) and (5.2.12), we can observe that α = −1
4

, β = −1
4

, c = 1
4
, e = 1

4
,

d = 1
2

and b = 1
4
. Therefore, (5.2.10) can be rewritten as

λi,k = sin2 (2k + 1)π

n
(5.2.14)



5.3 Effect of Gossip Weight on Convergence rate 73

when k = n−1
2

, λi,k = 1. Then, second largest eigenvalue can be obtained at n−3
2

.

Therefore, second largest eigenvalue of weight matrix can be expressed as

λi,n−3
2

= sin2 (n− 2)π

2n
(5.2.15)

Substituting (5.2.15) in (2.6.4) proves the Theorem. �

5.3 Effect of Gossip Weight on Convergence rate

In the previous section, we obtain the primitive gossip matrices for gossip weight

w=1
2
. To investigate the effect of gossip weight on convergence rate, we consider the

special case by considering the weights associated with the edges. If we assume that

at iteration k, nodes i and j communicate, then node i and node j performs the linear

update with gossip weight ‘w’ as [34], [38].

xi(k) = (1− w)xi(k − 1) + wxj(k − 1), (5.3.1)

and

xj(k) = wxi(k − 1) + (1− w)xj(k − 1), (5.3.2)

where ‘w ’ is the gossip weight associated with edge (i, j).

Theorem 5.3.1. Convergence rate of a periodic gossip algorithm for an one-dimensional

lattice network with gossip weight ‘w’ for even number of nodes is expressed as

R =

∣∣∣∣2w − 2w2 sin2 (n−2)π
2n
− 2w

∣∣∣sin (n−2)π
2n

∣∣∣√w2 sin2 (n−2)π
2n
− 2w + 1

∣∣∣∣ . (5.3.3)
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Proof. The primitive gossip matrix (W ) for n=even can be computed as

W =



1− w −w2 + w w2 0 · · · 0

w (w − 1)2
. . . 0 · · · ...

0 −w2 + w (w − 1)2
. . . w2 ...

... w2 . . . (w − 1)2 −w2 + w 0

... · · · 0
. . . (w − 1)2 w

0 · · · 0 w2 −w2 + w 1− w


. (5.3.4)

From (5.3.4), The structure of the above matrix can be expressed in terms of perturbed

pentadiagonal matrix. Comparing (5.3.4) and (5.2.3), we observe that c = w2, α = β =

w2 − w, d = w, e = (w − 1)2, b = −w2 + w. Therefore, using (5.2.4) we can write

λ2 − 2
[
−2w + 1 + 2w2 sin2 kπ

n

]
λ+ (2w − 1)2 = 0. (5.3.5)

Solving (5.3.5) gives the eigenvalues as

λk = −2w + 1 + 2w2 sin2 kπ
n

±2w
∣∣sin kπ

n

∣∣√w2 sin2 kπ
n
− 2w + 1,

k = 1, 2, ..., n−2
2

. The largest eigenvalue is λ2,0 = 1. Consequently, we obtain the second

largest eigenvalue at k = n−2
2

as

λ+n−2
2

= −2w + 1 + 2w2 sin2 (n−2)π
2n

+2w
∣∣∣sin (n−2)π

2n

∣∣∣√w2 sin2 (n−2)π
2n
− 2w + 1.

(5.3.6)

Substituting (5.3.6) in (2.6.4) proves the Theorem. �

Theorem 5.3.2. Convergence rate of a periodic gossip algorithm for a one-dimensional

lattice network for n=odd is expressed as

R =

∣∣∣∣2w − 2w2 sin2 (n−2)π
2n
− 2w

∣∣∣sin (n−2)π
2n

∣∣∣√w2 sin2 (n−2)π
2n
− 2w + 1

∣∣∣∣ . (5.3.7)
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Proof. For n=odd, gossip matrix (W ) can be computed as

W =



1− w −w(w − 1) w2 0 · · · 0

w (w − 1)
2 . . . 0 · · ·

...

0 −w(w − 1) (w − 1)
2 . . . w2

...
... w2 . . . (w − 1)

2 −w2 + w 0
... · · · 0

. . . (w − 1)
2 −w(w − 1)

0 · · · 0 0 w (1− w)


(5.3.8)

Comparing the expressions of (5.3.8) and (5.2.11), we can observe that c = w2, d = w,

b = −w2 + w, e = (w − 1)2, α = β = (w − 1)2 − 1 + w = w2 − w = −b. Since

e = (w − 1)2 and Y = e− λ, then

λ1,0 = 1.

The other eigenvalues are the roots of the quadratic equation

λ2 − 2
[
(w − 1)2 − w2 cos (2k+1)π

2n

]
λ+ (2w − 1)2 = 0,

k = 0, 1, 2, ..., n−3
2
, which can be written

λ2 − 2
[
−2w + 1 + 2w2 sin2 (2k+1)π

2n

]
λ+ (2w − 1)2 = 0, (5.3.9)

k = 0, 1, 2, ..., n−3
2
. Solving (5.3.9) gives the eigenvalues as

λk = −2w + 1 + 2w2 sin2 (2k+1)π
2n

±2w
∣∣∣sin (2k+1)π

2n

∣∣∣√w2 sin2 (2k+1)π
2n

− 2w + 1.

The second largest eigenvalue is obtained for k = n−3
2
. That is

λ+n−2
2

= −2w + 1 + 2w2 sin2 (n−2)π
2n

+2w
∣∣∣sin (n−2)π

2n

∣∣∣√w2 sin2 (n−2)π
2n
− 2w + 1.

(5.3.10)

Substituting the (5.3.10) in (2.6.4) proves the Theorem. �
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5.4 Effect of Communication Link Failures on Con-

vergence rate

Wireless sensor networks are prone to link failures due to noise, interference, and en-

vironmental changes. In this section, we study the effect of link failures on convergence

rate for average periodic gossip algorithms. Let us consider the one-dimensional lattice

network, where each link fails with the probability ‘p’.

Theorem 5.4.1. If a communication link between two nodes fails with the probability ‘p’

then convergence rate of the average periodic gossip algorithm for n=even is expressed

as

R = 1−
∣∣∣∣p+ (p−1)2

2
sin2 (n−2)π

2n
+
√

(p−1)4
4

sin4 (n−2)π
2n

+ p(p− 1)2 sin2 (n−2)π
2n

∣∣∣∣. (5.4.1)

Proof. Let us consider the one-dimensional lattice network, where each link fails with

the probability ‘p’. Then, probability that two nodes connected by a communication

link is ‘1-p’. Primitive gossip matrix for even number of nodes is expressed as

W =



p+1
2

1−p2
4

(1−p)2
4

0 . . . . . . . . . 0
1−p
2

(p+1)2

4
1−p2
2

0 . . . . . . . . .
...

0 1−p2
4

(p+1)2

4
1−p2
4

. . . 0 . . .
...

... (1−p)2
4

1−p2
4

(p+1)2

4
1−p2
4

. . . . . .
...

... . . .
. . . 1−p2

4
(p+1)2

4
1−p2
4

(1−p)2
4

...
... . . . 0

. . . 1−p2
4

(p+1)2

4
1−p2
4

0
... . . . . . . . . . 0 1−p2

4
(p+1)2

4
1−p
2

0 . . . . . . . . . 0 (p−1)2
4

1−p2
4

p+1
2


. (5.4.2)

Comparing the expressions (5.4.2) and (5.2.3), we observe that c = (p−1)2
4

, d = 1−p
2

,

b = 1−p2
4

, e = (p+1)2

4
, α = β = p2−1

4
, and Y = e− λ, then λ1,0 = 1.
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The other eigenvalues are the roots of the quadratic equation

λ2 + λ
(
−2e+ 2c cos kπ

m

)
+ e2 − 2ce cos kπ

m
+ 2b2 cos kπ

m
− 2b2 cos kπ

m
− 2b2 + c2 = 0

(5.4.3)

Substituting the values of c, b, and e results in

λ2 + λ
(
− (p+1)2

2
+ (p−1)2

2
− (p− 1)2 sin2 kπ

n

)
+ p2 = 0 (5.4.4)

Solving (5.4.3), gives the expressions for eigenvalues

λk = p+ (p−1)2
2

sin2 kπ
n

+
√

(p−1)4
4

sin4 kπ
n

+ p(p− 1)2 sin2 kπ
n

(5.4.5)

Then, second largest eigenvalue is expressed as

λ+n−3
2

= p+ (p−1)2
2

sin2 (n−2)π
2n

+
√

(p−1)4
4

sin4 (n−2)π
2n

+ p(p− 1)2 sin2 (n−2)π
2n

(5.4.6)

Substituting the (5.4.6) in (2.6.4) proves the Theorem. �

Theorem 5.4.2. If a communication link between two nodes fails with the probability

p, then convergence rate of the average periodic gossip algorithm for n=odd is expressed

as

R = 1−
∣∣∣∣p+ (p−1)2

2
sin2 (n−2)π

2n
+
√

(p−1)4
4

sin4 (n−2)π
2n

+ p(p− 1)2 sin2 (n−2)π
2n

∣∣∣∣.
(5.4.7)

Proof. Primitive gossip matrix for odd number of nodes when communication links
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between any two nodes fails with the probability p is expressed as

W =



1+p
2

1−p2
4

(p−1)2
4

0 . . . . . . . . . 0 0
1−p
2

(p+1)2

4
1−p2
4

0 . . . . . . . . .
...

...

0 1−p2
4

(p+1)2

4
1−p2
4

. . . 0 . . .
...

...
... (p−1)2

4
1−p2
4

(p+1)2

4
1−p2
4

. . . . . .
...

...
... . . .

. . . 1−p2
4

(p+1)2

4
1−p2
4

(p−1)2
4

...
...

... . . . 0
. . . 1−p2

4
(p+1)2

4
(1−p2)

4
0 0

... . . . . . . . . . 0 1−p2
4

(p+1)2

4
1−p2
4

(p−1)2
4

0 . . . . . . . . . 0 (p−1)2
4

1−p2
4

(p+1)2

4
1−p2
4

0 . . . . . . . . . . . . . . . 0 1−p
2

1+p
2



. (5.4.8)

Comparing the expressions (5.4.3) and (5.2.11), we can observe that c = (p−1)2
4

,

d = 1−p
2

, b = 1−p2
4

, e = (p+1)2

4
, α = β = p2−1

4
and Y = e− λ, then λ1,0 = 1.

The other eigenvalues are the roots of the quadratic equation

λ2 + λ
(
−2e+ 2c cos (2k+1)π

2m+1

)
+ e2 − 2ce cos (2k+1)π

2m+1
+ 2b2 cos (2k+1)π

2m+1
− 2b2 + c2 = 0

(5.4.9)

Substituting the values of c, b, and e results in

λ2 + λ
(
− (p+1)2

2
+ (p−1)2

2
− (p− 1)2 sin2 (2k+1)π

4m+2

)
+ p2 = 0 (5.4.10)

Solving (5.4.5) gives the eigenvalues as

λk = p+ (p−1)2
2

sin2 (2k+1)π
4m+2

+
√

(p−1)4
4

sin4 (2k+1)π
4m+2

+ p(p− 1)2 sin2 (2k+1)π
4m+2

(5.4.11)

Then, second largest eigenvalue is expressed as

λ+n−2
2

= p+ (p−1)2
2

sin2 (n−2)π
2n

+
√

(p−1)4
4

sin4 (n−2)π
2n

+ p(p− 1)2 sin2 (n−2)π
2n

(5.4.12)

Substituting the (5.4.12) in (2.6.4) proves the Theorem. �
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Table 5.1: Convergence rate of Small-Scale WSNs
Number of Nodes Convergence rate Optimal Gossip Weight
4 0.8 0.6
5 0.6 0.7
6 0.6 0.7
7 0.6 0.7
8 0.4 0.8
9 0.4 0.8
10 0.4 0.8
11 0.4 0.8
12 0.4 0.8
13 0.3034 0.8
14 0.2412 0.8
15 0.2015 0.8
16 0.2 0.9
17 0.2 0.9
18 0.2 0.9
19 0.2 0.9
20 0.2 0.9

Table 5.2: Convergence rate of Large-Scale WSNs
Number of Nodes Convergence rate Optimal Gossip Weight
100 0.009 0.9
200 0.0022 0.9
300 0.001 0.9
400 0.0006 0.9
500 0.1 0.9
600 0.002 0.9
700 0.002 0.9
800 0.001 0.9
900 0.001 0.9
1000 0.0001 0.9
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5.5 Numerical Results and Discussion

In this section, numerical results have been presented. Fig. 5.2 shows the convergence

rate versus the number of nodes in one-dimensional lattice networks for average periodic

gossip algorithms (w=0.5). It has been observed that the convergence rate reduces

exponentially with the increase in the number of nodes. In every time step, nodes share

information with their direct neighbors to achieve the global average. Thus, for the

larger number of nodes, more time steps will be required, thereby leading to slower

convergence rates. As shown in Table. 5.1, optimal gossip weights are varying with

the number of nodes until n=16 and it’s value becomes 0.9 from n ≥ 16. Fig. 5.3

shows the convergence rate versus gossip weights for large-scale networks. It has been

observed that for large-scale lattice networks, the optimal gossip weight turns out to

be 0.9 (see Table. 5.2). Hence, it can be concluded that for any medium-scale network

(n ≥ 16), gossip weight should be 0.9 for achieving faster convergence rates in one-

dimensional lattice networks. It has been measured that the efficiency of periodic gossip

algorithms at w=0.9 over average periodic gossip algorithms(w=0.5) by using relative

error (E = R0.9−R0.5

R0.9
) where R0.9 and R0.5 denote the convergence rate for w=0.9 and

w=0.5 respectively. Fig. 5.5 shows the relative error versus the number of nodes for

periodic gossip algorithms. Here, we have observed that relative error increases with

the network size in small-scale networks and it becomes unity for large-scale networks.

To study the effect of communication link failures, Fig. 5.6 has been plotted. We have

observed that the convergence rate decreases with the probability of link failures. As

shown in the Fig. 5.6, convergence rate becomes zero for p=1.
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Figure 5.2: Convergence rate versus Number of nodes for Average Gossip Algorithm
(w=0.5).

Figure 5.3: Convergence rate versus Gossip Weight for Small Scale WSNs.
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Figure 5.4: Convergence rate versus Gossip Weight for Large Scale WSNs.

Figure 5.5: Relative Error versus Network Size.
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Figure 5.6: Effect of Link Failures on Convergence rate.

5.6 Conclusions

Estimating the convergence rate of a periodic gossip algorithm is computationally

challenging in large-scale networks. This chapter derived the explicit formulas of con-

vergence rate for one-dimensional lattice networks. This work drastically reduces the

computational complexity to estimate the convergence rate for large-scale WSNs. Ex-

plicit expressions have been derived for convergence rate in terms of gossip weight and

the number of nodes using the linear weight updating approach. Based on the findings,

it has been observed that there exists an optimum gossip weight which significantly im-

proves the convergence rate for periodic gossip algorithms in small-scale WSNs (n < 16).

Numerical results demonstrated that periodic gossip algorithms achieve faster conver-

gence rate for large-scale networks (n ≥ 16) at w=0.9 over average periodic gossip

algorithms. In this chapter, communication link failures in WSNs has also been consid-
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ered, and the closed-form expressions of convergence rate have been derived for average

periodic gossip algorithms.



Chapter 6

Analysis of Periodic Gossip
Algorithms for r-Nearest Neighbor
Networks

6.1 Introduction

In this chapter, WSN has been modeled as an r-nearest neighbor network and the

effect of transmission radius on convergence rate has been studied for periodic gossip

algorithms. Periodic gossip algorithms received much attention in the recent times for

achieving faster convergence rate over gossip algorithms [31], [32], [33], [34], [35], [36],

[37], [38]. They are quite suitable for data delivery in WSNs as they can be utilized

when the global network topology is highly dynamic, and the network consists of power

constrained nodes [21], [39]. Ring networks, r-nearest neighbor networks have been

extensively used in the literature to study the properties of WSNs [49], [68]. In [35],

authors derived the explicit expressions of convergence rate for a ring network of the

average periodic gossip algorithms. Closed-form expressions of convergence rate for

one-dimensional lattice networks have been derived in [67]. In this chapter, WSN has

been modeled as an r-nearest neighbor ring network and study the convergence rate
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of average periodic gossip algorithms. The variable r models the nodes transmission

radius or overhead in WSNs [49], [68]. The combination of power-iteration and deflation

techniques has been proposed to evaluate the convergence rate of r-nearest neighbor

ring networks. Further, the impact of node’s transmission radius on the convergence

rate of average periodic gossip algorithms has been studied for both even and the odd

number of nodes.

r-Nearest Neighbor Ring Networks

As shown in the Fig. 6.2, every node connected to 2-hop away neighbors in a 2-

nearest neighbor ring network. Similarly, in a 4-nearest neighbor ring network, every

node gets connected to all the nodes with in 4-hops away in a ring network.

Organization

This chapter is organized as follows. In section 6.2, we obtain the optimal periodic

gossip sequences and compute the primitive gossip matrices for n=9 varying r from 1

to 4. In section 6.3, we obtain the optimal periodic gossip sequences and compute the

primitive gossip matrices for n=10 varying r from 1 to 4. To evaluate the convergence

rate, we propose the combination of power-iteration and deflation techniques in section

6.4. Numerical results have been presented in section 6.5. Finally, we discuss the

conclusions of this chapter in section 6.6.
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Figure 6.1: 2-nearest neighbor ring network.

6.2 Periodic Sequences of 4-Nearest Neighbor Net-

work for odd number of nodes

Nearest Neighbors (r=1)

The possible pairs of a 1-nearest neighbor network for n=9 can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 1) (6.2.1)

In this case, the chromatic index is either 2 or 3. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3,

where,

E1 = (1, 2)(3, 4)(5, 6)(7, 8)
E2 = (2, 3)(4, 5)(6, 8)(7, 9)
E3 = (1, 9)

(6.2.2)
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are disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2, where

S1 = P1,2P3,4P5,6P7,8,

S2 = P2,3P4,5P6,8P7,9.

S3 = P1,9. Hence, W is computed as

0.25 0.25 0.25 0 0 0 0 0 0.25
0.25 0.25 0.25 0 0 0 0 0 0.25

0 0.25 0.25 0.25 0.25 0 0 0 0
0 0.25 0.25 0.25 0.25 0 0 0 0
0 0 0 0.25 0.25 0.25 0 0.25 0
0 0 0 0.25 0.25 0.25 0 0.25 0

0.125 0 0 0 0 0.25 0.25 0.25 0.125
0.125 0 0 0 0 0.25 0.25 0.25 0.125
0.25 0 0 0 0 0 0.5 0 0.25


(6.2.3)

Nearest Neighbors (r=2)

The possible pairs of a 2-nearest neighbor network for n=9 can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 1)
(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)(6, 8)(7, 9)(8, 1)(9, 2)

(6.2.4)

In this case, the chromatic index is either 4 or 5. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3E4E5,

E1 = (1, 2)(5, 6)(7, 9)(3, 4)
E2 = (2, 3)(9, 1)(4, 5)(6, 8)
E3 = (7, 8)(4, 6)(1, 3)
E4 = (9, 2)(3, 5)(6, 7)(8, 1)
E5 = (2, 4)(8, 9)(5, 7)

(6.2.5)



6.2 Periodic Sequences of 4-Nearest Neighbor Network for odd number of nodes 89

are disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2S3S4S5, where

S1 = P1,2P5,6P7,9P3,4,

S2 = P2,3P9,1P4,5P6,8,

S3 = P7,8P4,6P1,3,

S4 = P9,2P3,5P6,7P8,1,

S5 = P2,4P8,9P5,7.

Hence, W is computed as

0.1250 0.1250 0.1250 0.1250 0.0625 0 0.0625 0.1875 0.1875
0.1250 0.1250 0.1250 0.1250 0.0625 0 0.0625 0.1875 0.1875
0.0625 0.1250 0.1875 0.1250 0.1250 0.0625 0.1250 0.0938 0.0938
0.0625 0.1250 0.1875 0.1250 0.1250 0.0625 0.1250 0.0938 0.0938
0.0625 0.1250 0.1250 0.1250 0.1563 0.1875 0.1563 0.0313 0.0313
0.0625 0.1250 0.1250 0.1250 0.1563 0.1875 0.1563 0.0313 0.0313
0.1875 0.0625 0.0625 0.0625 0.0938 0.1250 0.0938 0.1563 0.1563
0.1250 0.1250 0 0.1250 0.1250 0.2500 0.1250 0.0625 0.0625
0.1875 0.0625 0.0625 0.0625 0.0938 0.1250 0.0938 0.1563 0.1563


(6.2.6)

Nearest Neighbors (r=3)

The possible pairs of a 3-nearest neighbor network for n=9 can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 1)
(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)(6, 8)(7, 9)(8, 1)(9, 2)
(1, 4)(2, 5)(3, 6)(4, 7)(5, 8)(6, 9)(7, 1)(8, 2)(9, 3)

(6.2.7)

In this case, the chromatic index is either 6 or 7. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3E4E5E6E7,
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where

E1 = (1, 2)(9, 6)(4, 7)(5, 8)
E2 = (2, 3)(9, 1)(6, 8)(4, 5)
E3 = (3, 4)(5, 7)(2, 9)(1, 8)
E4 = (1, 3)(7, 9)(5, 6)(2, 4)
E5 = (6, 7)(3, 5)(1, 4)(8, 2)
E6 = (7, 8)(4, 6)(2, 5)(3, 9)
E7 = (6, 3)(7, 1)(8, 9)

(6.2.8)

are disjoint sets. Primitive gossip matrix (W ) is expressed as

W = S1S2S3S4S5S6S7, where

S1 = P1,2P9,6P4,7P5,8,

S2 = P2,3P9,1P6,8P4,5,

S3 = P3,4P5,7P2,9P1,8,

S4 = P1,3P7,9P5,6P2,4,

S5 = P6,7P3,5P1,4P8,2,

S6 = P7,8P4,6P2,5P3,9,

S7 = P6,3P7,1P8,9.

Hence, W is computed as

0.1328 0.1094 0.1016 0.1094 0.1094 0.1016 0.1328 0.1016 0.1016
0.1328 0.1094 0.1016 0.1094 0.1094 0.1016 0.1328 0.1016 0.1016
0.1406 0.0938 0.1094 0.1250 0.0938 0.1094 0.1406 0.0938 0.0938
0.0859 0.0781 0.1406 0.1250 0.0781 0.1406 0.0859 0.1328 0.1328
0.1016 0.1250 0.1094 0.1094 0.1250 0.1094 0.1016 0.1094 0.1094
0.1094 0.1406 0.0938 0.0938 0.1406 0.0938 0.1094 0.1094 0.1094
0.0859 0.0781 0.1406 0.1250 0.0781 0.1406 0.0859 0.1328 0.1328
0.1016 0.1250 0.1094 0.1094 0.1250 0.1094 0.1016 0.1094 0.1094
0.1094 0.1406 0.0938 0.0938 0.1406 0.0938 0.1094 0.1094 0.1094


(6.2.9)
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Nearest Neighbors (r=4)

The possible pairs of a 4-nearest neighbor network for n=9 can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 1)
(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)(6, 8)(7, 9)(8, 1)(9, 2)
(1, 4)(2, 5)(3, 6)(4, 7)(5, 8)(6, 9)(7, 1)(8, 2)(9, 3)
(1, 5)(2, 6)(3, 7)(4, 8)(5, 9)(6, 1)(7, 2)(8, 3)(9, 4)

(6.2.10)

In this case, the chromatic index is either 8 or 9. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3E4E5E6E7E8E9,

where

E1 = (1, 2)(4, 3)(6, 5)(8, 9)
E2 = (4, 5)(9, 6)(8, 2)(7, 3)
E3 = (1, 4)(2, 3)(7, 5)(8, 6)
E4 = (1, 5)(9, 3)(7, 6)(2, 4)
E5 = (1, 6)(5, 3)(7, 8)(9, 4)
E6 = (1, 7)(6, 3)(8, 5)(9, 2)
E7 = (1, 8)(9, 5)(4, 6)(7, 2)
E8 = (1, 9)(8, 3)(2, 5)(4, 7)
E9 = (7, 9)(2, 6)(4, 8)(1, 3)

(6.2.11)

are disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2S3S4S5S6S7, where

S1 = P1,2P4,3P6,5P8,9,

S2 = P4,5P9,6P8,2P7,3,

S3 = P1,4P2,3P7,5P8,6,

S4 = P1,5P9,3P7,6P2,4,

S5 = P1,6P5,3P7,8P9,4,

S6 = P1,7P6,3P8,5P9,2,
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S7 = P1,8P9,5P4,6P7,2,

S8 = P1,9P8,3P2,5P4,7,

S9 = P7,9P2,6P4,8P1,3.

Hence, W is computed as

0.1016 0.1172 0.1016 0.1055 0.1250 0.1172 0.1133 0.1055 0.1133
0.1016 0.1172 0.1016 0.1055 0.1250 0.1172 0.1133 0.1055 0.1133
0.1113 0.1113 0.1113 0.1172 0.1055 0.1113 0.1074 0.1172 0.1074
0.1113 0.1113 0.1113 0.1172 0.1055 0.1113 0.1074 0.1172 0.1074
0.1191 0.1055 0.1191 0.1152 0.1016 0.1055 0.1094 0.1152 0.1094
0.1191 0.1055 0.1191 0.1152 0.1016 0.1055 0.1094 0.1152 0.1094
0.1055 0.1172 0.1055 0.1133 0.1094 0.1172 0.1094 0.1133 0.1094
0.1152 0.1074 0.1152 0.1055 0.1133 0.1074 0.1152 0.1055 0.1152
0.1152 0.1074 0.1152 0.1055 0.1133 0.1074 0.1152 0.1055 0.1152


(6.2.12)

6.3 Periodic Sequences for 4-Nearest Neighbor Net-

work for even number of nodes

We consider the 4-nearest neighbor ring network. Here, we consider the n=10. In

this algorithm, each pair of nodes at each iteration participate in the gossip process

to update the average of their previous state values to obtain the global average. The

variable r is varied from 1 to 4 and optimal periodic gossip sub-sequences have been

computed.

Nearest Neighbors (r=1)

The possible pairs of a 1-nearest neighbor network for n = 10 can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 10)(10, 1) (6.3.1)
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In this case, the chromatic index is either 2 or 3. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2,

where,

E1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
E2 = (2, 3)(4, 5)(6, 7)(8, 9)(1, 10)

(6.3.2)

are two disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2, where

S1 = P1,2P3,4P5,6P7,8P9,10,

S2 = P2,3P4,5P6,7P8,9P1,10.

Hence, W is computed as

0.2500 0.2500 0.2500 0 0 0 0 0 0 0.2500
0.2500 0.2500 0.2500 0 0 0 0 0 0 0.2500

0 0.2500 0.2500 0.2500 0.2500 0 0 0 0 0
0 0.2500 0.2500 0.2500 0.2500 0 0 0 0 0
0 0 0 0.2500 0.2500 0.2500 0.2500 0 0 0
0 0 0 0.2500 0.2500 0.2500 0.2500 0 0 0
0 0 0 0 0 0.2500 0.2500 0.2500 0.2500 0
0 0 0 0 0 0.2500 0.2500 0.2500 0.2500 0

0.2500 0 0 0 0 0 0 0.2500 0.2500 0.2500
0.2500 0 0 0 0 0 0 0.2500 0.2500 0.2500


(6.3.3)

Nearest Neighbors (r=2)

The possible pairs of a 2-nearest neighbor network can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 10)(10, 1),
(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)(6, 8)(7, 9)(8, 10)(9, 1)(10, 2).

(6.3.4)
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In this case, the chromatic index is either 4 or 5. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3E4E5,

where,

E1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
E2 = (2, 3)(4, 5)(6, 7)(8, 9)(10, 1)
E3 = (1, 3)(2, 4)(5, 7)(6, 8)
E4 = (3, 5)(4, 6)(7, 9)(8, 10)
E5 = (9, 1)(10, 2)

(6.3.5)

are disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2S3S4S5, where

S1 = P1,2P3,4P5,6P7,8P9,10,

S2 = P2,3P4,5P6,7P8,9P10,1,

S3 = P1,3P2,4P5,7P6,8,

S4 = P3,5P4,6P7,9P8,10,

S5 = P9,1P10,2.

Hence, W is computed as

0.1250 0.1250 0.2500 0.1250 0 0 0 0.1250 0.1250 0.1250
0.1250 0.1250 0.2500 0.1250 0 0 0 0.1250 0.1250 0.1250
0.0938 0.1250 0.1250 0.2500 0.1250 0 0.0625 0 0.0938 0.1250
0.0938 0.1250 0.1250 0.2500 0.1250 0 0.0625 0 0.0938 0.1250
0.0625 0.0938 0 0.1250 0.2500 0.1250 0.1250 0.0625 0.0625 0.0938
0.0625 0.0938 0 0.1250 0.2500 0.1250 0.1250 0.0625 0.0625 0.0938
0.0938 0.0625 0 0 0.1250 0.2500 0.1875 0.1250 0.0938 0.0625
0.0938 0.0625 0 0 0.1250 0.2500 0.1875 0.1250 0.0938 0.0625
0.1250 0.0938 0.1250 0 0 0.1250 0.1250 0.1875 0.1250 0.0938
0.1250 0.0938 0.1250 0 0 0.1250 0.1250 0.1875 0.1250 0.0938


(6.3.6)
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Nearest Neighbors (r=3)

The possible pairs of a 3-nearest neighbor network can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 10)(10, 1)
(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)(6, 8)(7, 9)(8, 10)(9, 1)(10, 2)
(1, 4)(2, 5)(3, 6)(4, 7)(5, 8)(6, 9)(7, 10)(8, 1)(9, 2)(10, 3)

(6.3.7)

In this case, the chromatic index is either 6 or 7. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3E4E5E6E7,

where,

E1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
E2 = (2, 3)(4, 5)(6, 7)(8, 9)(10, 1)
E3 = (1, 3)(2, 4)(5, 7)(6, 8)
E4 = (3, 5)(4, 6)(7, 9)(8, 10)
E5 = (9, 1)(10, 2)(3, 6)(5, 8)
E6 = (1, 4)(2, 5)(6, 9)(7, 10)
E7 = (4, 7)(8, 1)(9, 2)(10, 3)

(6.3.8)

are disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2S3S4S5S6S7, where

S1 = P1,2P3,4P5,6P7,8P9,10,

S2 = P2,3P4,5P6,7P8,9P10,1,

S3 = P1,3P2,4P5,7P6,8,

S4 = P3,5P4,6P7,9P8,10,

S5 = P9,1P10,2P3,6P5,8,

S6 = P1,4P2,5P6,9P7,10,

S7 = P4,7P8,1P9,2P10,3.



6.3 Periodic Sequences for 4-Nearest Neighbor Network for even number of nodes 96

Hence, W is computed as

0.1094 0.1172 0.0781 0.0781 0.1250 0.1094 0.0781 0.1094 0.1172 0.0781
0.1094 0.1172 0.0781 0.0781 0.1250 0.1094 0.0781 0.1094 0.1172 0.0781
0.0859 0.1016 0.1094 0.1016 0.0938 0.1094 0.1016 0.0859 0.1016 0.1094
0.0859 0.1016 0.1094 0.1016 0.0938 0.1094 0.1016 0.0859 0.1016 0.1094
0.0938 0.0938 0.1172 0.1016 0.0938 0.0938 0.1016 0.0938 0.0938 0.1172
0.0938 0.0938 0.1172 0.1016 0.0938 0.0938 0.1016 0.0938 0.0938 0.1172
0.1016 0.0859 0.1094 0.1172 0.0781 0.0938 0.1172 0.1016 0.0859 0.1094
0.1016 0.0859 0.1094 0.1172 0.0781 0.0938 0.1172 0.1016 0.0859 0.1094
0.1094 0.1016 0.0859 0.1016 0.1094 0.0938 0.1016 0.1094 0.1016 0.0859
0.1094 0.1016 0.0859 0.1016 0.1094 0.0938 0.1016 0.1094 0.1016 0.0859


(6.3.9)

Nearest Neighbors(r=4)

The possible pairs of a 4-nearest neighbor network for n=10 can be expressed as

(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 10)(10, 1)
(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)(6, 8)(7, 9)(8, 10)(9, 1)(10, 2)
(1, 4)(2, 5)(3, 6)(4, 7)(5, 8)(6, 9)(7, 10)(8, 1)(9, 2)(10, 3)
(1, 5)(2, 6)(3, 7)(4, 8)(5, 9)(6, 10)(7, 1)(8, 2)(9, 3)(10, 4)

(6.3.10)

In this case, the chromatic index is either 8 or 9. Hence, optimal periodic sub-sequence

(E) can be written as

E = E1E2E3E4E5E6E7E8,

where,

E1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
E2 = (5, 9)(3, 6)(7, 1)(10, 4)(8, 2)
E3 = (9, 2)(1, 5)(6, 10)(3, 7)(4, 8)
E4 = (4, 5)(1, 3)(10, 2)(6, 7)(8, 9)
E5 = (2, 4)(3, 5)(6, 8)(7, 9)(1, 10)
E6 = (4, 6)(5, 7)(8, 10)(9, 1)(2, 3)
E7 = (1, 4)(2, 6)(7, 10)(9, 3)(5, 8)
E8 = (4, 7)(2, 5)(6, 9)(8, 1)(10, 3)

(6.3.11)
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are disjoint sets.

Primitive gossip matrix (W ) is expressed as

W = S1S2S3S4S5S6S7S8S9S10, where

S1 = P1,2P3,4P5,6P7,8P9,10,

S2 = P5,9P3,6P7,1P10,4P8,2,

S3 = P9,2P1,5P6,10P3,7P4,8,

S4 = P4,5P1,3P10,2P6,7P8,9,

S5 = P2,4P3,5P6,8P7,9P1,10,

S6 = P4,6P5,7P8,10P9,1P2,3,

S7 = P1,4P2,6P7,10P9,3P5,8,

S8 = P4,7P2,5P6,9P8,1P10,3.

Hence, W is computed as

0.0977 0.1016 0.1016 0.0977 0.1016 0.1016 0.0977 0.0977 0.1016 0.1016
0.0977 0.1016 0.1016 0.0977 0.1016 0.1016 0.0977 0.0977 0.1016 0.1016
0.1055 0.0977 0.0977 0.1055 0.0977 0.0938 0.1055 0.1055 0.0938 0.0977
0.1055 0.0977 0.0977 0.1055 0.0977 0.0938 0.1055 0.1055 0.0938 0.0977
0.1016 0.0977 0.1016 0.1016 0.0977 0.0977 0.1016 0.1016 0.0977 0.1016
0.1016 0.0977 0.1016 0.1016 0.0977 0.0977 0.1016 0.1016 0.0977 0.1016
0.0977 0.1016 0.1016 0.0977 0.1016 0.1016 0.0977 0.0977 0.1016 0.1016
0.0977 0.1016 0.1016 0.0977 0.1016 0.1016 0.0977 0.0977 0.1016 0.1016
0.0977 0.1016 0.0977 0.0977 0.1016 0.1055 0.0977 0.0977 0.1055 0.0977
0.0977 0.1016 0.0977 0.0977 0.1016 0.1055 0.0977 0.0977 0.1055 0.0977


(6.3.12)

6.4 Proposed Method

To measure the convergence rate of the periodic gossip algorithms, it is essential to

compute the second largest eigenvalue of the primitive gossip matrix of the network.

However, calculating eigenvalues for large-scale networks is a computationally challeng-
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ing task. To overcome this problem, the combination of power-iteration and deflation

techniques [69] proposed in this chapter. By using the power-iteration method, we can

obtain the largest eigenvalue and its corresponding eigenvector. To obtain the second

largest eigenvalue, deflation technique has been used. In deflation technique, a rank one

modification is applied to the original matrix to displace the largest eigenvalue. The

power-iteration method can be applied to the deflated matrix to extract the second

largest eigenvalue.

6.4.1 Power-Iteration Method

Let A be a n × n matrix, then to evaluate the largest eigenvalue follow the below

steps.

(1)Choose a non-zero initial vector υ0.

(2)For k=1,2....,evaluate υk = Aυk−1

αk
where αk is a component of the vector Aυk−1 which

has the maximum modulus.

6.4.2 Deflation Technique

Let A be a n × n matrix with the eigenvalues λ1, λ2, λ3, .....λn and corresponding

eigenvectors υ1, υ2, υ3, ......υn.

(1)Evaluate the matrix

B = A− λ1υ1xT (6.4.1)

where x is an arbitrary n-vector.

(2)Delete the first row of B and apply power-iteration method. The resultant eigenvalue

and eigen vector are λ2 and υ2 respectively.
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Figure 6.2: Effect of Node’s Transmission Radius on Convergence rate for even number
of nodes

By using the power-iteration and deflation techniques, convergence rates of the periodic

gossip algorithm of the r-nearest neighbor ring network for n=9 and n=10 have been

evaluated.

6.5 Numerical Results and Discussion

In this section, numerical results have been presented to investigate the impact of

nodes’ transmission radius on the convergence rate of average periodic gossip algorithms.

Fig. 6.2 has been plotted for n = 9 varying r from 1 to 4. It has been observed that the

convergence rate of periodic gossip algorithms increases with the node’s transmission

radius. At r = 4 convergence rate reaches approximately unity as the network will

have full connectivity. Fig. 6.3 has been plotted for n = 10 varying the r from 1 to

4. As shown in the Fig. 6.3, convergence rate increases with the transmission radius

and reaches unity for the odd number of nodes. We have verified the efficacy of the
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Figure 6.3: Effect of Node’s Transmission Radius on Convergence rate for odd number
of nodes

proposed method using MATLAB simulations.

6.6 Conclusions

In this chapter, WSN has been modeled as an r-nearest neighbor ring network, and

the effect of transmission radius on the convergence rate of average periodic gossip al-

gorithms have been investigated. Power-iteration and deflation techniques have been

proposed to compute the convergence rate of average periodic gossip algorithms. Fi-

nally, numerical results illustrate that the convergence rate of periodic gossip algorithms

increases with the nodes’ transmission radius. The proposed method can also be used

in computing the convergence rate of periodic gossip algorithms for large-scale WSNs.



Chapter 7

Conclusions and Future Work

This chapter discusses the major conclusions of the works presented in the thesis.

Some of the studies in this thesis can be further explored. We discuss some of the open

problems for further investigation.

7.1 Conclusions

This thesis studied the consensus algorithms for WSNs using regular graphs and

one-dimensional lattice networks. In chapter 3, WSN has been modeled as r-nearest

neighbor network and the closed-form expressions of convergence rate have been derived

for average consensus algorithms. The variable ’r’ represents the nearest neighbors that

can model the transmission radius or node overhead. From the numerical results shown,

it is concluded that the convergence rate decreases with the number of nodes and net-

work dimension. It has also been observed that the convergence rate increases with

the nodes’ transmission radius. Numerical results reveal the trade-off between power

consumption and convergence rate. Finally, an optimization framework has been pro-

posed to design the optimal transmission radius that maximizes the convergence rate
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and minimizes the power consumption.

Low power wireless networks such as WSNs consist of unreliable and time-varying chan-

nels. WSNs consists of asymmetric channels which cannot be modeled by the undirected

graphs. In chapter 4, we study the effect of asymmetric links on the convergence rate

of consensus algorithms for WSNs. WSN has been modeled as a directed graph, and

the closed-form expressions of convergence rate have been derived for the ring, torus,

r-nearest neighbor ring, and m-dimensional torus networks. Numerical results illus-

trated that the convergence rate decreases significantly with asymmetrical link factor

in small-scale WSNs. In large-scale WSNs, the effect of asymmetrical links on conver-

gence rate decreases with the number of nodes. Further, we studied the impact of the

number of nodes, network dimension, and node overhead on the convergence rate of

average consensus algorithms. This chapter also investigated the accuracy of directed

graph modeling over undirected graph modeling using absolute error.

In chapter 5, WSN has been modeled as a one-dimensional lattice network, and the

closed-form expressions of convergence rate have been derived for average periodic gos-

sip algorithms. To investigate the effect of gossip weight on convergence rate, a gener-

alized expression for convergence rate has been derived for periodic gossip algorithms.

From the numerical results, it has been observed that w=0.9 gives faster convergence

rate over w=0.5(average) for large-scale networks. Further, this chapter studied the

effect of communication link failures on the convergence rate of periodic gossip algo-

rithms. It has been observed that communication link failures drastically reduces the

convergence rate of periodic gossip algorithms.

In chapter 6, WSN has been modeled as an r-nearest neighbor ring network, and the

effect of the number of nodes and nearest neighbors on the convergence rate has been

studied for average periodic gossip algorithms. To study the convergence rate for large-

scale networks, this chapter proposes the power iteration and deflation techniques.



7.2 Open Problems 103

Theoretical results developed in this thesis can be utilized to measure the convergence

time of the consensus algorithms for WSNs. Network diameter measures the number

of steps required to obtain the global average in consensus algorithms. Hence, the

convergence time of the two graphs is the equivalent if their diameter is the same.

Therefore, theoretical results developed in this thesis can also be utilized to measure

the convergence rate and convergence time of the arbitrary graph models.

7.2 Open Problems

(1) Increasing the nodes’ transmission radius improves the convergence rate of con-

sensus algorithms. However, the nodes’ transmission radius is directly proportional to

power consumption. Since, WSNs consist of limited power resources, obtaining the op-

timal radius to increase the convergence rate considering the node’s power consumption

is still an open problem.

(2) Deriving close-form expressions of convergence rate expression for a ring network,

r-nearest neighbor ring network for periodic gossip algorithms are yet to be studied.

(3) To gain more insight in studying consensus algorithms for WSNs, the convergence

rate can be further explored for other graph models such as random graphs, scale-free

networks, and small world networks.

(4) This thesis mainly focused on studying deterministic consensus algorithms for

WSNs. Randomized consensus algorithms are yet to be examined for WSN scenar-

ios.

(5) In this thesis, we examined the effect of network size, network dimension, link fail-

ures, asymmetric links, and nearest neighbors on the convergence rate of consensus

algorithms for wireless sensor networks. However, WSNs are spatial networks which
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operate in hostile environments and unattended locations such as forests, hills, rivers,

the human body, buildings, etc. So, it is necessary to study the WSN’s dynamic behav-

ior of physical phenomena over space. WSNs can be modeled by the spatial network

models [70], [71]. As discussed in the [70], geometric graphs describe the simplest model

of spatial networks which is obtained for a set of vertices located in the plane, and a set

of edges constructed under the specific geometric condition. ErdosRenyi graph model

is also a prominent spatial network model which describes the probability to connect

any two nodes depends on the distance between them. In the WattsStrogatz model,

the starting point is an n-dimensional lattice, and random links are added according

to a given probability distribution [70]. Convergence rate of consensus algorithms can

be studied for the aforementioned spatial models to investigate the effect of complex

topological relationships over geometrical representations of physical features such as

buildings, trees, and rivers in WSNs.
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