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Traditionally Peer-to-Peer (P2P) network users use wired network technology like

LAN for accessing the Internet. However nowadays, wireless technology can pro-

vide high speed data service at lower costs. This has led to widespread use of

wireless technology in office, home and hotels to provide Internet connectivity.

Further, wireless technology is also being used to provide Internet services in

public places like airports, railway stations and restaurants etc. Therefore, many

P2P users are now using wireless networks like WiFi, WLAN, LTE and WiMAX (in

time division duplex (TDD) mode), where nodes are connected to the backbone

network through an access link. The uplink and downlink data flows through the

same access link. The access link capacity is fixed, but its partitioning between

uplink and downlink can be varied by a user such that increasing upload capacity

reduces download capacity and vice-versa. In a P2P network, since users act

both as a server and a client, so they need to simultaneously utilize their upload

and download capacities, optimally. In order to maximize the utilization of re-

sources allocated from the network, users would like to dedicate their entire link



capacity for download. However, incentive mechanism (e.g. Reputation System)

employed by a P2P system forces members to maintain certain minimum level of

contribution (i.e. upload), to receive resources from the network. The amount of

resources received by a user is proportional to its contribution level. Therefore in

the aforementioned network, there is a need to efficiently divide the link capacity

such that a user allocates just enough link capacity for upload, so as to receive

resources equal to its current download capacity. This point of capacity parti-

tioning will be referred as optimal capacity partitioning point. During optimal

partitioning, the link capacity allocated by any user i for the upload is minimum

such that resources allocated by other members to i become equal to its download

capacity. If user i further increases its upload capacity, resources allocated to it

will increase. However, it will not have enough download capacity to receive all

the allocated resources. On the other hand, reducing upload capacity decreases

the contribution level thereby reducing resources allocated to the user i w.r.t the

optimal point. Therefore, during optimal point partitioning, a user will receive

maximum resources from the network.

In earlier P2P networks users were connected to each other through wired network

technology like LAN, where capacity assigned to uplink and downlink is fixed.

Hence, until now, capacity partitioning was not a major issue in P2P networks.

Consequently, not much literature is available dealing with this problem in P2P

networks. Further, existing mechanisms on adjusting capacity partitioning used

by the other networks cannot be applied to P2P scenario because of the following

reasons.

• Majority of existing partitioning mechanisms seek to maximize link capac-

ity utilization based upon the network traffic, i.e., if currently download

requests are more then such partitioning schemes increases capacity allo-

cated for download and vice-versa. However, users in P2P network have
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altogether different requirements where partitioning mechanism should en-

sure minimal upload to maintain just enough incentive level for a user to

completely utilize its download capacity.

• Owing to absence of central controlling authority in P2P network, users re-

quire a distributed capacity partitioning mechanism which can be operated

independently by each user. However, most of the prevalent techniques

used for capacity partitioning require a central authority like network ad-

ministrator to modify the link capacity.

Therefore, there is a need for investigating the capacity partitioning problem in

P2P network. Chapter 1 of this dissertation presents a general overview about P2P

networks along with the major research challenges being faced in their implemen-

tation. Chapter 1 also states and explain the research problem being investigated

in this thesis along with the existing solutions available for this problem.

This thesis deals first with the computation of optimal point of access link capacity

partition between upload and download. Deviation from this optimal point can

be used as metric to compare the efficiency of various algorithms used to partition

the access link capacity. In Chapter 2, we model capacity partitioning as a game

for homogeneous P2P network. In homogeneous network all the users have same

access link capacity. P2P networks consisting of users connected to the same WiFi

or wireless LAN network can be considered as homogeneous network. Under

the Nash equilibrium (NE), all users equally partition the link capacity between

upload and download. Further, this NE comes out to be socially optimal and

provides maximum possible download to the users in the network. Therefore,

during optimal point operation, users are equally dividing their link capacity

between upload and download.
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In Chapter 3, we have game theoretically established that resource distribution

only on the basis of cooperation level is unfairly biased towards high capacity

users. We show that high capacity users can strategically manipulate their upload

capacity, so that the resources received by them is much higher than the amount

they upload. These extra resources are drawn from the share of genuine low

capacity users. In some cases, the low capacity users are unable to receive any

resource even if they are uploading with their maximum capacity. We also prove

that for fair resource distribution, the resources should be distributed according

to ratio of contribution to consumption of resources by the requesters. Further, we

extend our game theoretic model to a more generalized model of heterogeneous

users in chapter 4. We establish that if resources are distributed in decreasing order

of the ratio of the contribution to the consumption of resources by the requesters,

then optimal partitioning corresponds to the network condition where each node

is equally dividing its link capacity between upload and download.

Secondly, in this dissertation, we have proposed a mechanism which helps users

to operate at optimal partitioning level in the P2P network. In Chapter 5, we have

modeled capacity partitioning as a feedback control problem, where resources

received by a user act as a feedback, which decides its output, i.e., the amount of

resources that the user uploads back to the network. The proposed control system

implemented in the form of adaptive step size (ASZ) algorithm strives to take the

current partitioning level to an optimal partitioning level. ASZ considers many

aspects of real time P2P network and automatically adjusts capacity partitioning

at the user when a new user enters or an existing user leaves the network. In

addition, ASZ can be easily integrated with an existing P2P network, where some

users are using partitioning scheme other than ASZ.

Finally, in Chapter 6, we compare ASZ with Reputation-Based Resource Allocation

Policy (RRA), an existing capacity partitioning mechanism for P2P networks. RRA
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uses fixed size for change in capacity partitioning, so capacity partitioning at user

never settles down at the optimal value. It is either more or less than what is

the optimal value. This oscillatory behavior results in over or under allocation

of upload bandwidth leading to wastage of resources. Unlike RRA, ASZ uses

variable step size to take care of this inconsistency such that the step size tends to

0 as the current sharing level approaches an optimal value. Thus, total capacity

partitioning stabilizes around optimal point leading to enhanced efficiency. We

have also compared our proposed scheme with BitTorrent. Due to a more strict

resource distribution, ASZ is fairer than BitTorrent, where lesser resources get

awarded to free-riders. Further, in chapter 6, using simulation results we have

established that the users employing the ASZ are able to operate near the optimal

partitioning level in the network. In totality, the present work can provide a very

efficient and fair sharing of network resources in P2P network containing.
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Chapter 1

Introduction and Literature Review

1.1 Peer-to-Peer (P2P) Network as a Resource Sharing

System

Evolution of the human race requires that information gathered by a person be

passed on to the other members of the society. Internet has acted as a widespread

medium for information exchange, where a user can easily receive information

from any other user in the world. Traditionally, Internet was based on a client-

server model where a dedicated server provided content to the requesting clients.

This is shown in Fig. 1.1. However, the finite bandwidth available at the server

acts as a bottleneck, restricting the scalability of server, to serve only a limited

number of clients. At the same time, the client-server model also suffers from the

problem of single point of failure.

The problems state above can be solved by using Peer-to-peer networks. Peer-

to-peer network, in this dissertation, will also be referred to as P2P network.

P2P network consists of a large number of nodes (eg. Computers, PDAs , Smart

phones etc.) where nodes act as both server and client simultaneously. A generic

P2P network model is shown in Fig. 1.2. P2P network is implemented as a virtual

overlay network on top of an existing network. In this overlay network, all the

peers are interconnected with each other. In P2P network, as peers are consumers

as well as resource providers, therefore the number of resource providers increases

1
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Figure 1.1: The Client-Server Model

with increase in the members of the P2P network. This reduces average load at

each member in the network, thus making the P2P network highly scalable. As

P2P network is scalable it can easily handle increase in number of users in the

network. Another feature of P2P network is that it is a distributed network,

i.e., it lacks any central authority for controlling, supervising and maintaining

the network. These functions are divided among the members of the network.

Since a P2P network does not rely on dedicated servers, they exhibit high level of

reliability, fault tolerance and resilience from a single point of failure.

P2P networks are used in various applications like content-sharing (especially

files) [1], data lookout [2, 3], sharing disk space for storing files [4] and grid

computing [5]. Wide applications of P2P networks are possible because of their

ability to build a highly resource rich network by aggregating the resources of

its members. Consequently P2P networks are able to provide many services

traditionally provided by centralized systems at relatively lower cost. This has

2
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Figure 1.2: The P2P Network Model

lead to a surge in the popularity of P2P networks. Subsequently in this thesis, the

terms node, peer and member will be used interchangeably to refer to the same

thing, i.e., member elements of the P2P network.

1.2 Evolution of P2P Networks

File sharing was initially responsible for the widespread popularity of P2P net-

works. We, therefore, discuss here the important P2P file sharing networks along

with their history. Over time, P2P networks have evolved from a centralized con-

tent look out approach (e.g. Napster [6]) to a distributed object query approach
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(e.g. Gnutella [7]). Based upon the degree of network centralization [8], P2P file

sharing networks can be divided into 3 types

1. Centralized P2P network.

2. Decentralized P2P network.

3. Hybrid P2P network.

These networks along with their examples are described next.

1.2.1 Centralized P2P Network
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Figure 1.3: Centralized P2P Network

Although P2P networks have been seen as an alternative to a centralized client-

server model, the first generation P2P networks were based upon the concept

of centralization. Unlike client-server architecture, central entity in such P2P

network did not provided any content to the users. The central entity use was
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limited to finding other members and content discovery across the network. The

content exchange process in centralized P2P network is presented in Fig. 1.3. A

peer first contacts the central server for location of the content. Once content

gets located, requesting peer directly connects with the content provider. Central

server dependency leads to a single point of failure in such kind of network.

Example : NAPSTER [6], BitTorrent [9] (before version 4.2.0) .

1.2.2 Decentralized P2P Network
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Figure 1.4: Decentralized P2P Network

The centralized network suffers from the problem of scalability, single point of

failure and legal issues. To overcome these issues, decentralized networks were

developed which do not rely on a central server for meta-data information. Peers

in such kind of networks dynamically discover other members. Content discovery

is usually achieved through flooding in the decentralized network. Once resource

gets located, the requesting node directly connects to the serving node as shown

in Fig . 1.4. However, flooding leads to huge network traffic. At the same

time, in decentralized kind of architecture relatively less number of peers can be

discovered. Therefore, resource lookout becomes a difficult task in such networks.

Example : Gnutella [7], Freenet [10].
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1.2.3 Hybrid P2P Network

To mitigate the problems of the centralized and decentralized network discussed

earlier, hybrid P2P networks as shown in Fig. 1.5, have become popular in recent

times. Such a network divides its users into two types, namely super users

and users. Super users are assigned additional responsibility of being indexing

servers in the network. Users ask super users for the location of the content.

Super users initially search for the content locally in the nodes which are assigned

to it. However, if content is not available locally, it communicates with other

super users for the content address. Super users provide the content location

and thereafter the user can directly connect to the content provider for transfer of

content. Generally, nodes with high computational power are made super users

in the P2P network.
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Figure 1.5: Hybrid P2P Network

Example : Kazaa [11].
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1.2.4 Characteristics of P2P Networks

The following characteristics are generally associated with the P2P networks.

1. Decentralization : There is no central controlling authority in a P2P network.

The collective actions of the peers determine the overall working of the net-

work. However, certain cases like management of overlay network [12] and

monetization of certain operations [13] may require centralized elements.

Nevertheless, a central element will never exclusively provide resources in

the P2P network.

2. Symmetry : All the nodes are assigned equal operational roles, i.e., they act

as both server and client. However, in some P2P network this condition

is relaxed, and certain nodes are also assigned additional roles [14], e.g.

maintaining location table for files. These nodes are referred as super nodes.

3. Autonomy : There is no central administrating node which determines the

participation of nodes in the network. In P2P network, a node’s participation

is decided locally.

4. Anonymity : P2P networks can also be used to provide anonymous commu-

nication between the devices, so that physical location and actual identity

of participant is hidden from other members in the network. Interest in

anonymous P2P communication has increased in recent years as it avoids

litigation issues arising due to distribution of copyright material over the

network.

5. Resource Sharing : A P2P network thrives on contributions by its member

nodes. Ideally, nodes should share in proportion to what they demand.

However, there are also nodes who free-ride [15], i.e., they utilize network

resources without any appropriate contribution back to the network. In

Section 1.5.2, we discuss several incentive mechanisms, which can be used

to discourage free-riding in P2P network.

6. Connectivity : All the nodes in a P2P network are connected to each other

(see Fig. 1.2) and can directly exchange resources with each other within a

finite hop count.
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7. Stability : The P2P network is able to provide service even when existing

nodes leave and new nodes enter the network. This implies that, although

the topology of the network changes, the nodes are still able to communicate

with other members.

8. Scalability : The performance of the P2P network does not degrade with

increase in the number of nodes in the network. The increase in number of

nodes gets compensated by corresponding increase in the count of resource

providers available across the network.

1.3 Major Research Issues in P2P Network

The unique characteristics of the P2P network discussed in the previous section,

present many challenges in their practical implementation. These challenges need

to be addressed to utilize the full potential of P2P technology. The major research

challenges that are being faced by P2P network designer are listed below.

1. Content Identification and Distribution : The network scale and anonymity of

members of the P2P network make it very difficult to identify and distribute

resources across the network [16]. Distributed Hash Tables (DHT) [17] are

used to store and retrieve content indexes in the P2P network. However,

overheads required to maintain DHT tables and inconsistency in resolution

of the queries, can be further reduced to improve the content search in the

P2P network.

2. Malicious Peers : Malicious peers present a serious threat because of anony-

mous nature of communication in a P2P network. The member peers may

receive fake content due to the presence of malicious peers [18, 19] in the

network. Malicious peers may also provide false feedback about genuine

peers, thereby reducing their reputation. The malicious peers need to be

segregated and isolated from normal peers so that they do not affect the

working of the P2P network.

3. Churn : P2P network suffers from the problem of high churn rate, i.e., nodes

continuously joining and leaving the network. Studies [20, 21, 22] conducted
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on real-life P2P networks have shown that nearly 50% of the peers get

replaced within an hour. This high churn rate in the P2P network causes

difficulty in storage and retrieval of information from the network.

4. Free-riding : Selfish behavior [23] of members prevent them from voluntarily

sharing their resources, and thereby threatens the very existence of P2P net-

work. To motivate peers to share resources, various incentive mechanisms

have been proposed, which provide incentive in terms of services received

by the node from the network [24, 25, 26, 27, 28]. However, the unique

attributes of the P2P network present challenges in design and implementa-

tion of the incentive mechanisms in a P2P network. Some of the challenges

are

(a) Absence of central controlling authority.

(b) Anonymity leading to hidden or untraceable actions of the members.

(c) Highly dynamic membership, with large number of nodes continu-

ously entering and leaving the network.

(d) Collusive behavior and false feedback provided by the malicious peers.

(e) Availability of cheap identities or pseudonyms.

5. Whitewashing : In whitewashing [29, 30, 31], users with low contribution level

leave the network and rejoin it with new identities to avoid low contribution

penalties and exploit the incentives provided by network to newcomers on

joining the network. Whitewashing occurs because the members in a P2P

network can easily change their identities. Solution to the whitewashing

problem is tricky, as providing no incentive to newcomers will discourage

peers to whitewash, but it will also deter genuine newcomers from joining

the network.

6. Interoperability : With the advent of many P2P file sharing applications their

interoperability has become a major issue [32]. Various file sharing applica-

tions should be able to exchange information with each other to fully utilize

the potential of P2P technology.

7. Load Balancing : Continuously changing demand for the data items and

skewed query patterns in a P2P network lead to overloading [33] of some
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members and thereby increase overall response time. Therefore, effective

load balancing becomes a necessity in P2P networks.

1.4 Cooperation as Vital Element in Success of P2P

Networks

Mast of the current research on P2P technology is devoted to increasing the per-

formance of various content look-out algorithms. However, because of the unique

features of P2P network, elementary and challenging issues still remain in moti-

vating peers to cooperate and exchange resources across a P2P network. Most of

the traditional models are based on the assumption that members are altruistic,

i.e., they blindly share all their resources without thinking about the utility they

receive in return. This assumption is not correct in practical P2P networks where

members are rational. Rational users will prefer not to contribute resources be-

cause of the significant amount of communication and computation cost attached

with the contribution, which diminishes the utility they derive from the network.

Thus, individual rationality and social welfare are in direct conflict. This leads to

the problem of free-riding where many users free ride, i.e., they benefit from the

resources and services of the network without contributing anything back to the

network. Consequently, most of the resources and service requests are directed

toward few P2P nodes in the network which are willing to contribute. This results

in degradation in the overall performance of the P2P network. In the next sub-

section, we briefly discuss different studies conducted on various P2P networks

to show the severity of the free-riding problem in such networks.

1.4.1 Experimental Proof of Free-Riding in P2P Networks

Several experimental studies have been conducted in the past which confirm the

presence of free-riders in P2P networks. Adar et al. in the year 2000 [34], studied

the presence of free-riders in Gnutella network. The important observations of

their study are given below.

10



1.4 Cooperation as Vital Element in Success of P2P Networks

1. Free-riders were found to be uniformly distributed across the network.

2. 70% of users in Gnutella were free-riders.

3. Only 5% of peers uploaded 70% of the files available in the network, while

the top 25% were responsible for 98% content in Gnutella.

4. Nearly half of the total file search responses in such network came from 1%

of total members, causing congestion in these serving members.

5. 63% of peers did not answer a single query, although they did share some

files. This can also be interpreted as free-riding behavior of the nodes, where

peers deliberately put content for upload which is of no use to the other peers

in the network .

Saroiu et al. [35], also studied Gnutella and Napster networks in year 2000.

Following were the highlights of this study.

1. Peers indulge in a different type of non cooperative behavior, where they

reported lesser bandwidth than the actual amount available with them.

2. In Napster, 40 to 60% of peers contributed to 5 to 20% of their total content.

3. Only 7% of the total peers were responsible for sharing the major portion of

the total files in Gnutella.

4. 75% of the members in Gnutella shared upto 100 files only.

One more study was conducted by the Hughes et al. in year 2005 [36], which

showed that free-riders percentage had further increased to 85% in Gnutella net-

work. This study also reported that free-riding can exist in BitTorrent, a popular

file sharing P2P application. In year 2008, Zghaibeh and Harmantzis [37], pub-

lished a study related to free-riding in BitTorrent. The major results of their study

were as follows.

1. Volume of free riders is increasing in BitTorrent.

2. 16.8% of the total peers in BitTorrent network free-ride.
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3. The majority of free-riders upload only 5% of their downloaded data.

4. 8% of the total free-rider population upload nothing back to the network.

Cuevas et al. [38] also published a study on BitTorrent in 2013. It segregated

content publishers in BitTorrent on the basis of their motivation to publish content.

The content publishers were divided into 3 groups as discussed below.

• Altruistic publishers : These are genuine users who simultaneously consume

and publish content in P2P network.

• Fake publishers : Fake publishers consist of anti-piracy agencies or malicious

users. These publishers are responsible for publication of fake content across

the P2P network.

• Profit-driven publishers : These publishers are the website owners who use

BitTorrent as a platform for the advertisement of their website. These pub-

lishers display URL of their website to the user, during content download.

The study conducted by Cuevas et al. concluded that,

1. Content distribution across the network by publishers is very skewed, i.e.,

a very small number of publishers account for significant amount of the

published content. Statistically, only 3% of publishers are responsible for

67% of the contents and 75% of download.

2. Fake publishers are incessantly poisoning the content and are responsible

for 30% of content, affecting 25% of download sessions.

3. Profit driven publishers, publish nearly 26% of the available content and

account for 40% downloads in the BitTorrent.

In a nutshell, all the common P2P networks suffer from the free-riding problem

where many peers end up not sharing any resources. The reason for free-riding

or non-cooperative behavior can be understood by game theoretically analysing

the behavior of the members in a P2P network.
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1.5 Game Theoretic Explanation of Free-Riding

1.5.1 Brief Review of Game Theory

Game theory is a mathematical tool, used for decision making in competitive

situations. Various competitive situations can be modeled as a game which has

an outcome decided by the actions chosen by the participants. Moreover, the

payoff received by the participants is determined by the game’s outcome .

We assume that N = {1, 2, · · ·,N} represents the set of players (or participants)

playing the game. A player i’s strategy/action is represented by si∈Si. Player

i will always choose a particular action to maximize its utility (ui). Usually, a

steady state or equilibrium arises in the game when no player has any incentive

to change their current strategy. This steady state is the Nash equilibrium (NE)

and is elaborated in the next subsection.

1.5.1.1 Nash Equilibrium (NE)

A strategy profile S∗ = {s∗1, s∗2, · · ·, s∗i , · · ·, s∗N} consisting of the strategies of all the

players in the game is a NE, if no player i can be better off by choosing a strategy

different form s∗i , provided that every other player j∈N\{i}, adheres to its strategy

s∗j. Therefore for S∗ to be a NE,

u(s∗i ,S−i)≥u(si,S−i), ∀i∈N , (1.1)

where S−i = {s∗1, s∗2, · · ·, s∗i−1, s∗i+1, · · ·, s∗N} is a set of strategies of all the players

except i.

At NE, every player plays his best response against actions of the other players.

The best responses are strategies which provide maximum payoff to a node i for

a fixed S−i. It is a set, defined as

Bi(S−i) =
{
si|si = arg maxŝi∈SiUi(ŝi,S−i)

}
(1.2)

Therefore, NE in term of best responses of the players is defined as
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S
∗ = {si|si∈Bi(S−i),∀i∈N} . (1.3)

In section 1.5.1.3, we model file sharing between the members of the P2P network

as a non cooperative game. In non cooperative games, no cooperation or coordi-

nation exists between the players involved in the game. The NE of the file sharing

game is members not sharing any resource, causing problem of free-riding in the

P2P network. The game theoretical justification of free-riding phenomena in P2P

network, is described in detail in the following subsection.

1.5.1.2 Prisoner’s Dilemma Game

The Prisoner’s Dilemma [39], is a famous game in game theory which describes

rationale of being non cooperative even if cooperative behavior would have been

beneficial for all the players (prisoners) involved. This game theoretic modeling

of Prisoner’s Dilemma is as follows.

1. Players: The two suspects X and Y.

2. Action: Each player’s set of action is {cooperate (C), Defect (D)}. When a

player cooperate it denies that the other player has committed the crime,

whereas it admits involvement of other player in case of defection.

3. Preferences: The payoff (i.e. number of years for which a player is sentenced)

received by the two players for their corresponding actions are listed in Table

1.1.

4. Objective: Each player desires to minimize its years of imprisonment.

Now we present detailed analysis of the Prisoner’s Dilemma game. The game

consists of two players/suspects X and Y. They have been apprehended by the

police with evidence for some petty crime. Police also knows that they both

are involved in bigger crime but lacks any evidence to prove their involvement.

Therefore, police sets a trap, where it offers a prisoner (say X) to admit that other

prisoner (say Y) has committed the crime. If X admits of Y’s involvement in crime,

then X will be set free if Y denies X’s involvement in crime. However, if Y also

admits that X is involved in the crime then X will get a 5 years imprisonment .
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cooperate(Y) Defect(Y)

cooperate(X) (1, 1) (10, 0)

Defect(X) (0, 10) (5, 5)

Table 1.1: Payoff Matrix for Prisoner’s Dilemma

cooperate(Y) Defect(Y)

cooperate(X) (1, 1) (10, 0)

Defect(X) ( 0 , 10) ( 5 , 5)

Table 1.2: Best Response of Player X

cooperate(Y) Defect(Y)

cooperate(X) (1, 1) (10, 0 )

Defect(X) (0, 10) (5, 5 )

Table 1.3: Best Response of Player Y

Alternatively if X denies Y’s involvement, then if Y says X is not involved, then

both X and Y will receive a lighter sentence of 1 year pertaining to lesser crime,

but if Y says X is involved, Y will be set free and X receives a sentence of 10 years

of imprisonment. On same line, symmetric arguments hold for player Y.

If X denies Y’s involvement, we say X is cooperative, else he is defecting to Y. We

have represented all possible scenarios in the game in Table 1.1.

For prisoner X, if he defects he can get imprisonment of 0 or 5 years, whereas if

he cooperates, he gets 1 or 10 years. Thus out of the two options, defection is the

best strategy for X (refer Table 1.2). The same is true for prisoner Y as shown in

Table 1.3. In the above scenario, it is assumed that X and Y cannot communicate

with each other. If they are allowed to communicate with each other before giving

their statement to police, they both will cooperate. Even if they are allowed to

communicate, but police asks from them separately, they both will defect because

they will act selfishly in order to optimize for themselves. This is represented in

Table 1.4.
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cooperate(Y) Defect(Y)

cooperate(X) (1, 1) (10, 0)

Defect(X) (0, 10) ( 5 , 5 )

Table 1.4: Nash Equilibrium in Prisoner’s Dilemma

Share(Y) Not Share(Y)

Share(X) (D − S, D − S) (−S, D)

Not Share(X) (D, −S) (0, 0)

Table 1.5: Payoff Matrix for File Sharing Game

We can observe these kinds of scenarios in daily life where optimality for the whole

group is sacrificed in favor of self interest, leading to the scenario where individual

actually loose. Similar kind of logic holds for file sharing in P2P network. The

member nodes in network give preference to their individual benefit, (i.e., they

do not share) over social welfare, resulting in their own loss, as network has no

resource available which can be downloaded. For better understanding of this

situation, we model the interaction between two member as a non cooperative

game in the subsequent subsection.

1.5.1.3 Modeling of File Sharing as Non Cooperative Game

The file sharing between two users in a P2P network is modeled as a non cooper-

ative game1. The game is described as follows,

1. Players: Two member nodes X and Y.

2. Action: Each player’s set of action is {Share, Not Share}.

3. Preferences: The payoff is the utility earned by downloading the resource

(D) minus cost incurred (S) in sharing the resource. The payoff received for

all possible set of actions is given in Table 1.5.

1In non cooperative games, no cooperation can exist between the players involved in the game
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Share(Y) Not Share(Y)

Share(X) (D − S, D − S) (−S, D)

Not Share(X) ( D , −S) ( 0 , 0)

Table 1.6: Best response of Player X

Share(Y) Not Share(Y)

Share(X) (D − S, D − S) (−S, D )

Not Share(X) (D, −S) (0, 0 )

Table 1.7: Best response of Player Y

Share(Y) Not Share(Y)

Share(X) (D − S, D − S) (−S, D)

Not Share(X) (D, −S) ( 0 , 0 )

Table 1.8: Nash Equilibrium of File Sharing Game

From Table 1.6, it is clear that irrespective of the action of node Y, not sharing

always earns highest payoff to X. Similarly, on referring Table 1.7, not sharing is

most optimal strategy for Y also. When both the players do not share, then they

are playing best response against actions of each other (refer Table 1.8). Therefore,

the Nash equilibrium for the game is (Not Share, Not Share). This tendency of

utilizing resources from the network and not sharing back is termed as free-riding

[30]. In practice, if every member follows this strategy then the P2P network will

have nothing to share and it will subsequently become defunct.

1.5.2 Solutions to the Free-riding Problem

To overcome free-riding, several mechanisms have been proposed to be intro-

duced in the P2P network, which provide incentive [24, 25, 26, 27, 28, 40] for

cooperation. An incentive can be in the form of preference during resource dis-

tribution or improvement in the quality of service provided to the contributing

peers in the network. Based on the type of incentive received for cooperation, the

incentive mechanisms can be further classified as follows.
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1. Inherent generosity : Studies conducted in behavioral economics have shown

that models based upon self-interest alone cannot completely explain the be-

havior of the members in society [41, 42]. Some users gain utility just by

altruistically sharing their resources. Feldman et al. [43] developed a model

which considers peer’s generosity while studying free-riding phenomena

in the P2P networks. The peers initially calculate contribution cost, which

is inverse of the total contributing peers in the network. Every peer will

have an inherent generous behavior. If the contribution cost is less than

generosity than a node will contribute, otherwise it will free-ride.

2. Monetary payment based incentive schemes : In such type of incentive

mechanism, the requesters pay to the resource provider for the resources

consumed by them. Golle et al. [28] was the first to study the potential

benefits of the payment based schemes in the P2P networks. Monetary

payment schemes provide flexible mechanism for exchanging resources in

terms of payments. However, there are many practical difficulties involved

in the implementation of monetary payment based incentive mechanisms.

The implementation difficulties are outlined below.

(a) Monetary payment based incentive mechanism require dedicated sys-

tems for accounting and payments.

(b) How to ensure that resource providers will reveal the real cost of the

resource to the requesters [44].

(c) How the payments from the requesters get delivered to the resource

providers [45, 46].

3. Cryptography based incentive mechanism : In recent times, T-chain [47]

a cryptography based incentive mechanism has been proposed, where a

node x will always receive an encrypted file piece on download. In this

mechanism, the decryption key corresponding to the received encrypted

piece is the incentive. Node x will receives this decryption key when it

uploads the received encrypted file piece to another peer in the network. In

this way, T-chain coerces every peer to cooperate.

4. Direct reciprocation based incentive mechanism : In this type of incentive

mechanism, decision of a node i serving node j will be entirely based on j’s
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past behavior toward i. It does not take into account the behavior of j towards

the other nodes in the P2P network. ”tit for tat” [1] employed in BitTorrent

is a direct reciprocation based incentive mechanism. Andrade et al. [48]

conducted a study which showed that ”tit for tat” has appreciably reduced

free-riding in BitTorrent. Laoutaris et al. [49] proposed BitMax algorithm

as an improvement over ”tit for tat” for improving uplink utilization in

BitTorrent for asymmetric digital subscriber line (ADSL) links [50].

The direct reciprocity based incentive mechanism is suitable for those P2P

networks, which have long session durations, so that nodes have ample

opportunities to reciprocate for the resources provided by the other nodes

[23]. In P2P applications, with high churn rate2 along with infrequent repeat

transactions between the peers, reputation based system are more efficient

in enforcing cooperation among the users.

5. Reputation based incentive mechanism : In a reputation based P2P network,

every peer maintains the history of its past cooperative behavior with all the

other peers in the network. The cooperative behavior of a peer is termed

as trust or reputation of the node. This reputation value is used in the

decision making process during content distribution. The system which

considers reputation during content distribution is termed as the Reputation

Management System. Several reputation systems [14, 51, 52, 53, 54, 55, 56]

have been proposed in the past, which differ in the reputation calculation

mechanism and the subsequent strategies used for resource allocation.

Eigen-Trust [54] uses the local reputation values calculated by peers to ar-

rive at a global reputation. The local reputation values are weighted by the

reputation of peers providing the feedback to prevent collusion by mali-

cious peers. In Peer Trust [19] a peer gives more weightage to reputation

feedback of a peer which shows similar trend in rating the other peers’ rep-

utation. In Fuzzy Trust [56], a peer calculates the reputation by considering

three factors viz., peer’s reputation, transaction date and amount. Power

Trust [14] uses power nodes for reputation calculation. Power nodes are

the most reputed nodes in the network. This mechanism further uses look

ahead random walk for the reputation aggregation. By using power nodes

2Churn rate is the rate at which nodes join and leave the network.
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and employing look ahead random walk strategy, power trust considerably

improves the accuracy of the global reputation and reduces reputation ag-

gregation time. Gossip Trust [53] uses gossiping algorithm for reputation

aggregation to reduce reputation calculation overhead and fast dissemina-

tion of global reputation score across the network. Mengshu et. al. [57]

used ratio of number of successful transactions to total number of transac-

tions for evaluating the reputation of a node. On the basis of the service

quality, PET [55] categorized the transactions into four types. Each type

is assigned a different weight. Nodes calculate the average reputation by

weighted average of different transactions based upon their type. Satsiou

and Tassiulas [15] proposed that reputation should be evaluated as a ratio

of resources received to resources demanded by a node. Each peer uses its

copy of local reputation value to distribute resources among the requesting

nodes. Usually, peers are awarded resources in descending order of their

reputation. Sometimes, this may lead to isolation of lower reputation peers

from the network. To overcome this problem and to provide a fair chance

to lower reputation peers to improve their reputation, probabilistic resource

allocation in [58] was proposed. In probabilistic resource allocation, the re-

sources are allocated between requesters in such a manner that probability

of a requesting node getting selected for the resource allocation increases

with increase in its reputation. Since the reputation affects probability of

allocation instead of actual allocation, the lower reputation nodes still have

some finite chance of receiving resources. Sometimes a serving node may be

cooperative but it is unable to deliver service because it is highly overloaded

with requests. Again, due to underlying network congestion a node may not

be able to provide resources. In such cases, although the node is cooperative

but it receives bad reputation due to network uncertainties. Gupta et al.

[59] put forward a reputation based system that takes into account various

uncertainties at the serving node to arrive at a more accurate estimate of the

reputation.

Many game theoretic analyses, have been conducted on reputation based

systems to analyse their stability. Goswami et. al. [60] analysed the problem

of reputation based resource allocation as a non cooperative game and es-

tablished that cooperation among peers is the best strategy. Goswami et. al.
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[61] also analysed the evolutionary stability of reputation systems in a P2P

network. Their results showed that reputation calculation is not an evolu-

tionarily stable strategy. However, if some initial entry fee for newcomers is

introduced, which gets distributed among the existing users involved in rep-

utation evaluation, then reputation calculation becomes evolutionary stable

strategy. Hence, reputation based system can be used to mitigate free-riding

in P2P network.

Although, reputation systems are one of the popular incentive mechanisms

used to reduce free-riding, their implementation in the P2P network is a

challenging task. Famous reputation based systems like e-bay [62] uses a

central repository for calculating and storing reputation data of all the users.

However, in P2P network, due to absence of central server, reputation has to

be calculated and stored in a distributed manner. This leads to the following

implementation issues.

(a) Reputation Systems are vulnerable to collusive behavior. The peers

may give false feedback about the cooperative behavior of others to

enhance their own reputation. The effect of collusive behavior gets

augmented in network where peers can easily change their identities

[63]. The misbehaving peer can create numerous fake identities and

provide multiple false reputation reports to the other peers.

(b) How much reputation should be provided to the newcomers is a critical

problem in the P2P network [30]. Ideally, for encouraging new peers

to join the network, a high reputation value can be provided to them

so that they can easily receive service from the network. However, it

is easy for peers to change their identities, due to absence of a trusted

central authority which can assign strong identities. So a low reputation

peer can easily subvert the penalties imposed by the reputation system

by regularly changing its identity.

1.5.2.1 Reputation Based Resource Allocation

Once, the reputation of a node gets estimated, a suitable mechanism is required

to distribute resources among requesting peers on the basis of their reputation.
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BitTorrent uses contribution levels, only for the selection of peers (from the pool

of requesting peers), who will be awarded the resource. Thereafter, serving node

equally distributes [1, 15] its resources among the selected peers. Ma et al. [64]

put forward a modified version of the progressive water filling algorithm, where

requesting nodes are provided resources at the rates proportional to their reputa-

tion. The authors theoretically proved that such kind of allocation maximizes the

utility received by the node. Yan et al. [65] proposed a mechanism where peers’

ranking and the utility were the basis for the resource allocation such that resource

distribution achieves max-min fairness. Satsiou and Tassiulas [15] arranged peers

in decreasing order of their reputation to demand ration for service delivery. This

approach maximizes the satisfaction level of the nodes in the network.

In the next section, we study single capacity links and discuss how the free-riding

problem becomes more severe in the networks, which contain such type of links.

1.6 Problem Under Investigation

In certain networks like WiFi, WLAN, LTE and WiMAX (in time division duplex

(TDD) mode) [15, 66, 67] the nodes are connected to the backbone network through

access link as shown in Fig. 1.6. The uplink and downlink flow shares the

common access link. The partitioning of the access link capacity between uplink

and downlink is not fixed and can be varied by user or network administrator

[67, 68]. We will refer to such type of links as single capacity links.

There exists another type of link which is present in networks like local area

network (LAN). In such type of link, fixed capacity is assigned to uplink and

downlink, such that access link capacity rearrangement is not possible. The

common example is asymmetric digital subscriber loop (ADSL) [50] link.

1.6.1 Single Capacity Links

The basic structure of single capacity links is shown in Fig. 1.6. The access link

capacity (Ci) connecting any node i to the network is fixed but its partitioning
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Figure 1.6: The P2P Network Model

between upload (si) and download (di) can be changed such that increasing si

reduces di and vice-versa.

In this thesis, we have assumed that the access link capacity available with the

nodes are independent of each other. We have undertaken this assumption to

keep the problem tractable. In reality, when network is observed for the shorter

duration, the link capacities available to a node will be dependent on the links

available to the other nodes in the network. This will certainly happen when

shared MACs such as WiFi networks or collision based ETHERNETs are used.

However, when long-term averages of the capacities are undertaken, the access

23



1.6 Problem Under Investigation

link capacities of nodes will become constant and can be assumed independent

of each other. Therefore, all the analysis are undertaken in this thesis are appli-

cable only to the scenarios where network observations are made for very long

durations.

1.6.2 Capacity Partitioning Problem in P2P Networks

Most of the nodes in P2P networks use network like LAN for communication,

where capacity assigned to uplink and downlink is fixed. Hence until now,

capacity partitioning was not a major issue in P2P networks. Consequently, not

much literature is available to solve capacity partitioning problem in P2P network.

However, with advancement in technology, wireless networks can provide high

speed data service at lower costs. Therefore, nowadays there is rapid shift from

wired to wireless communication. The wireless technology is being used in office,

home and hotels to provide Internet services. The focus is shifting towards using

wireless technology to provide Internet services in the public places like airports,

railway stations, restaurants etc., where people might require uninterrupted In-

ternet connectivity. Hence, many P2P nodes will be using wireless networks like

WiFi, WLAN, LTE and WiMAX (in time division duplex (TDD) mode)[15, 66, 67],

which contain single capacity links. In a P2P network, since nodes act as both

server and client, so they need to simultaneously utilize their upload and down-

load capacities. Therefore, in network with single capacity links, there arises a

need to efficiently divide link capacity so that nodes can maximize utility from

the network.

Peers being selfish [69] will always try to utilize their complete link capacity

for download. However, incentive mechanism used by the P2P network forces

them to upload. In such a scenario, a peer will like to fulfill the minimum

contribution/upload requirement, so as to achieve just enough incentive to meet

all of its download requirement. Such capacity partitioning will be referred to as

optimal partitioning.

If a node operates below optimal point, it will not have enough contribution level

to completely utilize its current downlink capacity. The other way around, if the
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node operates above optimal level its contribution level will increase but its current

downlink capacity will reduce w.r.t. download capacity at optimal partitioning

point3. Hence, resources received by node which can be utilized decreases when

it deviates from optimal point of operation. The received resources which can be

put into use will be referred to as node’s utility. Clearly, at optimal partitioning

point a node derives maximum utility from the network. In this dissertation, we

propose a mechanism which helps nodes in maximizing their utility by making

them operate at optimal partitioning point.

This capacity partitioning scenario is an extension of free-riding behavior of peers,

where peers’ basic tendency is to free-ride and allocate no capacity for upload.

In this way, nodes can utilize their entire link capacity for download. However,

the work discussed earlier for preventing free-riding in section 1.5.2 assumed that

each peer has separate capacities for its upload and download, which cannot be

changed by the peer. This is usually the case in ADSL [50] connections. It is

relatively more difficult in single capacity limited network to persuade nodes to

cooperate because allocating higher portion of capacity to uplink has negative

effect on downlink performance. Therefore, incentive mechanisms discussed

under section 1.5.2 cannot be applied directly in the single capacity link system.

A capacity partitioning system which optimally divides the access link capacity

is needed along with these incentive mechanisms for efficient operation of P2P

network containing single capacity links.

In the past, many capacity partitioning mechanisms [66, 67] have been proposed

to adjust uplink and downlink flows to enhance the utilization of access link

capacity. However, we cannot use these schemes to achieve optimal partitioning

in P2P network because of the following reasons.

1. These techniques require a central authority like network administrator to

modify the link capacity partitioning according to the current traffic flow.

However, P2P network lacks any central authority.

2. The objective of the above mentioned mechanisms is not to control free-

riding. These mechanisms aim at maximizing link capacity utilization based

3Increasing uplink capacity reduces downlink capacity and vice-versa in single capacity links,
as access link capacity is fixed
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upon network traffic, i.e., if currently download requests are more in the

network, the above mechanism will increase capacity allocated for download

and vice-versa. In a P2P network, users have a different requirement, where

partitioning mechanism should ensure just enough reputation/incentive for

a node so that it can completely utilize its download capacity.

P2P network requires a distributed mechanism which can be implemented inde-

pendently at nodes such that they help nodes in achieving optimal partitioning.

Till recently literature on capacity partitioning in P2P network is limited because

most of the P2P nodes still use wired connections. However, with increase in

popularity of wireless networks, optimal capacity partitioning will become a se-

rious issue. Important mechanisms for capacity partitioning in P2P networks are

presented as follows.

Meo and Milan [69] analysed capacity partitioning as a market. The nodes employ

second price auction to purchase and sell to each other, their access link capacity.

However, their analysis is restricted to a situation where the nodes are allowed

only one upload and download in the network. This restriction limits maximum

throughput that can be achieved by the nodes in the network. No node in the

network can receive a download rate greater than the capacity of the lowest access

link in the network, i.e.,

dmax = min
i∈N

Ci

2
,

where Ci is access link capacity of node i, N represents the set of all the network

users and dmax is the maximum download rate achieved by any node in the

network.

Iosifidis and Koutsopoulos [70] modeled capacity portioning between upload and

download as utility maximization problem. However, authors did not provide

any mechanism for complete utilization of the access link capacity.

Satsiou and Tassiulas [15], proposed an algorithm which dynamically adjusts

the access link capacity between uplink and downlink so that a node receives

maximum bandwidth from the network. This algorithm modifies the capacity
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partitioning at the node in fixed step sizes, so nodes usually overshoot or under-

shoot the optimal partitioning level. This oscillatory behavior results in reduced

utilization of the network resources.

1.7 Aims and Objective of Dissertation

In a network containing single capacity links, there is a need to determine equi-

librium/optimal state in the network, such that no node can increase its utility4 by

deviation from this state. This optimal state will act as a benchmark for various

partitioning schemes which strive to maximize the utility received at the node by

strategically partitioning the access link capacity between uplink and downlink.

Ideally, capacity partitioning achieved by any partitioning scheme should finally

converge to the optimal state. The greater the deviation from optimal state the

lesser is the efficiency of that scheme.

There is a requirement of efficient capacity partitioning mechanism because exist-

ing schemes [15][69], are unable to completely utilize the network resources. This

may arise due to the following reasons.

1. A limited system model is often considered while designing partitioning

mechanism e.g., one method allows only a single upload and download at

a time [69].

2. Modification in capacity partitioning may be fixed and independent of dif-

ference between current partitioning and optimal partitioning [15].

To overcome these issues, following objectives have been investigated in this

dissertation.

1. To calculate an optimal state of capacity partitioning in the network, where

multiple uploads and downloads are allowed at the node. At this optimal

4Utility is the benefit derived by the node from the network. In current context, it is the portion
of received resources, which can be put into use by the node. The concept of utility will be dealt
in detail, in the later part of this dissertation.
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state, every node is able to receive maximum possible resources from the

network.

2. To design an algorithm which will dynamically adjust partitioning of link

capacity at the node such that change in capacity partitioning is proportional

to the deviation of current partitioning from the optimal point. In this

way, nodes will always operate close to the optimal partitioning level. This

algorithm, does not require a central authority and thus can be implemented

independently at each node.

Based upon these objectives, we have organized this dissertation into the following

chapters.

1.8 Dissertation Organization

In Chapter 1:, we briefly discussed the the history of P2P network along with

free-riding problem. We also stated and explored the problem in detail, which is

further used to define the objectives of this dissertation.

In Chapter 2, we model the capacity partitioning of access link between uplink

and downlink as a non cooperative game5 for a homogeneous network, where all

users have the same access link capacity. We calculate Nash equilibrium (NE) of

this game and also establish that this NE is the optimal state of capacity partition-

ing in the network. This chapter also contains simulation results of various P2P

networks e.g., BitTorrent, which further substantiates our claim that NE of the

current game is indeed the optimal partitioning point of the access link capacity.

In Chapter 3, we establish game theoretically that, if resources are distributed on

the basis of contribution level only, then resource allocation process gets dictated

by high capacity peers. We further prove that for fair resource allocation, the

incentive mechanism should consider both resources consumed and resources

contributed by the requesting nodes for the resource distribution.

Based on the incentive parameter for fair resource allocation discussed in Chapter

5In non cooperative games, no cooperation can exist between the players involved in the game
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3, we extended our game theoretic model to heterogeneous P2P network in Chap-

ter 4. We evaluate the game’s NE and also prove that this NE is socially optimal.

In Chapter 5, we model the problem of capacity partitioning as a control feedback

problem. Using control theoretic analysis, we present an adaptive step size (ASZ)

algorithm which helps nodes to achieve optimal partitioning level. This chapter

also contains simulation results, which indicate various characteristics of ASZ, e.g.

free-riding control and its adaptability towards random arrival and departure of

nodes in the network.

In Chapter 6,we present the comparisons of ASZ with the existing schemes. This

chapter also contains simulation results which establish that the capacity parti-

tioning mechanisms mentioned in the related work, converge to NE evaluated in

Chapters 2 and 4.

Finally, Chapter 7, presents the main conclusion of this dissertation along with

possible future work.

29





Chapter 2

Optimal Capacity Partitioning in

Homogeneous P2P Network

2.1 Introduction

In a Peer-to-Peer (P2P) network, the nodes need to simultaneously utilize their

uplink and downlink capacities because they act both as servers as well as clients.

Unlike asymmetric digital subscriber line (ADSL) [50] links, where there is a strict

separation between uplink and downlink capacities, in networks like WLAN

and Wi-Fi, the uplink and downlink traffic flows through common access link

before entering the backbone network. The capacity division of the access link

between upload and download can be modified at the nodes [15, 68]. The nodes

being selfish will always try to maximize their download from the network by

attempting to allocate their entire capacity for download. However, the incentive

mechanisms like the reputation system [15, 71] used in the P2P networks force

them to maintain a certain level of contribution (upload). In such a scenario, an

optimal point is expected to exist, where nodes share minimal resources which

are just enough to fulfill all of their download requirements.

In this chapter, we model the capacity partitioning as a game and calculate its

Nash Equilibrium (henceforth NE) point, where no node has any incentive of

unilaterally changing its behavior. In the current context, the point of optimal
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sharing corresponds to NE as node operating at this point, receive maximum

bandwidth from the network. To simplify the analysis, we consider a homoge-

neous P2P network where all the nodes have same link capacity to access the

network. Networks like Wi-Fi, and wireless LANs can be modeled as a homoge-

neous P2P network, where bandwidth is shared among multiple nodes. In such

networks, the underlying medium access control (MAC) protocol allows fair and

equal distribution of bandwidth among all the nodes.

2.2 Motivation

Many game theoretic analyses [60, 64], have been conducted in the past to analyse

the cooperative behavior of the members in the P2P networks. However, most of

them do not deal with the division of the link capacity between the upload and

download. There is limited literature available on the analysis [69] of capacity

partitioning using game theory. Analysis in [69] is based upon a restricted P2P

model, where a node is allowed maximum one upload and one download at a

time. Most of the literature on capacity partitioning [15, 71], only deals with

design of partitioning mechanism for maximizing the resources received, without

exploring the point of optimal sharing.

We evaluate NE for a more generalized P2P scenario, where nodes can simulta-

neously perform multiple uploads and downloads. We also prove that this NE is

also socially optimal, i.e the aggregate resources received by the nodes is equal to

total resources available across the network. Since, current NE efficiently utilizes

the network resources, so the capacity partitioning achieved by any algorithm or

strategy should finally converge to this NE. Deviation from NE can be used as

metric to compare the efficiency of various capacity partitioning algorithms.

2.3 System Model

We consider a homogeneous P2P network of N nodes, where all the nodes have

same access link capacity (Ci), i.e., Ci = C, ∀i ∈ N , where C is a constant. Ci can
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be divided between upload (si) and download (di) capacities such that Ci = si + di.

Therefore, increase in si, decreases di and vice-versa.

Similar to P2P models in [15, 69], it is presumed that member nodes employ re-

source lookup algorithm like distributed hash tables (DHT) [17], flooding etc., to

identify the resource providing nodes across the network. After identification,

nodes can directly communicate with each other. Further, every node in the net-

work is capable of simultaneously performing multiple uploads and downloads.

We assume that nodes randomly request other nodes with equal probability to

avoid unnecessary overloading of nodes with higher contribution level. This is

a valid assumption which is also true for popular P2P file sharing protocols like

BitTorrent. In BitTorrent, a single file gets further divided into large number of

chunks [1]. In addition, “rarest first” strategy employed in BitTorrent compels

nodes to download rarest chunks first. This ensures that each node usually has

data chunks which other downloaders in the network require. Thus, a random

request will always deliver some resource of interest to a node. Due to random

resource requests which are uniformly directed across the whole network, the

average requests received at the node should be equal to the average request

generated by a node.

The resources are distributed among the requesting nodes based upon the re-

questers’ contribution levels (i.e., allocated upload capacity). The amount of

resource (Ti j), a requesting node i receives from a serving node j, is

Ti j = s j
si∑

k∈Z j

sk
, (2.1)

where s j is upload capacity of j and si∑
k∈Z j

sk
denotes the contribution level of i w.r.t.

all the nodes requesting from j. Z j is the set of nodes who are currently requesting

resources from the node j. We denote the set of nodes requested by node i asAi.

Let average number of requests made by a node is l, so expected cardinality of set

Ai is l. As discussed earlier, under steady state condition, cardinality ofZ j is also

expected to be l. Thus, the total resources Ti, currently being received by the node
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i is

Ti =
∑
j∈Ai

s j
si∑

k∈Z j

sk
. (2.2)

Utility of a node is equal to the portion of the total received resources, which can

be utilized. Let E(Ti) represent the expected1 amount of resources that any node

i is being allocated from the network. This is the utility provided by the network

to the node. However in certain cases, the node may not have enough download

capacity di to utilize all the received resources, i.e., E[Ti] > di. In such a scenario,

the node will be able to utilize resources equal to di and the remaining resources

will be wasted. Therefore, utility for node i is defined as,

ui = min {E[Ti], di} . (2.3)

Every node in the network strives to maximize its utility. Based on this objective,

we formulate capacity partitioning as a non co-operative game 2 in the next section.

2.4 Capacity Partitioning as Non-Cooperative Game

Let G = [N , {Si},ui] represents the capacity partitioning game. N = {1, 2, · · · ,N}

represents the set of players which are the nodes in the P2P network. Every player

strategically allocates the capacity for upload (si ∈ Si = [0,Ci], ∀i ∈ N) so as to

maximize its payoff or utility (ui).

Using (2.3), payoff/utility for node i is given by,

ui(si,S−i) = min {E[Ti], di} , (2.4)

where S−i = {s1, s2, · · · , si−1, si+1, · · · , sN} represent strategies of all players except

player i. In subsequent sections, utility received will also be referred to as usable

1We consider expected value of the resources received (Ti), because value of Ti keeps on
fluctuating with time even when node’s contribution level remain unchanged. This happens due
to change in network dynamics caused by many factors like congestion in backbone network,
variation in number of requests arriving at the serving nodes etc.

2In a non co-operative game no co-operation can exist between the players involved in the
game.
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bandwidth received by the node.

2.4.1 Nash Equilibrium (NE) Analysis

The strategy profile3 (S∗) is a NE, when no player can be better off by opting for

any unilateral deviation i.e.

ui(s∗i ,S
∗

−i)≥ui(si,S
∗

−i) ∀i∈N with si ∈ Si. (2.5)

At NE, every player plays his best response against actions of other players. The

best response are strategies which provide maximum payoff to a node i for a fixed

S−i. It is a set, defined as

Bi(S−i) =
{
si|si = arg maxŝi∈Siui(ŝi,S−i)

}
(2.6)

Therefore, NE is a point when every player is playing his best response against

each other.

S
∗ = {si|si∈Bi(S−i),∀i∈N} . (2.7)

Theorem 2.1. For “capacity partitioning game” in a homogeneous P2P networks, fol-

lowing NEs exist

1. All the nodes allocating their entire capacity for download i.e. S∗0 = {si|si = 0,∀i∈N}.

2. All the nodes equally divide their link capacity between upload and download, i.e.,

S
∗
C
2

=
{
si|si = C

2 ,∀i∈N
}
.

Proof. Let Stotal =
∑
j∈N

s j and Dtotal =
∑
j∈N

d j represent the total resources available

and demanded across the network respectively. To determine all the NE states

feasible in the network, we analyse all the possible combinations of Stotal and Dtotal

in the network.

Case 1. Stotal < Dtotal

Two sub cases arise here.
3Strategy profile is a set consisting of the strategies played by all the players.
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– Sub Case I :- Stotal = 0.

S
∗

0 = {si|si = 0,∀i∈N} represents the strategy profile of players when Stotal = 0.

As Stotal = 0, so the utility received by any node i is

ui(si,S−i) = 0 ∀i∈N .

If i starts increasing its si, it will still not receive any resource from net-

work as remaining nodes do not upload. Therefore, node’s utility remains

unchanged, with no incentive for it to deviate. Hence, S∗
0

is a NE.

– Sub Case II :- Stotal > 0.

Due to scarcity of shared resources (Stotal < Dtotal), there is at least one node in

network, which is receiving resources less than its download capacity. This

node will start uploading more to enhance its contribution level and thereby

increase its chances of getting more resources from the network. Hence,

some of the nodes in the network have incentive to deviate. Consequently,

this network state is not NE.

Case 2. Stotal = Dtotal

It can be further divided into two sub cases.

– Sub Case I :- si = di, ∀i∈N .

Here, all the nodes allocate equal portion of their capacity for upload and

download. Therefore, strategy profile is given by S∗C
2

=
{
si|si = C

2 ,∀i∈N
}
,

where C is the access link capacity. From (2.2), the expected amount of

resources received by the node i is

E[Ti] = E


∑
j∈Ai

s j
si∑

k∈Z j

sk

 . (2.8)

To ascertain stability of S∗C
2
, we analyse change in the utility received by i

due to its unilateral deviation i.e. strategies of all the nodes except i will

remain fixed, when the node i attempts to deviate. To simplify the analysis
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we divide node i′s region of operation into 3 regions as shown below

ui(si,S−i) ∈


u1

i when Si = C
2 ,

u2
i when Si < C

2 ,

u3
i when Si > C

2 ,

where, u1
i , u2

i and u3
i corresponds to utility of node i for these three regions.

• u1
i Calculation: Here, s j = C

2 , ∀ j∈N and the cardinality of the set Z j is l

(refer to section 2.3), so E

 si∑
k∈Z j

sk

 = 1
l . In addition, node generates l requests,

so expected amount of resources
( ∑

j∈Ai

s j

)
available for download are l.C2 .

Therefore, (2.8) reduces to

E[Ti] = l.
C
2
.
1
l

=
C
2

(2.9)

The current download capacity (di = C − si), is also equal to the resources

available. Using (2.4), the payoff of i is

ui

(C
2
,
C

2 −1

)
= u1

i =
C
2
. (2.10)

where C2 −1 =
{
s j|s j = C

2 ,∀ j∈N\{i}
}
.

• u2
i Calculation: In this region, the node i reduces its upload capacity such

that si = C
2 − ∆2, for ∆2>0. Hence,

E

 si∑
k∈Z j

sk

 =
C
2 − ∆2

lC
2 − ∆2

E

 si∑
k∈Z j

sk

 =
1
l

(
1 −

2∆2

C

) (
1 −

2∆2

lC

)−1
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Using binomial expansion, E

 si∑
k∈Z j

sk

 can be approximated as

E

 si∑
k∈Z j

sk

≈1
l

(
1 −

2∆2

C

) (
1 +

2∆2

lC

)
≈

1
l
−

2∆2

C

(
l − 1

l2

)
.

Putting this in (2.8), the expected amount of resources received from the

network is

E[Ti]≈l.
C
2

[
1
l
−

2∆2

C

(
l − 1

l2

)]
=

C
2
− ∆2

(
l − 1

l

)
.

Hence payoff received by node i (refer (2.4)) is

ui

(C
2
− ∆2,

C

2 −1

)
= u2

i≈
C
2
− ∆2

(
l − 1

l

)
.

Comparing u2
i with u1

i from (2.10), we get u2
i < u1

i . Therefore, all the strategies

with si < C
2 , are strictly dominated by the strategy si = C

2 . A node never plays

strictly dominated strategy in equilibrium because it always yields a lesser

payoff.

• u3
i Calculation: This region of operation includes all the strategies of i with

si > C
2 , i.e., si = C

2 + ∆3 for ∆3 > 0. Consequently,

E

 si∑
k∈Z j

sk

 =
C
2 + ∆3

lC
2 + ∆3

E

 si∑
k∈Z j

sk

 =
1
l

(
1 +

2∆3

C

) (
1 +

2∆3

lC

)−1

Using binomial expansion, E

 si∑
k∈Z j

sk

 can be approximated as

E

 si∑
k∈Z j

sk

≈1
l

(
1 +

2∆3

C

) (
1 −

2∆3

lC

)
≈

1
l

+
2∆3

C

(
l − 1

l2

)
.
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Putting this in (2.8), the expected resources received by i is

E[Ti]≈l.
C
2

[
1
l

+
2∆3

C

(
l − 1

l2

)]
=

C
2

+ ∆3

(
l − 1

l

)
.

Thus, received resources are higher, than earlier two cases. However, i does

not have sufficient download capacity to utilize these resources. Available

download capacity is C
2 − ∆3, so using (2.4), the payoff of i is

ui

(C
2

+ ∆3,
C

2 −1

)
= u3

i =
C
2
− ∆3. (2.11)

Comparing (2.10) and (2.11), we get u3
i < u1

i . As si = C
2 , strictly dominates all

the strategies where si > C
2 , so nodes will never play si > C

2 strategies in the

equilibrium.

Clearly, strategy si = C
2 , ∀i∈N , delivers the maximum payoff, so S∗

C
2

is a NE.

– Sub Case II :- si,di, ∃i∈N .

Here, network will contain at least one node i whose si > di and one node

j whose s j < d j, to maintain Stotal = Dtotal. As Stotal = Dtotal, the down-

load requirements of almost all the nodes will be met. Nodes like i, with

higher contribution level can further enhance their utility by increasing their

download capacity. The extra resources received by i will be at the expense

of reduction in resource received by node with lowest upload capacity in

the network. As node i, can increase its utility by changing its strategy, so

current network state is not NE.

Case 3. Stotal > Dtotal

In this case, there will be (Stotal − Dtotal) amount of unused resources available

for download, after meeting the download requirement of all the member nodes.

Any node can utilize these unused resources by increasing its download capacity.

Hence, Stotal > Dtotal is not a NE. �

Only two NE states, S∗0 and S∗C
2

are possible in capacity partitioning game. However

in practice, network will never operate in S∗0 state. Nodes join the P2P network

with the motive of receiving resources. If the nodes are unable to receive any
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resource they will leave the network. Therefore, before network reaches S∗0 state,

nodes would have already left the network.

For maximizing download, nodes try to minimize their upload capacity usage but

will never reduce it to 0. Hence, in a network employing incentive mechanism

(like reputation system), where resources are distributed based upon requester’s

contribution level, the capacity partitioning converges to S∗C
2

=
{
si|si = C

2 ,∀i∈N
}
.

Further, at S∗C
2
, nodes receive maximum utility. In order to verify the above hy-

pothesis, we resorted to simulation. The observations indicate that the hypothesis

of NE at S∗C
2

is true. Next section presents the results of simulations.

2.5 Simulation Results

We have developed an event-driven simulator in MATLAB R© to evaluate perfor-

mance of various partitioning strategies employed by the nodes. We simulated

a P2P network containing 100 peers of same access link capacity (18 Mb/s) as in

[15, 71]. In this network, peers share bandwidth for file sharing. Peers generate

bandwidth request and randomly direct them to the other peers in the network.

The resources are distributed by the serving node among the requesting nodes

based on equation (2.2). We assume that the network is operating in S∗C
2

state,

i.e., the link capacity allocated by all the nodes for upload and download are 9

and 9 Mb/s respectively. To demonstrate that this state is indeed a NE, a node

i is randomly chosen and the partitioning of its link capacity is varied, to deter-

mine whether there exists any other strategy which can provide higher utility to

i than NE strategy. The utility/usable bandwidth observations are presented in

Fig. 2.1. For the remaining nodes, the link capacity partitioning is fixed with

s j = d j, ∀ j∈N\{i}.

Fig. 2.1, displays the usable bandwidth received when the node i follows x-y

partitioning strategy, i.e., it allocates x and y amount of capacities for upload and

download respectively. When node equally partitions its access link capacity

between upload and download (i.e. x = y = 9 Mb/s) it derives maximum usable

bandwidth from the network. If a node uploads less than 9 Mb/s, it receives lesser

resources due to lower contribution level. Other way around, when node uploads
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Figure 2.1: Change in Received Usable Bandwidth, with Variation in Capacity
Partitioning at Node.

more than 9 Mb/s, although the resources received start increasing but node does

not have enough download capacity to utilize all the received resources. Hence

utility received by node starts decreasing as we move to the right of (9-9) point in

Fig. 2.1.

Therefore, a node receives maximum payoff at (9-9) point, which corresponds

to strategy employed in S∗C
2
. Since, node has no incentive to deviate from (9-9)

partitioning strategy, so S∗C
2

is indeed a NE.
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2.6 BitTorrent Simulation

We simulated 100 member model of BitTorrent [1, 15], based upon Azures, a

popular BitTorrent Client. The access link capacity of every member is 18 Mb/s.

We discretized the time into periods such that at the starting of a period, any node

i, implements tit for tat strategy [1] where top four nodes providing the highest

download rate to i are selected for being served. To find better service providers,

every node i employs a random unchoke policy at the end of every third period,

where i randomly selects a node from the whole network for resource distribution.

After finalizing the requesters, the upload capacity is allocated equally among the

requesting nodes.

BitTorrent lacks algorithm for optimal division of total capacity between uplink

and down link [15]. Therefore, we fix capacity partition arrangement at the nodes

and analyse the partition that gives the best payoff. We divide different nodes in

the network into 9 groups on the basis of their partitioning arrangement. A group

x-y denotes that the nodes have allocated x and y units of its total capacity for

download and upload respectively, as shown in Fig. 2.2.

From Fig. 2.2, it is clear that point of maximum payoff (i.e. 9-9) coincides with

the Nash Equilibrium evaluated using Theorem 2.1. The reason for a nodes’

on the left side of (9-9) in Fig. 2.2, receiving lower payoff is due to their lower

contribution level, whereas nodes on the right side of (9-9) receive lesser payoff

due to insufficient download capacity to utilize the received resources. Since,

nodes always strive to receive maximum payoff so network will finally reach NE

state S∗C
2
.

2.7 Socially Optimal Partitioning Strategies

NE only considers the node’s individual benefit and may not be socially optimal

i.e. the overall network resources may not get efficiently distributed among the

member nodes. In the present game, efficiency will reduce whenever resource

wastage happens due to imbalance between net upload and download bandwidth

available across the network. We determine the maximum achievable network
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Figure 2.2: Change in Received Usable Bandwidth when a Node Changes its
Capacity Partitioning in BitTorrent.

utility and compare it with aggregate utility achieved in NE state to analyse the

social optimality of NE.

Let Cnwk

(
=

∑
j∈N

C j

)
, Snwk

(
=

∑
j∈N

s j

)
and Dnwk

(
=

∑
j∈N

d j

)
denote the total access link

capacity, resources available and demanded respectively across the network. Sum

of upload and download is equal to sum of link capacities of all the nodes in the

network. Therefore,

Snwk = Cnwk −Dnwk = NC −Dnwk, (2.12)

where C is the individual node’s link capacity in network of N nodes. unwk

(
=

∑
j∈N

u j

)
is the utility derived by all the nodes from the network and is dependent on total

resources shared across the network i.e. Snwk. However, if network does not
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2.7 Socially Optimal Partitioning Strategies

have enough download capacity to utilize shared resources, then extra resources

Snwk −Dnwk get wasted. Therefore,

unwk = min {Snwk,Dnwk} . (2.13)

We now determine the maximum achievable unwk during the network operation.

Three cases can arise

Case 1. Snwk = Dnwk. From (2.12), the value of Snwk = NC
2 . Using (2.13), achieved

utility is

unwk =
NC
2
. (2.14)

Case 2. Snwk < Dnwk. Using (2.12), the value of Snwk < NC
2 . Therefore, the achieved

utility (refer (2.13)) is

unwk <
NC
2
. (2.15)

Case 3. Snwk > Dnwk. Using (2.12), Snwk will be greater than NC
2 but Dnwk < NC

2 .

From (2.13), the utility is

unwk <
NC
2
. (2.16)

On comparing (2.14), (2.15) and (2.16), the maximum achievable utility is

umax
nwk =

NC
2
. (2.17)

The variation in the network utility with change in snwk is also plotted in Fig.

2.3. Initially unwk is 0. The value of unwk then starts increasing with value of snwk

and reaches maximum value N · C
2 at snwk = N · C

2 . Thereafter, value of unwk starts

decreasing with increase in snwk because network does not have enough download

capacity, to utilize all the shared resources i.e., dnwk < N · C
2 ∀ snwk > N · C

2 . For a

NE state to be socially optimal, the net utility received by all the nodes should be

equal to maximum possible utility
(
N · C

2

)
in the network. We now analyse social

optimality of all the NE states in capacity partitioning game.

In S∗0, no node in the network is uploading, so utility received by every node is 0

, i.e., u0
i = 0, ∀i∈N . Therefore, the total utility

(
u0

nwk

)
derived across the network

for NE state S∗0 is given as,

u0
nwk =

∑
j∈N

u j = 0.
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Figure 2.3: Aggregate Network Utility.

Clearly S∗0, is not socially optimal, as utility received in this state is less than

maximum possible utility in the network i.e. N · C
2 .

In NE state S∗C
2
, the utility received by every node is (refer (2.10)),

u
C
2
i =

C
2
, ∀i∈N . (2.18)

Therefore, utility derived by all the nodes in S∗C
2

is

u
C
2
nwk =

∑
j∈N

C
2

= N ·
C
2
. (2.19)

The total utility earned in S∗C
2

state is equal to maximum possible utility in the

network, i.e., N · C
2 . Therefore, NE state S∗C

2
is socially optimal.
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2.8 Conclusion

We have established game theoretically that in a in a homogeneous P2P network,

where nodes are connected to backbone network through access links of constant

capacity, equal partitioning of access link capacity between upload and download,

maximizes download at a node. On game theoretically analysis this problem, it

was found that equal partitioning strategy is also the Nash Equilibrium (NE) of

capacity partitioning game. We also proved that this strategy is socially optimal

and results in maximum possible utility across the network. To substantiate

this claim, a homogeneous P2P network was simulated for different strategies of

node. Simulation results demonstrate that node received maximum payoff, when

it employs equal partitioning strategy. We also simulated BitTorrent and results

indicate that nodes, which adhere to strategy profile during NE, receive maximum

resources from the network. Thus, equal partitioning strategy, ensures maximum

resource utilization both at the node as well as the network level.
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Chapter 3

Game Theoretic Analysis of Incentive

Parameters for Capacity Partitioning

3.1 Introduction

To motivate users to contribute in a P2P network, Feldman et al. [30] suggested

that resources should be distributed in proportion to the contribution/upload of

resources by the requesters. Contribution based resource allocation leads to fair

resource allocation1 in homogeneous P2P networks (refer chapter 2 for details).

However, contribution level is not sufficient to enforce fair contribution in the

network containing nodes of different capacities. In the latter part of this chapter

we show that in such a network, it is possible for higher capacity nodes to receive

greater resources than their contribution level. These extra resources are taken

out from the share of genuine low capacity nodes. Therefore, for fair resources

distribution an appropriate choice of incentive parameter is required.

In this chapter, we use game theory to show that in a network containing single

capacity links, where resources are distributed only on the basis of contribution

level, the resource allocation process gets dictated by few higher capacity users.

In such scenario, some lower capacity users will receive virtually no resource,

1Fair allocation implies that nodes receive resources in proportion to what they contribute
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even if they offer maximum possible capacity for upload. Consequently, these

low capacity nodes will be forced to leave the network.

An incentive system has already been proposed in [15], where resources are allo-

cated based upon the the ratio of resources contributed to the resources consumed

by the requesters. Such allocation leads to fairness but no formal proof exists. We

provide game theoretical justification that such type of allocation cannot be ad-

versely influenced by the higher capacity peers.

3.2 System Model

A network N with {1, 2, · · · ,N} users is considered. The access link capacity (Ci)

of any user i is divided between upload (si) and download (di) capacities such that

Ci = si + di.

If download capacity (di) of node i becomes 0, then it will be unable to receive any

resource. We further can safely assume that any node i will never reduce its di

below a threshold level ∆, such that,

di≥∆ with ∆ > 0, ∀i∈N .

We consider expected value of resources allocated E(ri) for utility calculation

because resources allocated (ri) to any user i fluctuates with time even for the

same contribution level. Payoff/utility (ui) received by any node i is equal to the

portion of the allocated resources that can be actually received. Therefore ui can

never be greater than the download capacity of the node i. Thus, utility received

by i is given by

ui = min {E[ri], di} . (3.1)

3.3 Contribution Level Based Capacity Partitioning

We game theoretically establish in next subsection, that incentive mechanisms

which consider only the contribution level for resource distribution are unfair
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3.3 Contribution Level Based Capacity Partitioning

toward the low capacity users.

3.3.1 Game Formulation

Let G1 = [N , {Si},ui] represents the capacity partitioning game, withN = {1, 2, · · ·,N}

players/users. A user i, receives utility ui for playing a strategy si∈Si. Strategy is

the portion of link capacity (Ci) that i allocates toward upload (si). si∈Si=[0,Ci −

∆], ∀i∈N

3.3.1.1 Nash Equilibrium (NE)

A strategy profile (S∗ = {s∗i |s
∗

i∈Si, ∀i∈N}), is a NE if no user can increase its utility

through unilateral deviation, i.e.,

u(s∗i ,S−i)≥u(si,S−i), ∀i∈N , (3.2)

where S−i = {s∗1, s
∗

2, · · ·, s
∗

i−1, s
∗

i+1, · · ·, s
∗

N} is a set of strategies of all the users except i.

3.3.1.2 Game Analysis

The resources are allocated among the N users in the decreasing order of their

upload capacity, such that resource requirement of requester with highest upload

capacity is fulfilled first. Let 1̂, 2̂, · · ·, N̂ be the competing users, sorted in decreasing

order of their capacity. The NE of capacity partitioning game will be following.

Proposition 1. Strategy profile Ŝ = {sî|sî∈Si, ∀î∈N̂}, such that

s1̂ = s2̂ = · · · = sl̂−1>Cl̂ − ∆≥Cl̂+1 − ∆· · ·≥CN̂ − ∆, for any l̂≤N,

with,
l̂−1∑
j=0

d j≤

∑
j∈N̂

s j and
l̂∑

j=0

d j>
∑
j∈N̂

s j. (3.3)

is a NE. Ŝ results in ui = di, ∀i∈{1̂, 2̂, · · ·, l̂ − 1} and ul̂ =
∑
j∈N̂

S j −
l̂−1∑
j=1̂

d j. However, if

there are more than one user having their upload capacity equal to Cl̂ − ∆, then
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3.3 Contribution Level Based Capacity Partitioning

∑
j∈N̂

S j −
l̂−1∑
j=1

d j, will get equally divided between these users. Remaining users,

sharing less than Cl̂ − ∆ will receive 0 utility from the network.

Proof. Initially a user has no idea about the capacity of the other members in

the network. Therefore, users would upload in proportion to their demand and

would divide their link capacity equally between upload and download. Hence,

s j = d j =
C j

2
, ∀ j ∈ N̂ , with

∑
j∈N̂

d j =
∑
j∈N̂

s j.

After some time, users estimate2 the access capacity of other members and high

capacity users start decreasing their upload in order to maximize their utility from

the network. Therefore, si <
Ci
2 , for some higher capacity users such that

s1̂≥s2̂≥· · ·≥sm̂−1>sm̂≥sm̂+1· · ·≥sN̂, for any m̂≤N,

with
m̂−1∑
j=0

d j≤

∑
j∈N̂

s j and
m̂∑

j=0

d j>
∑
j∈N̂

s j. (3.4)

Users with index higher than m̂∈N̂ , will hardly receive any resource. Therefore,

they will start increasing their upload capacities. However, there would be some

low capacity users (from l̂ to N̂), who would share less than high capacity peers

even when they allocate their entire link capacity for upload. Mathematically it

can be represented as:

s1̂≥s2̂≥· · ·≥sl̂−1>Cl̂ − ∆≥Cl̂+1 − ∆ · · ·≥CN̂ − ∆, l̂≤N

such that
l̂−1∑
j=0

d j≤

∑
j∈N̂

s j and
l̂∑

j=0

d j>
∑
j∈N̂

s j. (3.5)

First, l − 1 users will always receive resources equal to their download capacity.

To further increase their utility (described in (3.1)), these users will start reducing

2Usually users demand resources in proportion to their link capacity. Therefore, a serving node
estimates the capacity of requester from their demand profile.
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their upload capacity until:

s1̂ = s2̂ = · · · = sl̂−1>Cl̂ − ∆≥Cl̂+1 − ∆· · ·≥CN̂ − ∆, l̂≤N

such that
l̂−1∑
j=0

d j≤

∑
j∈N̂

s j and
l̂∑

j=0

d j>
∑
j∈N̂

s j. (3.6)

In this network state, the first l − 1 users in set N̂ will receive desired amount

of resources from network, whereas remaining resources, i.e.,
∑
j∈N̂

s j −
l̂−1∑
j=1̂

d j will

be distributed equally among the users with upload capacity Cl̂ − ∆. Following

argument establishes this is a NE.

• If a user i ∈ {1̂, 2̂, · · · , l̂ − 1}, decreases its upload capacity then it will receive

lesser resources due to decline in its contribution level and may not remain

in top l̂ − 1 users as per upload capacity. Similarly, increment in upload

capacity reduces the download capacity and thereby the utility ui, received

by the user i. So there is no incentive for the first l − 1 users in N̂ to deviate.

• If any user from l̂ to N̂, decreases its upload capacity, then it will loose

any chance of getting resource in future, when one of the users among first

l̂ − 1 user leave the network. In addition, even on reducing their upload

capacities, these users will hardly get any increment in their utility. So there

is no incentive for them to deviate.

In this NE, low capacity users (say k) with sk < Cl̂−∆, will be unable to receive any

resource despite offering maximum possible resources for upload, i.e., (Ck − ∆).

This unfairness in resource allocation can be explained more through the following

numerical example. �

3.3.2 Problem Illustration using Numerical Example

Let us consider a distributed network of 5 users, ~n = [1, 2, 3, 4, 5] with correspond-

ing access link capacities ~c = [6, 4, 2, 2, 2]. Further, we assume a threshold down-

load capacity of 0.1 (i.e. ∆ = 0.1). We deliberately choose these parameter values to
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illustrate unfairness in resource allocation. Initially, the users will divide their link

capacity equally between upload and download, so upload and download capaci-

ties allocated by users are~s = [3, 2, 1, 1, 1] and ~d = [3, 2, 1, 1, 1] respectively. As their

is supply demand balance, the resources received by the nodes is ~t = [3, 2, 1, 1, 1].

The corresponding utility received by users will be ~u = [3, 2, 1, 1, 1]. To increase

its utility, user 1 will further decrease its upload capacity such that new capac-

ity distributions becomes ~s = [2, 2, 1, 1, 1] and ~d = [4, 2, 1, 1, 1]. As the resources

are distributed in the decreasing order of contribution level of requesters, new
~t = [4, 2, 0.33, 0.33, 0.33] (refer (2.2) for details). The utility corresponding to new
~t is ~u = [4, 2, 0.33, 0.33, 0.33] (refer (2.3)). Users with low capacity, i.e., 3, 4 and 5

increase their contribution level (upload) to enhance their utility. This results

in network equilibrium profile with upload ~s = [2, 2, 1.9, 1.9, 1.9] and download
~d = [4, 2, 0.1, 0.1, 0.1]. Consequently, resources allocated to the nodes with their

corresponding utility will be~t = [4, 2, 0.1, 0.1, 0.1] and ~u = [4, 2, 0.1, 0.1, 0.1] respec-

tively.

Clearly, high capacity user can misuse this resource distribution mechanism to

receive far greater resources than their actual contribution. These extra resources

are acquired from the share of deserving low capacity peers.

3.4 Capacity Partitioning Based on Resource Contri-

bution and Consumption

Let G2 = [N̂ , {Si}, {Ui}] denote the capacity partitioning game where N̂ = {1, 2, · · ·, N̂}

represents network users, sorted in decreasing order of their link capacities. The

capacity shared by player/user i, i.e., si ∈ Si = [0,Ci], ∀i ∈ N represent i’s strategy.

Ci is the total access link capacity of i and ui ∈ Ui denotes utility earned by i (refer

(3.1) for utility details).
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3.4.1 Incentive level

Incentive level (Ii) of node i, considered for resource allocation is defined as ratio

of i′s upload to download capacity and is given by,

Ii =
si

di
. (3.7)

In this section, we game theoretically establish that for fair resource allocation,

which safeguards interest of low capacity users, the resources should be dis-

tributed among requesters in decreasing order of their incentive level (Ii). If more

than one user have same value of incentive level, then resources are equally dis-

tributed among them when the residual resources available at server are less than

resources demanded by these users.

The serving user estimates the download capacity of requesters from the amount

of resources demanded by them. A user request in proportion to its download ca-

pacity because demanding more than download capacity will reduce its incentive

level whereas a user’s download capacity remains underutilized if it demands

less.

3.4.1.1 Nash equilibrium (NE)

The NE of capacity partitioning game is given by,

Proposition 2. Strategy profile S∗ = {s∗i |s
∗

i∈Si, ∀i∈N̂}, such that

s∗i = d∗i =
Ci

2
, ∀i∈N ,

leading to
∑
i∈N̂

di =
∑
i∈N̂

si, (3.8)

where Ci and di are the access link and download capacity of node i. The network

state S∗ results in ui = Ci
2 , ∀i∈N̂ .

Proof. When users would upload in proportion to their demand they would divide

their link capacity equally between upload and download. This distribution
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results in network attaining S∗ state with,

s j = d j =
C j

2
, ∀ j ∈ N̂ , with

∑
j∈N̂

d j =
∑
j∈N̂

s j and I j = 1 ∀ j ∈ N̂ .

Following argument shows that strategy profile S∗ is a NE.

• If any node decreases its upload capacity then its incentive parameter will

become less than 1, due to which node will receive lesser resources.

• Conversely, if any node increases its upload capacity, its incentive level will

become greater than 1 but its download capacity decreases. Consequently,

overall utility received by the node will decrease.

Since, any node i in the network, doe not have incentive to deviate from strategy

si = Ci
2 , so strategy profile S∗ is a NE. Resources received (s j) by a node are equal

to resources contributed (d j), such that, node which is downloading more, has

to upload more in comparison to the node downloading less to maintain same

incentive level. Therefore, allocation based on incentive parameter I j =
s j

d j
, leads

to fair resource distribution. �

3.4.2 Problem Illustration using Numerical Example

We again consider a P2P network of 5 users represented by ~n = [1, 2, 3, 4, 5] with

access link capacities ~c = [6, 4, 2, 2, 2]. We assume a threshold download capacity

of 0.1 (i.e., ∆ = 0.1). Initially, the nodes will divide their link capacity equally

between upload and download, which results in upload and download capacity

distribution among the nodes as ~s = [3, 2, 1, 1, 1] and ~d = [3, 2, 1, 1, 1] respectively.

Resources will be awarded among the nodes in decreasing order of the incentive

level given by ~I = {1, 1, 1, 1, 1} (refer (3.7) for ~I calculation). Therefore, utility

received by nodes will be ~u = [3, 2, 1, 1, 1]. Let node 1 decrease its upload capacity

such that new capacity partitioning becomes ~s = [2, 2, 1, 1, 1] and ~d = [4, 2, 1, 1, 1].

The incentive level of nodes for the new partitioning arrangement is given by
~I = [0.5, 1, 1, 1, 1], which results in ~u = [2, 2, 1, 1, 1]. The lower incentive level of 1

54



3.5 Conclusion

causes decrease in the utility received by 1. Other way around, let node 1 increases

its upload capacity such that capacity partitioning across the network becomes
~s = [4, 2, 1, 1, 1] and ~d = [2, 2, 1, 1, 1]. This results in ~I = [2, 1, 1, 1, 1]. Although,

1 has higher incentive level than the other nodes in the network, its download

capacity decreases. Consequently, ~u = [2, 2, 1, 1, 1].

Clearly, higher capacity nodes will be receiving less resources if they do not

contribute in proportion to what they consume. Hence, if resources are distributed

on the basis of ratio of resources contributed and demanded, high capacity nodes

are unable to manipulate the resource distribution mechanism. All the nodes will

receive fair amount of resources in proportion to their contribution back to the

network.

3.5 Conclusion

In a P2P network with constant access link capacity, the cooperative behavior en-

forced by incentive mechanisms is analyzed using game theory. It was established

that in the resource distribution based on contribution level only, few higher link

capacity users consume most of the resources. Consequently, most of lower link

capacity users will starve, even if they offer their full link capacity for upload.

However, for unbiased resource distribution, resources are allocated among re-

questers in the decreasing order of their ratio of contribution and consumption

of resources. In such resource allocation, every user will receive resources in pro-

portion to their contribution to the network. Therefore, this allocation is better

than earlier one in enforcing cooperation among users.
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Chapter 4

Optimal Capacity Partitioning in

Heterogeneous P2P Network

4.1 Introduction

In this chapter, we extend the game theoretic model for capacity partitioning in

homogeneous networks (proposed in chapter 2) to heterogeneous networks, i.e.,

we remove the limitation of all the nodes having the same access link capacity. For

heterogeneous network analysis, resource distribution on the basis of cooperation

level is not sufficient to ensure fair resource distribution (refer Chapter 3). There-

fore to model capacity partitioning in heterogeneous network, we consider ratio

of the contribution and the consumption of the resources by the requester for

resource allocation. The brief details about the need for capacity partitioning in

network containing single capacity links is discussed below.

In networks like WiFi, WLAN, LTE and WiMAX (in time division duplex (TDD)

mode) [15, 66, 67] the uplink and downlink traffic flow through common access

link, before entering the backbone network via a local hub. The access link of

every node has an overall finite capacity which gets divided between upload and

download, so that increasing upload decreases download and vice-versa. The ca-

pacity division [68] of the access link between uplink and downlink can be altered

by the node/member. To maximize the resources received, node would like to
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allocate its entire link capacity for the download but the incentive mechanism will

force it to maintain a certain level of contribution (i.e., sharing/upload). Therefore,

node seeks an optimal partitioning of link capacity where it maintains a minimal

level of upload to manage just enough resources from network, to completely

utilize its download capacity. In this chapter, we model capacity partitioning as a

game and determine its Nash equilibrium (NE).

The Game theory has been already employed in [69] to model the capacity parti-

tioning. However, this effort considers a restricted scenario where members are

allowed only single upload and download at a time. This limits the maximum

download rate achieved by any node, to half of the capacity of the slowest access

link in the network, i.e.,

dmax = min
i∈N

Ci

2
∀i∈N , (4.1)

where Ci represents the link capacity of ith node,N is a set containing all the nodes

in the network and dmax is the maximum download rate achieved by any node

in the network. To eliminate the bottleneck of the slowest link, we consider a

more generalized model here, where nodes can simultaneously perform multiple

uploads and downloads, enabling them to receive data rate in proportion to

their contribution levels. Other works on capacity partitioning in [15, 71], dealt

with the design of partitioning algorithm to achieve optimal partitioning, without

exploring any optimal state of capacity partitioning in the network. We have

found this optimal state to be the NE in capacity partitioning game.

Using game theory, we also show that NE state derived for the current game results

in efficient distribution of resources across the network. Therefore NE, obtained

for capacity partitioning process in heterogeneous network, simultaneously max-

imizes individual as well as social welfare. Theoretically, the partitioning of link

capacity achieved by any algorithm should converge to the optimal partitioning

point, i.e., NE. In practical scenarios, output of partitioning algorithms will de-

viate from the NE. Therefore NE can be used as a benchmark by computing the

deviation. Greater is the deviation from the NE, poorer is the performance of the

algorithm.
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4.2 System Model

A networkN with {1, 2, · · · ,N} nodes is considered. The access link capacity (Ci)

of any node i is divided between upload (si) and download (di) capacities such that

Ci = si +di. In line with existing models [15, 69], we assume that the nodes employ

resource discovery algorithms like distributed hash table (DHT)[17], flooding

etc., to find resource providers across the network. Thereafter, the nodes directly

communicate with each other for resource transfer.

Resources received (ri) by any node i changes with time even for the same con-

tribution level. These fluctuations in ri arise due to changing network conditions

like change in the data traffic in the backbone network, variation in number of

resource requests received by a serving member etc. Therefore, we consider ex-

pected value of resources received E(ri) for utility calculation. Payoff or utility

(ui) received by any node i is equal to the portion of the received resources that

can be utilized. In some cases, i may lack the download capacity (di) to use all the

allocated resources, i.e., E[ri] > di. The node can only utilize resources equal to di

and leftover resources would be wasted. Thus, utility received by i is

ui = min {E[ri], di} . (4.2)

In the subsequent section, we model capacity partitioning in heterogeneous net-

work as game and calculate its Nash equilibrium.

4.3 Capacity Partitioning Based on Contribution and

Resource Consumption

4.3.1 Modeling of Capacity Partitioning Game

Let G2 = [N , {Si},ui] denote the capacity partitioning game where N represents

network nodes. The capacity shared by player/node i, i.e., si ∈ Si = [0,Ci], ∀i ∈ N

represent i’s strategy. Ci is the total access link capacity of i and ui denotes utility
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earned by i.

ui(si,S−i) = min {E[ri], di} , (4.3)

whereS−i = {s1, s2, · · · , si−1, si+1, · · · , sN} represents strategies of all the nodes except

i. Utility will also be referred as the usable bandwidth received by the node. To

simplify Nash equilibrium analysis, we consider download threshold, ∆ = 0 (refer

section 3.2 for details about ∆), as it will not affect final results.

4.3.2 Game Analysis

Every node is assigned an incentive level. The incentive level of node i is the ratio

of i′s upload and download capacity and is given by,

Ii =
si

di
. (4.4)

As discussed in chapter 3, the serving node estimates the download capacity

of requesters from their request profile. The resources are allocated among the

requesters in the decreasing order of their incentive parameter, such that the

resource requirement of requester with highest incentive parameter is fulfilled

first.

A strategy profile (S∗ = {s∗j|s
∗

j∈S j, ∀ j∈N}) is a NE, if u(s∗j,S− j)≥u(s j,S− j), j∈N ,

where S− j = {s∗k|s
∗

k∈Sk, ∀k∈N\{ j}}. We claim the following about NE.

Theorem 4.1. Two NE’s are possible in the game.

1. No node in the network contribute towards upload, i.e., S∗1 =
{
s j|s j = 0,∀ j∈N

}
.

2. The link capacity is equally divided between upload and download, i.e., S∗2 ={
s j|s j =

C j

2 ,∀ j∈N
}
.

Proof. Let Snwk and Dnwk denote total upload and download capacities across

the network, i.e., Snwk =
∑
j∈N

s j and Dnwk =
∑
j∈N

d j. Based upon Snwk and Dnwk

comparison, three cases arise.

1. Snwk < Dnwk : Two sub cases arise.
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4.3 Capacity Partitioning Based on Contribution and Resource Consumption

(a) “S∗1 =
{
s j|s j = 0,∀ j∈N

}
” is a NE.

Since no node uploads, the resources available across the network is 0.

Therefore,

ui(si,S−i)=0, ∀i∈N .

Even if any node unilaterally deviates and starts uploading, it will be

unable to receive any resource as the remaining members in network

are not uploading. As node has no incentive to deviate, so S∗1 is a NE.

(b) “Snwk,0” is not a NE.

Due to shortage of shared resources (Snwk < Dnwk), at least one node

in network will be receiving resources less than its download capacity.

This node can increase its utility by increasing its upload capacity.

Hence, current network state cannot be NE.

2. Snwk = Dnwk : Here, two sub cases arise.

(a) “S∗2 =
{
s j|s j =

C j

2 ,∀ j∈N
}

” is a NE.

To determine the stability of S∗2, we calculate the variation in the re-

ceived utility when a node unilaterally changes its strategy. To sim-

plify the analysis we divide node i′s region of operation into 3 regions

as shown below.

Ui(Si,S−i) =


U1

i when Si = Ci
2 ,

U2
i when Si >

Ci
2 ,

U3
i when Si <

Ci
2 .

The strategy profile of remaining players remain fixed and is given by
C

2 −i = {s j|s j =
C j

2 , ∀ j∈N\{i}}. The ui is calculated as follows.

i. u1
i Calculation: As every node has divided its link capacity equally

between upload (s j) and download (s j), following network condi-

tions arise:

A. s j = d j =
C j

2 , ∀ j∈N .

B. Snwk = Dnwk =
∑
j∈N

C j

2 .

C. I j = 1,∀ j∈N .
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4.3 Capacity Partitioning Based on Contribution and Resource Consumption

Every node gets equal priority during resource distribution, be-

cause they have the same incentive level. In addition, as there is

supply demand balance, i.e., Snwk = Dnwk, so expected received

resources by every node will be equal to its download capacity, i.e.,

E[r j] = d j, ∀ j∈N . Using (4.3) utility obtained by i is given as

u1
i = ui

(Ci

2
,
Ci

2 −1

)
=

Ci

2
. (4.5)

ii. u2
i Calculation: Capacity distribution and incentive level of nodes

across network, when i plays strategy si >
Ci
2 are :

A. si = Ci
2 + ∆2 and di = Ci

2 − ∆2, ∆2 > 0

B. s j = d j =
C j

2 , ∀ j∈N\{i}

C. Snwk =
∑
j∈N

C j

2 + ∆2 and Dnwk =
∑
j∈N

C j

2 − ∆2.

D. Ii > 1 and I j = 1,∀ j∈N\{i}.

Due to highest incentive level, i will get priority over other nodes

during resource allocation. The expected resources received by i

will beE(ri) = Ci
2 +∆2. However, i does not have enough download

capacity (di = Ci
2 −∆2) to utilize these resources. Hence, using (4.3),

i’s utility is given as

u2
i = ui

(Ci

2
+ ∆2,

Ci

2 −1

)
=

Ci

2
− ∆2. (4.6)

Comparing (4.5) and (4.6) we get u2
i < u1

i . Therefore, si = Ci
2 strictly

dominates all the strategies where si >
Ci
2 . Node i will never play

strictly dominated strategies during equilibrium, because they pro-

vide lower payoff.

iii. u3
i Calculation: Network conditions when node i employs strategy

si < C
2 , are given as:

A. si = Ci
2 − ∆3 and di = Ci

2 + ∆3, ∆3 > 0

B. s j = d j =
C j

2 , ∀ j∈N\{i}

C. Snwk =
∑
j∈N

C j

2 − ∆3 and Dnwk =
∑
j∈N

C j

2 + ∆3.

D. Ii < 1 and I j = 1,∀ j∈N\{i}.
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4.3 Capacity Partitioning Based on Contribution and Resource Consumption

As Ii < I j,∀ j∈N\{i}, therefore node i is given lowest priority dur-

ing resource allocation. The resources consumed by nodes with

priority higher than i are given by,

Dnwk−{i} = min

Snwk,
∑

j∈N\{i}

d j

 =
∑

j∈N\{i}

C j

2
. (4.7)

Residual resources available to i for download are,

E[ri] = Snwk −Dnwk−{i} =
Ci

2
− ∆3. (4.8)

Hence utility received by i (refer (4.3)) is

u3
i = ui

(Ci

2
− ∆3,

Ci

2 −1

)
=

Ci

2
− ∆3. (4.9)

Comparing (4.5) and (4.9) we get u3
i < u1

i . As the strategy si = Ci
2 ,

strictly dominates all the strategies with si <
Ci
2 , so i has no incentive

to deviate from strategy si = Ci
2 . Therefore, S∗2 =

{
s j|s j =

C j

2 ,∀ j∈N
}

is indeed a NE.

(b) “si,di, ∃i∈N” is not a NE.

In this case, network will contain at least one node j whose s j < d j and a

node i with si > di to maintain Snwk = Dnwk. As Snwk = Dnwk, the resource

requirement of almost every node is satisfied. Nodes like i, with higher

incentive level can further increase their utility by incrementing their

download capacity. These additional resources are drawn from the

share of resources allocated to node with lowest incentive level.

3. Snwk > Dnwk : In this case, “Snwk −Dnwk” amount of resources remain unuti-

lized after fulfilling the download requirements of every node. Any node

can receive these unutilized resources by increasing its download capacity.

As nodes have incentive to change their strategy, so “Snwk > Dnwk” is not a

NE.

�
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Link
Capacity

(Mbps)

Upload
Capacity

(Mbps)

Download
Capacity

(Mbps)

4 2.0 2.0

5 2.5 2.5

6 3.0 3.0

7 3.5 3.5

8 4.0 4.0

Table 4.1: Nash Equilibrium Partitioning of Access Capacities

Hence, in capacity partitioning game there exists two NE’s, namely S∗1 and S∗2. In

S
∗

1 state, as every node receives 0 utility, so nodes will start leaving the network

because their motive of downloading resources remains unfulfilled. Therefore, in

practice, network will operate in S∗2 state, where the nodes have to upload (si) in

proportion to their consumption (di) of resources, i.e., si = di = Ci
2 , ∀i ∈ N . The

NE distribution of capacities across the network is further illustrated through the

numerical example presented in next subsection.

4.3.3 Nash equilibrium (NE) Illustration using Numerical Exam-

ple

We consider a network of 100 users. These users are distributed in equal propor-

tion into 5 groups of different link capacities viz. 4, 5, 6, 7 and 8 Mb/s, such that

each group consists of 20 nodes. NE state is given by S∗2 =
{
s j|s j =

C j

2 ,∀ j∈N
}

”.

Therefore, the link capacity will get equally divided between upload and down-

load capacity during NE. The link capacity division, across the network during

NE, is presented in Table 4.1. The numerical example is presented for under-

stating partitioning under NE. To further substantiate authors claim, the network

simulation results will be discussed in section 5.7.
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4.4 Socially Optimal Partitioning Strategies

Nash equilibrium (NE) only takes into account users’ individual benefit. It may not

be always socially optimum, i.e., the resources available across the network might

get wasted due to mismatch between demand and the availability of resources. To

evaluate the efficiency of a given strategy profile, we compare the sum of utilities

achieved by all the users while implementing that profile with the maximum

achievable utility in the network.

Let Snwk

(
=

∑
i∈N

si

)
and Dnwk

(
=

∑
i∈N

di

)
denote the total resources available and de-

manded respectively in the network. The total access link capacity available across

network is Cnwk

(
=

∑
i∈N

Ci

)
, where Ci is the node i’s link capacity . Sum of upload

and download is equal to sum of link capacities of all the nodes in the network.

Therefore,

Snwk = Cnwk −Dnwk =
∑
i∈N

Ci −Dnwk. (4.10)

unwk

(
=

∑
i∈N

ui

)
is the utility derived by all the nodes from the network and is

dependent on total resources shared across the network i.e. Snwk. However, if

network does not have enough download capacity to utilize shared resources,

then extra resources Snwk −Dnwk get wasted. Therefore,

unwk = min {Snwk,Dnwk} . (4.11)

We now determine the maximum achievable unwk during the network operation.

Three cases arise,

Case 1. Snwk = Dnwk. From (4.10), the value of Snwk =

∑
i∈N

Ci

2 . Using (4.11), achieved

utility is

unwk =

∑
i∈N

Ci

2
. (4.12)
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Figure 4.1: Aggregate Network Utility.

Case 2. Snwk < Dnwk. Using (4.10), the value of Snwk <

∑
i∈N

Ci

2 . Therefore, the

achieved utility (refer (4.11)) is

unwk <

∑
i∈N

Ci

2
. (4.13)

Case 3. Snwk > Dnwk. Using (4.10), Snwk will be greater than

∑
i∈N

Ci

2 but Dnwk <

∑
i∈N

Ci

2 .

From (4.11), the utility is

unwk <

∑
i∈N

Ci

2
. (4.14)

On comparing (4.12), (4.13) and (4.14), the maximum achievable utility is

umax
nwk =

∑
i∈N

Ci

2
=

Cnwk

2
. (4.15)

The variation in the network utility with change in snwk is also plotted in Fig.

4.1. Initially unwk is 0. The value of unwk then starts increasing with value of snwk

and reaches maximum value Cnwk
2 at snwk = Cnwk

2 . Thereafter, value of unwk starts

decreasing with increase in snwk because network does not have enough download

capacity to utilize all the shared resources, i.e., dnwk <
Cnwk

2 ∀ snwk >
Cnwk

2 . For a
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NE state to be socially optimal, the net utility received by all the nodes should be

equal to maximum possible utility
(

Cnwk
2

)
in the network. We now analyse social

optimality of all the NE states in capacity partitioning game.

In S∗1, no node in the network is uploading, so utility received by every node is 0

, i.e., u1
i = 0, ∀i∈N . Therefore, the total utility

(
u1

nwk

)
derived across the network

for NE state S∗1 is given as,

u1
nwk =

∑
i∈N

u1
i = 0.

Clearly S∗1 is not socially optimal, as utility received in this state is less than

maximum possible utility in the network i.e. Cnwk
2 .

In NE state S∗2, the utility received by every node is (refer (4.5)),

u2
i =

Ci

2
, ∀i∈N . (4.16)

Therefore, utility derived by all the nodes in S∗2 is

u2
nwk =

∑
i∈N

u2
i =

1
2
·

∑
i∈N

Ci =
Cnwk

2
. (4.17)

The total utility earned in S∗2 state is equal to maximum possible utility in the

network. Therefore, NE state S∗2 is socially optimal.

4.5 Conclusion

In this chapter, we have successfully extended game theoretic model for capacity

partitioning to heterogeneous network. The resources are distributed in the de-

creasing order of the ratio of contribution and consumption of the resources by

the requesters. We proved that for such resource allocation, the strategy of equal

division of link capacity between uplink and downlink is the Nash equilibrium of

capacity partitioning game. This Nash equilibrium maximizes the utility received

by a user. Finally, we established that equal partitioning strategy is also socially

optimal. Hence, such strategy ensures individual as well as social welfare.
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Chapter 5

Adaptive Capacity Allocation in P2P

Networks: A Control Theoretic

Perspective

5.1 Introduction

The strength of a P2P system lies in the cooperative behavior of its members.

However, members are usually reluctant to share resources because there are

inherent costs associated with sharing, e.g., financial cost involved in usage of

bandwidth for sharing. Therefore, they tend to become free-riders, i.e., they

consume resources without contributing back to the network. Many solutions

such as micro payment based schemes [13], game theoretic based approaches

[30][64] and trust or reputation based approaches [15][54] have been proposed

in the past to provide incentives to the cooperating members, thereby forcing all

nodes to cooperate. Trust or reputation based system, being simpler and easier

to implement, have been used in this chapter to estimate the cooperation level

of different members in the form of their reputation. The members are given

preference in service according to their reputation. The terms member, node and

peer are used interchangeably within this chapter.
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In networks like WiFi, WLAN, LTE and WiMAX (in time division duplex (TDD)

mode), [15, 66, 67], the nodes are connected to the backbone network through a

common access link, as shown in Fig. 1.6. The capacity division of access link

between uplink and downlink can be modified by the node. The nodes being

selfish, want to use their entire capacity for download but a reputation system

forces them to upload as well. Therefore, a mechanism which optimally divides

the total capacity at node i between upload and download is needed, such that

the capacity allocated for upload should be just enough to maintain node i’s

reputation close to a minimum level, such that all of i’s download requirements

are fulfilled.

Reputation-Based Resource Allocation Policy (RRA) [15] strives to achieve optimal

partitioning by updating the upload bandwidth in fixed step sizes. Under stable

condition, the upload bandwidth oscillates around the optimum due to fixed

sized step. We can allow upload bandwidth to change by any value, so that with

suitable control mechanism, an optimal operation without oscillatory behavior

can be achieved.

In this chapter, we model total capacity distribution between uplink and downlink

as a feedback control problem. In this control system, resources that a peer receives

from the network act as a feedback, which decides its output, i.e., the resources

that the peer uploads back to the network. The control system seeks to take

the system to an optimal partitioning level where the bandwidth or capacity

received is equal to download capacity available for the current level of upload.

Unlike existing schemes, we employ a PI controller to make size of capacity

increment or decrement adaptive such that the step size tends to 0 as node’s

sharing level approaches the optimal value. Thus, total capacity partitioning

stabilizes around the optimal point and the resource wastage is reduced leading

to enhanced efficiency compared to existing schemes.

Main highlights of this chapter are listed below.

1. We model the resource allocation mechanism as control system, which can be

implemented in distributed fashion across the network. This design is in line

with basic structure of the P2P network, which lacks any central authority for

coordination among members. We also derive a generic transfer function,
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which can be used to study various resource allocation algorithms in a

control theoretic framework.

2. We also propose ‘level of optimality’(U), a metric to measure the optimal-

ity level at a node. A node operates at the optimal level when it receives

desired amount of resources with minimal sharing (i.e expense). This defi-

nition corresponds to selfish behavior of members where they seek to derive

maximum benefit at the minimum expense [69].

3. Proportional Integral (PI) controller (discussed later in section 5.5.2.1) has

been employed for devising a robust capacity partitioning process. The

control system based capacity partitioning is adaptive to network dynamics,

caused by nodes entering or leaving the network or some of them starting to

free ride. In addition, the proposed control system can be easily integrated

with the existing nodes in the network.

4. Unlike earlier works, the proposed system is more efficient in reducing

resource wastage by making the nodes operate at optimal capacity distri-

bution. This makes it more difficult for free-riders to get resources as opti-

mal operation ensures minimum resource wastage, which results in higher

penalty on the free-riders. Free-riding nodes who could have survived on

such unused resource do not get anything from the network, which compels

them to cooperate.

Notation: A symbol written in calligraphic font represents a set (e.g. A). R+

represents the interval [0,∞). Other notations used in this chapter are mentioned

in Table 5.1.

5.2 Related Work

In single capacity links, the total capacity available at the node should be optimally

divided between upload and download capacities, so that node can get maximum

resources from the network at minimum sharing. Meo et al. [69] contemplated

network as market and proved that if peers are greedy and employ second price
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auction then network reaches an equilibrium stage, where the download capacity

converges to a specific value. For a network with homogeneous single capacity

links, the download capacity converges to half of the total capacity. In the model

proposed by Meo et al. [69] , it was proved that any peer in the network cannot

maintain a download rate higher than mini∈N
Ci
2 , where N corresponds to set of

all the member nodes and Ci is the total capacity of the node i. Therefore the

slowest link present in the network acts as bottleneck. Another limitation of this

model is that a member node can perform only a single upload and download at

a given time. Limitations in [69] were alleviated by Reputation based Resource

Allocation (RRA) mechanism [15]. RRA dynamically divides the total capacity

between upload and download in the single capacity link. RRA strives to attain

optimal point of resource sharing by modifying a peer’s upload capacities in fixed

step sizes. Due to fixed step size, total capacity distribution never settles down

and keeps on oscillating around the optimal point. Iosifidis and Koutsopoulos

[70] have modeled total capacity partitioning between uplink and downlink as

a utility maximization problem. However, authors did not provide any formal

framework to utilize the complete link capacity available at the node.

Once the total capacity partition between upload and download is decided, we

need a mechanism to award the resources to nodes according to their cooperation

level, so that they do not free-ride. Ma et al. [64] put forward a modified version

of the progressive water filling algorithm where nodes are provided resources at

the rates proportional to their reputation. The authors theoretically proved that

such kind of allocation maximizes the marginal utility. Yan et al. [65] proposed a

mechanism where peers’ ranking and the utility were the basis for the resource

allocation such that resource distribution achieves max-min fairness.

Co-operation level needs to be estimated at every node in the network so that

resources can be awarded to requesting nodes based on their contribution. Various

works have suggested an array of techniques to determine the cooperation level.

Satsiou and Tassiulas in [15] estimated cooperative behavior from the ratio of the

resources received and demanded by the node. Banerjee et al. [72] proposed that

serving peer will compute the expected utility function of the requesting nodes,

which will be the basis for the resource allocation.
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BitTorent [1] was designed for links (eg. ADSL), where there is strict segregation

between upload and download capacities. Hence, it does not provide any mech-

anism for capacity partitioning. However, BitTorent employs tit f or tat [73] for

resource sharing where service provided by a node i to a node j solely depends on

the service j has provided to i in the past, independent of j′s behavior with other

members. Current incentive mechanism used by BitTorent does not motivate

peers to stay in the system, once their download requirement gets fulfilled.

Contemporary P2P networks have large population size with high churn rate

[74] and infrequent repeat transactions. In such kind of networks, reputation

based systems are very effective. We use a modified version of RRA’s reputation

system for evaluating reputation. Instead of storing last 10 transaction values,

the proposed model uses exponential moving average between present and past

values to reduce the memory usage at a node.

5.3 P2P Network Model

We consider a P2P network where files are the resources being shared and con-

sumed by its members. Bandwidth is required to transfer files between various

members across the network. Members are reluctant to share bandwidth as there

is cost involved in sharing. Therefore, to motivate members to share, they are

provided incentive based upon amount of bandwidth shared by them. Hence,

in this chapter, we analyze and compare various resource allocation strategies in

terms of bandwidth shared by its members. Considering bandwidth as a com-

modity for consumption and sharing, the P2P network model can be described as

follows.

5.3.1 Resource Discovery and Connection Setup

Each peer in the network is connected to a backbone network via an access link

(refer Fig. 1.6). In a P2P network, there can be two mechanisms possible for

resource discovery. In the first mechanism, distribute hash table (DHT) [17] based

overlay is created and in the second mechanism, unstructured neighborhood is
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Nota-
tion Description

Ri Reputation of node i.

t ji Trust of i measured by j.

T ji Bandwidth received by j from i.

a ji Resource allocated by i to j

B ji Bandwidth demanded by j from i.

di The current download capacity of the node i.

si The current shared/upload capacity of the node i.

Ci The access link capacity at the node i.

Ti Total resources node i is currently receiving from network.

li No. of requests catered by the node i.

gi No. of requests generated by the node i.

B f es
ji

The minimum bandwidth required to support feasible
data rate possible on the link between i and j.

B f es
min

The minimum value of the B f es
ji , among all the possible

values of i and j in the network.

ki jovd

Proportionality constant for handling change in
bandwidth received by i due to overloading at j.

Ai Set of serving nodes for the node i.

Zi
Set of nodes that request resources from node i since the

last reputation estimation.

Rmin Reputation threshold below which a node does not

receive any service from network

Rmax
in Maximum initial reputation that can be assigned

to newcomers

Rin Initial reputation assigned to newcomers.

Ui Level of optimality at node i.

Uref Reference level, signifying optimal partitioning.

Table 5.1: Important Notations
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maintained. Any query for resource is forwarded in an organized fashion in the

structured DHT based P2P system while in unstructured network, the query is

forwarded to all neighbors except from the one from which query is received. The

response of query once found, traverses the same path in reverse, as taken by the

query.

As in most of existing P2P resource allocation models [15] [58][69], problem of

the resource allocation has been isolated from query propagation and resources

discovery across the network. It is assumed that resource lookup algorithm em-

ployed by P2P application is ideal, such that every peer has complete knowledge

of the nodes who hold the required resource. This assumption is in line with

practical P2P system like BitTorrent where members in swarm1 know about the

chunks available with the other peers through tracker[1]. Various messages for

link setup and chunk exchange are assumed to be taken care by the P2P applica-

tion. Once the resource location is received in response, the node directly connects

with the peer having the resource. In this sense, for resource provisioning P2P

network is fully connected mesh.

5.3.2 Chunk Exchange

Large size resources can be assumed to be consisting of smaller chunks, which are

again uniformly distributed across the network. These assumptions are reason-

able and close to real life P2P networks,due to following reasons.

1. In popular file sharing networks like BitTorrent, a single file is further di-

vided into large number of chunks [75]. A peer is usually interested in

downloading more than one file. Therefore, it needs to download very large

number of chunks from the network. Peers first download those chunks

which are rare in the swarm. This technique called ‘rarest first‘ [1] ensures

that each peer usually has data chunks which the other downloaders in the

swarm desire. A typical swarm consists of small number of peers (usually

100) with a requester requiring large number of chunks and other peers

containing different chunks due to rarest first technique. All these factors in

1The set of peers actively uploading and downloading data [1].
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conjunction lead to a situation where for most of the network life time, a peer

will always have something of interest for other peers across the swarm.

2. Although in this chapter a user is interested in a file as a resource, there

can be P2P system, where members may also be interested in other kind

of resources like CPU cycles or storage space. Such type of resources are

not specific like a data file pertaining to a particular movie. A user watches

movie based upon its interest and mood and therefore, it will not randomly

download any movie file. However, there is no interest involved in generic

resources of type CPU cycle or storage space. Therefore in such scenario, a

requester can request any member of P2P network for the resource.

Hence, similar to P2P network models in extant literature for resource allocation

[15, 58, 69], it is assumed that at least one of the many chunks that the requester

is interested in, can be found at any node except the requester in the network.

5.3.3 Query Generation Profile

While designing the proposed model we have considered operational overload-

ing [15][69], i.e., there is always a pending request to download data and corre-

sponding content is always available for download. This signifies worst possible

operating condition where infinite number of chunks of the same file are spread

across the network. If a system can withstand such extreme condition, then it will

work efficiently for normal operating conditions too.

5.3.4 Access Link Type

This chapter deals with the links where the total capacity2 available with a user

is constant but there is no strict separation between uplink and downlink capac-

ities. A user can adjust between upstream and downstream flows using certain

implementation tools [68]. Such kind of links exist in WiFi, WLAN etc. In line

2 Total capacity is sum of uplink and downlink capacities.
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with the nomenclature in the existing literature [15], we will refer to such type of

links as single capacity links.

Based upon above discussed system model specifications, we study the resource

allocation process across the P2P network in the next section.

5.4 Resource Allocation across P2P Network

Rational peers will adopt a strategy to derive maximum benefit from the net-

work with minimum cost [69]. This is the basic principle driving the resource

allocation. A peer has to pay the cost for both upload and download bandwidth

usage. It is assumed that the cost incurred in download is less than the utility

gained by downloading the resource from network. Hence, a peer should be con-

cerned about its upload bandwidth usage cost only. To minimize this cost, it will

avoid sharing or contributing resources. However, the incentive techniques e.g.,

reputation system forces peers to upload, by distributing the resources among

requesters in proportion to their contribution level. This ensures that the cost in-

curred while sharing a resource gets transferred to gain in the download. In such

cases, peers minimize the cost by sharing just enough so that all of its download

requirements are met. The proposed resource allocation system takes care of all

of these constraints. We expect this resource allocation system to ensure the opti-

mal operation of P2P system while acting as deterrent to free-riding. A resource

allocation system can be divided into three components as described below.

1. A mechanism to achieve optimal distribution of total capacity between up-

load and download, such that a node is able to receive maximum download

while maintaining minimum upload.

2. A mechanism to distribute the upload capacity allocated by the first com-

ponent, among the requesting nodes based upon requesters’ contribution

level.

3. Finally, a reputation system to estimate the contribution level of various

nodes in the network.
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Our main focus is to design a control system which can achieve optimal distri-

bution of total capacity between upload and download bandwidth. To derive

transfer function for this control system, we require a mathematical framework

of reputation based resource allocation process among requesters. Therefore, we

first discuss the reputation system and resource allocation based upon it.

5.4.1 Reputation Calculation System for Member nodes

To make the proposed control system compatible with the prevalent reputation

systems, we use a modified version of an existing reputation system [15]. Even

if in future, somebody proposes altogether a new reputation evaluation system,

then also the approach to build the overall control system will remain the same.

Thus, with manageable changes, control system can work with any underlying

reputation system. We now describe in detail reputation metric being used to

estimate the cooperative behavior.

The trust is a measure of the cooperative behavior of a node. The trust (t ji)

calculated by the requesting node j for the serving node i for any transaction is

defined as the ratio of the bandwidth received by the node j (T ji) and what it has

actually demanded from the node i (B ji) during that transaction, i.e.,

t ji =
T ji

B ji
. (5.1)

Reputation of the node i at any time instant is calculated using the exponential

moving average [76] of old reputation value with the average of current trust

values as

Ri = (α)Rold
i + (1 − α)

∑
j∈Zi

t ji∑
j∈Zi

1
, (5.2)

where Ri is the reputation of the node i and Rold
i is the last reputation value of node

i available in the network. Zi is the set of nodes which have requested the node i

for resources after Rold
i was calculated. Zi is reset every time the reputation Ri of

node i is calculated. The cardinality of the setZi i.e

 ∑
j∈Zi

1

 is equal to li, which is
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the number of requests received by the node i after its last reputation evaluation.

The proposed system uses global reputation, which is available to every peer

in the network. The reputation aggregation (for calculating global reputation)

can be achieved using gossiping [77] which has very low complexity in terms of

memory, space, and time. Hence without much overhead, global reputation can

be maintained by the members of a P2P network.

In (5.2), α determines how the exponential average forgets the contribution of the

past values. The α always lies in the interval [0, 1]. A lower α causes the older

observations to decay faster and α = 0 completely ignores the older values. We

have taken the value of α as 1
2 in (5.2) so that equal 3 priority is given to the present

as well as past reputation values. Thus, the reputation of the node i is

Ri =
Rold

i +

∑
j∈Zi

t ji

li

2
. (5.3)

We now derive a generic resource distribution mechanism among the requesting

nodes based upon their reputation.

5.4.2 Reputation Based Resource Distribution Among Requesters

To design a control system independent of underlying reputation based resource

distribution technique among requesters, we present a generalized mathematical

analysis for the resource distribution mechanism. Thus, every node in the net-

work is free to use its own reputation based resource distribution independent

of what other nodes are using. This generic framework estimates the amount of

bandwidth available to a node from the network. The bandwidth allocated to any

requesting node i from j is proportional to its reputation Ri, bandwidth demanded

Bi j from j and a proportionality constant ki jovd
which caters for change in received

bandwidth due to overloading4 at j. Thus the bandwidth received by i from j is

3In this way nodes are discouraged to abruptly change their behavior during the current time
period to gain advantage in the reputation for the future transactions. The nodes need to be
cooperative over a period of time for getting better quality of services than the existing services.

4Overloading represents the situation when overall bandwidth demanded by all the requesters
from the serving node j is more than what j has shared.
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given as

Ti j = ki jovd
×Ri×Bi j. (5.4)

The value of ki jovd
lies in the interval

[
0, 1

Ri

]
. ki jovd

= 0, denotes the worst case

of overloading at serving node j, where the receiving node i will not receive

any bandwidth. When ki jovd
= 1

Ri
, the bandwidth requirement of node i will be

completely satisfied by the node j. The value of proportionality constant ki jovd

varies in each round depending upon the degree of overloading at the serving

node. At the same time, for another requester say x requesting the same serving

node, the value of kxjovd
will vary depending upon its reputations. The mechanism

to estimate ki jovd
is out of scope of this thesis. We just need to ensure that control

system remains stable, even for maximum possible value of ki jovd
.

The total bandwidth (Ti) received by the node i during the period, after last

estimate of Ri is given by

Ti = Ri ×

∑
j∈Ai

ki jovd
Bi j, (5.5)

whereAi is the set of the nodes from which node i has demanded the resources.

5.5 Modeling of Capacity Partition as Control System

Control Logic 

(PI Controller)
Actuator

(Node)
Plant

(P2P network)

Monitor

yError

Upload bandwidth  

a node shares
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i
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Figure 5.1: Proposed Control System

Dividing the total capacity between upload and download is a tricky problem in a

P2P network. If a node keeps all of its capacity for download, then its cooperation

level or reputation decreases and it will start receiving lesser resources from the

network. After some time, a node’s reputation will become 0 and it will not receive
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any resource from the network. On the contrary, if a node keeps all of its resources

for sharing, it will not be able to download anything from the network. In both the

scenarios, the utility or satisfaction derived from the network finally becomes 0.

Therefore, a node needs to operate at an optimal point where it allocates minimal

capacity for upload, so as to manage just enough reputation to fulfill its maximum

possible download requirement from the network.

The problem of optimal partitioning of bandwidth into upload and download at

a node, is modeled as a classical feedback control system, which follows a set

or reference point. In our case, the reference point signifies the optimal point of

bandwidth partitioning. The control system in Fig. 5.1, always strives to make

the output approach the reference point based upon the feedback. The difference

between the observed and the reference output is error. The error changes the

upload bandwidth offered by the node, which subsequently modifies the node’s

reputation, thereby changing the effective bandwidth offered back to it by the

network. The change in the output is always directed towards minimizing the

error. This results in nodes working at optimal operating point. In practice, the

control system dynamically adjusts the total capacity in such a way that a node

shares minimal amount of upload capacity so that all of the remaining capacity left

for download is completely utilized. Thus for most of the time, a node is able to

derive maximum benefit from the network at minimal cost. The existing algorithm

in [15], also seeks to optimize the total capacity, but they used fixed step size ∆ to

change the capacity distribution between upload and download. Due to fixed ∆,

distribution never stabilizes but oscillates around the optimal point with an error

proportional to ∆. Hence, the node either receives more or less than the optimal

capacity allocated for upload and download, which results in wastage of overall

network resource. The control system makes the step size say y proportional to

error such that y → 0 as the node approaches the optimal point. This minimizes

the resource wastage due to over-allocation and the received resource shortage

due to under-allocation of the upload bandwidth. Hence, due to variable step size

y, the control system based resource allocation is more efficient than the existing

techniques.

The following subsections discuss the level of optimality metric, reference point
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determination and controller action to achieve it. These subsections also delib-

erate about design of various components of control system shown in Fig. 5.1.

The design involves determining the corresponding equivalent components for

controller, actuator, plant and monitoring unit in a P2P network. Finally, we also

derive the transfer function for this control system model.

5.5.1 Reference or Set Point in Control System

5.5.1.1 Level of Optimality U

To quantify the optimality level of resource sharing at a node, we propose a metric

called ’level of optimality’ which is denoted by U. For a node i, level of optimality

Ui is defined as

Ui =
Ti

di
, (5.6)

where Ti is the total data rate given by all the peers currently serving the requesting

node i and di is the current5 download capacity of the node i. Ui implicitly signifies

benefit or the satisfaction achieved by the node i from the network.

At the outset, U may resemble the popular concept of utility [78] in computer

networks but it is quite different. The utility corresponds to the degree of the

satisfaction received by the node from the network, whereas U is dependent upon

the total resources that are available to the node from the network. Sometimes,

the node’s capacity may not be sufficient to utilize all the available resources,

therefore these extra resources which are considered in U are useless for the node

and don’t contribute towards the utility derived by the node. For example, if a

node i is offered bandwidth Ti, such that Ti > di, the current download capacity

of i. This scenario is possible because peers usually demand more6 [15] than

their download capacity to increase their chances of getting resources from the

network. The node i can only utilize the bandwidth equal to its current download

capacity di and the rest of the offered bandwidth (Ti−di) gets wasted. The Ui takes

Ti into account, whereas utility is dependent on di only. We now try to determine

5For single capacity link, di may vary in each round depending upon the capacity i has kept for
upload.

6Demanding in excess is usually beneficial when network is overloaded with requests.
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the value of Ui which will be optimal point of operation such that a node gets

maximum benefit at minimum sharing.

5.5.1.2 Reference Point Determination

A control system always strives to bring the system to the reference point or a set

point. When the requesting node i increases its upload capacity si, its reputation

increases. This makes i eligible for greater amount of download Ti from the

network. However, download capacity di of node i limits maximum download

and consequently received resources, which can be utilized by the node. Hence,

we need to find an optimal point where a node gets maximum resources from the

network at the minimum cost. This optimal point corresponds to the reference

point of the proposed control system. To determine the reference point (refer

(5.6)), we divide the feasible regionR+ of variable Ui into three subsetsU1,U2,U3

as follows.

Ui ∈


U1 = [0, 1), when Ti < di,

U2 = {1}, when Ti = di,

U3 = (1,∞), when Ti > di.

1. (Ui∈U1):- During this state, both satisfaction and Ui derived by the peer i

from the network increases with increase in Ti. Therefore, a node always

has scope of increasing its utility or satisfaction in this region of operation.

Hence, reference point doesn’t lie in setU1, because it doesn’t contain point

of maximum satisfaction level.

2. (Ui∈U3):- Increasing si in this region, results in more resources (Ti) from

network. However increased Ti will not be beneficial for the node because

it exceeds the maximum data rate di a node can handle. Therefore, when

(Ui∈U3), with increase in si, Ui increases but the satisfaction derived by the

node decreases. The decrease in satisfaction level occurs because di decreases

as si increases. Hence, node will be able to process lesser resources from the

network resulting in decreased satisfaction from the network. Consequently,
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node i is at loss when its Ui increases beyond 1, as i has to pay more in terms

of the greater upload capacity. Hence,U3 will not contain reference point .

3. (Ui∈U2):- This point corresponds to minimum si with which a node can

receive resources Ti equal to its present download capacity di. Therefore,

maximum satisfaction is achieved at Ui = 1 with minimum cost.

Hence, Ui = 1 corresponds to the reference point of control system.

5.5.1.3 Achieving Reference Level

The feedback monitor in the loop (see Fig. 5.1 ) will estimate function Ui. This

value will be compared with the reference point (Uref = 1) and the error is fed to

the controller. In other words, upload capacity available at node i is adjusted so

that it is adequate enough to make the Ui at the node i equal to the Uref of the

control system.

5.5.2 Control System Components

The various components of the proposed control system model as shown in Fig.

5.1 are described below

5.5.2.1 Controller

Controller [79] stabilizes the system output to a particular value called reference

or set point. Based upon the difference between the reference point (Uref) and the

current level of optimality (U), the controller drives the actuator to regulate the

output. The proportional action in a controller helps the node in reaching optimal

value of resource sharing faster, whereas integral action reduces the steady state

error7 [79]. When the P2P network reaches the steady state, nodes generally share

in proportion to their requirement so as to preserve their reputation. Therefore

7Steady state error is the perturbations occurring after a node has reached optimal point of
operation, i.e., U = Uref.
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total shared capacity in network does not change abruptly and so does U as

consequence. The differential action used to counter sudden changes in output

(U in our case), is therefore not required in our system. Thus the PI controller

with transfer function[79]

G(s) = Kp

(
1 +

ki

s

)
(5.7)

is sufficient to model the control system, where Kp and Ki are the proportional and

integral gain respectively of the PI controller. The value of these gain parameters

are calculated in section 5.5.4.

In the proposed model, controller modifies the shared capacity on the basis of the

error (Uref −Ui). As the output of controller is proportional to error, therefore the

size (y) through which upload capacity gets modified is adaptive. As the error

becomes 0, so does the y, implying that the shared capacity stabilizes around the

optimal point.

5.5.2.2 Actuator

The role of the actuator [79] in the control loop is to update physical entity based

upon the controller output. In the model under consideration, the actuator mod-

ifies the upload capacity of the node in response to the controller output y. The

actuator changes the shared capacity of the node by y units in the next round. The

change in the upload capacity by the actuator modifies the reputation of the node,

thereby adjusting the download bandwidth, the node receives from the network.

5.5.2.3 Plant

Plant represents the P2P network, which decides the amount of resources available

to a node from the network on the basis of the capacity shared by that node. The

output of the plant corresponding to a node i is the level of optimality Ui.
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5.5.2.4 Monitor

The function of the monitor or the observer at the node i is to sense the output

of the system. Output is then compared with the reference point to calculate the

error and drive the controller. In the proposed system, monitor gain of any node

i is 1 as the system output, i.e., Ui can be compared directly with reference point

Uref. Let C(s) denote the transfer function of controlled software system (which

�
�
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��
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�

Figure 5.2: Transfer Function representation of Bock Diagram

includes actuator and P2P network) and G(s) represents the transfer function

of controller. Representing various blocks in Fig. 5.1 with their corresponding

transfer functions, we obtain Fig. 5.2. To complete the design of proposed control

system, we further derive the transfer function of various components in the

subsequent sub section.

5.5.3 Controlled P2P Software System Model

For the derivation of transfer function C(s) for controlled P2P software System

model (actuator and plant), we need to first calculate its output, i.e., level of

optimality (U).

5.5.3.1 Evaluating Level of Optimality (Ui) at Node i

Using (5.1) and (5.3) the reputation of the node i is given by

Ri =
Rold

i +

∑
j∈Zi

Tji
Bji

li

2
, (5.8)
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where Rold
i is the last reputation value of the node available in the network. T ji and

B ji are the bandwidth received and demanded respectively by the node j from

i. Zi denotes the set of nodes requesting service from i while li is the number of

requests catered by i. The total bandwidth (Ti) received by the node is calculated

using (5.5) as

Ti = Ri ×

∑
k∈Ai

kikovd×Bik =
Rold

i +

∑
j∈Zi

Tji
Bji

li

2
×

∑
k∈Ai

kikovd×Bik, (5.9)

where kikovd is a constant which takes the overloading at the serving node into

account.

The serving peers can estimate the feasible capacity of the link to the requesting

peer and use it in place of B ji in (5.9). Feasible capacity is the minimum amount of

the bandwidth required to support the feasible service rate across the link. Feasible

service rate is the maximum achievable throughput via underlying path in the

network with packet loss probability p. It can be estimated from the expression of

effective rate for an end-end TCP connection using TCP Reno congestion control

algorithm [80] as

R(p)≈
M

RTT ·
√

2bp
3 + T0 ·min

(
1, 3

√
3bp
8

)
p(1 + 32p2)

. (5.10)

Here R(p) is the feasible service rate which is the function of the packet loss

probability p, M is the maximum transmit window that the receiver indicates

to the sender and RTT is the round trip time between the two nodes. T0 is the

retransmission timeout in seconds and b is the number of packets acknowledged

by each acknowledgment message. On substituting B ji by feasible bandwidth B f es
ji

in (5.9), the total bandwidth received by a node is given by,

Ti =
Rold

i +

∑
j∈Zi

Tji

B
f es
ji

li

2
×

∑
k∈Ai

kikovd×Bik, (5.11)

where B f es
ji is the minimum amount of bandwidth required to support a feasible
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data rate from node i to j. B f es
ji can be estimated using (5.10). Since the aim of the

dissertation is to optimally partition link capacity between upload and download,

TCP Reno congestion control algorithm [80] (in (5.10)), is not simulated in this

dissertation. We assume that serving nodes know the value of B f es
ji .

As, nodes will estimate the capacity using TCP Reno congestion control algorithm,

serving node will never provide resources greater than the capacity at the disposal

of the requesting node. Therefore, node i will demand resources equal to its

current download capacity (di), i.e., Bik = di. Consequently, (5.11) becomes

Ti =
Rold

i +

∑
j∈Zi

Tji

B
f es
ji

li

2
× di

∑
k∈Ai

kikovd .

Using (5.6), the measured variable Ui corresponding to the node i is given by

Ui =
Ti

di
=

Rold
i +

∑
j∈Zi

Tji

B
f es
ji

li

2
×

∑
k∈Ai

kikovd . (5.12)

5.5.3.2 Deriving Transfer Function for Controlled P2P Software System

For ease of analysis, we linearize the non-liner model8 of the process which op-

timally partitions total capacity between uplink and downlink. Any non-linear

system can be linearized if it works under narrow operating range [79]. The

proposed capacity partitioning process can be linearized because a node oper-

ates within a tapered operating range around the optimal point, i.e., U = Uref for

maximum period of its lifetime due to the following reasons:

1. A new entrant is able to swiftly achieve U = Uref due to the proportional

action of controller.
8Many complex nonlinear systems like web servers, servomotor, tachometer, synchros have

been studied using linearization.
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2. Once U = Uref is achieved, the integral action maintains U’s value close to

Uref during perturbations arising due to change in network dynamics. For

details refer to section 5.6.3.

3. Later in section 5.6.2, we prove that it is more profitable for new entrants to

initially share its total capacity equally between upload and download. This

approach also helps new entrants to operate near Uref as soon as they enter

the network.

In addition to the above stated arguments, the accuracy of linearized model is

further substantiated by simulation results in section 5.6.2, which show that the

linearized version of the proposed system closely follows the output of actual

nonlinear P2P system. Hence, proposed system can be modeled as a linear system.

We futher derive the transfer functions C(s) and G(s) for this linear system.

As discussed in 5.6.2, capacity partitioning already starts near the optimal point,

so we can neglect the process dynamics9, and the controlled software system’s

transfer function C(s) can be modeled as static gain c. On linearizing this gain c

around the reference point (Uref = 1), c can be obtained as the derivative of the

output (U) with respect to the input (y). The gain ci corresponding to the node i

is given as

ci =
dUi

dy
=

d




Rold
i +

∑
j∈Zi

Tji

B
f es
ji

li
2

 ×
∑

k∈Ai

kikovd


dy

. (5.13)

The ci is also called the process gain corresponding to the combined gain of

actuator plant and the monitor10. It signifies system’s sensitivity and is defined as

relative distance process variable (U) travels in response to change in controller

output (Y). The ci is subsequently used for controller design. Tuning the controller

for maximum process gain ensures the stability of the system for all controller gain

values [81, 82, 83]. Therefore, to design a robust controller, we derive the transfer

function corresponding to maximum process gain. The maximum gain ci
max occurs

when B f es
ji = B f es

min . Where, B f es
min = mini, j B f es

ji .

9Process dynamics play significant part during transient phase ( U,1) of the system. The
transient state analysis is an interesting problem and will be taken up by the authors in future.

10For the proposed system monitor gain is unity
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Another factor kikovd as discussed in section 5.4.2 attains its maximum value when

reputation of node is minimum. Rmin is the minimum value of the reputation at

which a node is eligible for resource allocation in the P2P network. Therefore, the

maximum possible value of (kikovd) such that node can receive data from network is
1

Rmin
. The total capacity

∑
j∈Zi

T ji currently allocated by node i is equal to its previous

shared capacity sold
i plus the the amount y by which it gets currently modified. y

is the current controller output. Hence the (5.13) can be used to determine the

maximum gain ci
max.

ci
max =

d




Rold
i +

(sold
i +y)

li×B
f es
min

2

 × 1
Rmin
×

∑
k∈Ai

1


dy

, (5.14)

where
∑

k∈Ai

1 represents the cardinality of the setAi and is equal to gi, the number of

the nodes from which node i is currently requesting for the resources. In a network,

the average generated (gi) and received (li) requests by any node i settles down

to the same value after some time, i.e., gi
li
→ 1. This happens because, a network

cannot store data packets. Therefore average upload and download should be

equal to maintain the network balance. In addition, reputation system forces

nodes to download in proportion to their contribution or upload. Consequently

the requests generated for average upload and download by a node in the network

should be the same. This claim has been further verified through simulations. On

substituting gi
li

= 1 in (5.14), we get

ci
max =

d


li×Rold

i +
(sold

i +y)

B
f es
min

2 ×
1

Rmin


dy

=
1

2RminB f es
min

. (5.15)

Change in the upload capacity induced by actuator is observed in the next period.

This results in dead time (delay) of one period (T). Further, (5.15) does not contain

any term specific to the node i. Therefore, superscript i from ci
max can be dropped

to obtain a generic expression applicable to any node in the network. Hence, the

overall transfer function of the controlled software system for any member node
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can be given as

C(s) = cmax · e−sT =

 1

2RminB f es
min

 e−sT. (5.16)

The overall transfer function of the control loop as shown in Fig. 5.2 is given by

T(s) = C(s)G(s) = cmax · e−sTKp

(
1 +

ki

s

)
. (5.17)

For ease of analysis we convert above equation in into Fourier form as follows

(Refer APPENDIX A for details).

T(w) = cmax · e− jwTKp

(
1 +

Ki

jw

)
. (5.18)

This T(w) is used in the subsection to calculate the gain parameters Kp and Ki of

the PI controller.

5.5.4 Tuning PI Controller

The proposed PI controller is tuned w.r.t C(s) on the basis of gain margin specifica-

tion. The gain margin [84] is the amount of increase or decrease in gain required

to make the loop gain T(s) equals to 1 at the phase crossover frequency (wp), where

phase angle (∠T(wp)) is −π.

From the definition [84], the phase and gain of the system at wp are−π and inverse

of gain margin (G) respectively, i.e.,

∠T(wp) = −wpT − tan−1

(
Ki

wp

)
= −π, (5.19)

and

|T(wp)| = |cmax|

∣∣∣∣∣∣(e− jwpT)(Kp)
(
1 +

Ki

jwp

)∣∣∣∣∣∣ =
1
G
. (5.20)
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In the industrial PI controllers, it is common practice to tune the controller phase,

i.e ., −tan−1
(

Ki
wp

)
to −π6 [85][81], thus

tan−1

(
Ki

wp

)
=
π
6
. (5.21)

The parameter G and T are set by the designer and cmax is calculated using (5.15).

Using (5.21) in (5.19) we get the value of phase crossover frequency as wp = 5π
6T =

2.618
T rad/s.

The parameter Ki of controller is calculated by substituting above computed value

of wp in (5.21). The simple algebraic manipulations give

Ki =
1.512

T
. (5.22)

The above computed values of wp and Ki are used in (5.20) for obtaining the

expression for Kp as

Kp =
0.866
cmaxG

. (5.23)

Equations (5.22) and (5.23) provide the generic value of the model parameters.

The actual parameter values used during simulations are calculated in the next

section. All the component values namely Uref, G(s) and C(s) constituting the

proposed control system in Fig. 5.2, have been evaluated. The subsequent section

provides details about practical realization of the proposed system.

5.6 Performance Evaluation

To analyse the performance of proposed model, we simulate a discrete time P2P

network. In the current scenario, discrete time simulation is suitable because

parameter (bandwidth) used for performance analysis changes in discrete steps

at discrete time instants. Various parameter values used for modeling the control

system in the discrete simulation model are calculated from the transfer function

in continuous domain. The conversion from continuous to discrete domain is

carried out by converting various input and output relationship representations
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Parame-
ter Description Value

N Number of the nodes in network 100

Kp Proportional Gain 0.00577

Ki Integral Gain 0.151149

Ci The access link capacity at the node i 4Mbps

G Gain Margin 3

α Exponential moving average constant 1
2

Uref
Level of optimality which any node in the

network, wants to achieve 1

Rin Initial reputation assigned to newcomers 0.07

Rmin
Reputation threshold below which node does

not receive any service 0.01

B f es
min

The minimum bandwidth required to support
feasible data rate possible on the link between

nodes i and j
2Mbps

Table 5.2: Simulation Parameters along with Values

in integro-differential equations11 to their corresponding discrete counterparts,

i.e., summation-difference equations. The time step for the summation-difference

equations is taken to be equal to a round. Each round signifies a discrete time

slot12. The nodes send requests at the starting of round, and if they get selected

for the service allocation their requests get fulfilled within the same round. For

the next round, the whole process is repeated again. The simulation results

presented in section 5.6.2 show that the output obtained from the discrete time

model closely follow continuous system response. As there is no significant loss of

data or introduction of spurious information at output after discrete modeling of

the system, continuous to discrete time conversion is considered to be acceptable.

A P2P network is simulated for 1000 rounds and this simulation is repeated 10

11It is an equation containing both integral and derivative functions.
12We divided time into discrete time slots for discrete implementation.
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times. The final results presented in this thesis are averaged out over these 10

simulations to eliminate any random coincidence.

In [1, 15], simulation of small sized P2P network, consisting of 50 or 100 peers

was carried out. However, to demonstrate that proposed system will work fine

even for higher number of peers, simulation of network containing 1000 peers

is carried out. The new entrant in a network is provided with initial reputation,

Rin = 0.07 for its survival, while any node whose reputation falls below threshold

reputation, Rmin = 0.01 is rendered ineligible for receiving services. Each round

is assumed to last for 10 sec. As changes initiated by controller appears at output

with delay of 1 time period, therefore dead time (T) value is taken as 10 sec, in

the current simulation. The above mentioned parameter values are in accordance

with the reputation model of [15]. The value of gain margin is set to G = 3 [84].

The remaining parameter values are taken from existing P2P models in [1, 15],

as it allows us to easily compare our results with existing literature [1, 15]. To

facilitate readability, various simulation parameters along with their values are

listed under Table 5.2. The design parameters of PI controller, Kp = 0.00577 and

Ki = 0.151149 are evaluated from (5.22) and (5.23), respectively, using previously

discussed parameters.

We assume that resources required at the requesting node is generally available at

all the members except the requesting node (refer section 5.3.2). Therefore, in the

simulation model under consideration, a node randomly requests other members

with equal probability for resource download. After slight modification, the

proposed model is also applicable to scenarios where service providers to be

requested are selected on the basis of their reputation. However, such a selection

mechanism will overload high reputation nodes with huge amount of download

requests, resulting in degradation of service quality provided by them. Hence the

random approach for server selection is investigated during the simulations.

Above mentioned specifications, along with mechanism for resource discovery

and exchange discussed under section III, have been used to develop a customized

simulator for P2P network. In addition, various control system components e.g.,

controller, used in the simulation were simulated as per the mathematical model

discussed under section 5.5. We now present simulation results to demonstrate

the performance of the proposed model.
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5.6.1 Real Time Implementation of Proposed Control System

The proposed control system in practical implementation is an algorithm named

adaptive step size (ASZ), being run at each node. ASZ dynamically adjusts the

upload (sp
i ) and consequently the download capacity (dp

i = Ci − sp
i ) at any node

i during time period p, such that i operates around optimal point of resource

sharing, i.e., Uref. We will show in next subsection 5.6.2 that, if any new entrant

i initially allocates half of its capacity for sharing, i.e., s0
i = Ci

2 then it results in

better reception of resources from the network. At the starting of each round, the

level of optimality Up
i at node i is calculated by taking the ratio of the bandwidth

received to the current download bandwidth at a node. In each iteration, the

upload capacity (sp
i ) gets modified by amount yp

i (output of the PI controller)

which pushes the node i’s Up
i to Uref. For any time period p, yp

i is calculated

[79] from error (Ep
i = Uref − Up

i ), which have occurred in the system till time

period p − 1. To maintain a minimum level of satisfaction from the network, the

download bandwidth should not decrease beyond a threshold level ∆thr as in [15].

If the download bandwidth (dp
i ) reduce below threshold value, then the download

and the upload capacity are set to values ∆thr and Ci − ∆thr, respectively. Finally,

the new capacity partition values, i.e., sp+1
i and dp+1

i are updated for the next period

p + 1. This process is repeated as long as the node remains in the network. The

ASZ algorithm is presented in Algorithm 1. In the subsequent sections, we study

the resource allocation process using ASZ algorithm.

5.6.2 Study of Control System Performance

We simulate the linear model of resource allocation process in P2P network using

SIMULINK in MATLAB. The block diagram model used in SIMULINK is based

on Fig. 5.2. The components values used in the model, i.e., transfer functions G(s)

and C(s) are evaluated from (5.7) and (5.16) respectively. The parameter values

used in these equations are listed under Table 5.2. The output of the linear model

is represented by the label UTransfer Function in Fig. 5.3. In the simulation model

of resource distribution in actual P2P system, Algorithm 1 is used to decide the

distribution of total capacity between upload and download. At the outset, in

95



5.6 Performance Evaluation

Algorithm 1 ASZ: Bandwidth Allocation Algorithm

Initialization:
Initialize kp ,ki and Ci from Table 5.2
Set s0

i = Ci
2 , ∆thr = Ci

10 , E0
i = 0, TE0

i = 0 and Uref = 1
p← 0
Shared Capacity Evaluation:
repeat

Compute Up
i as in equation (5.6) and update

Ep
i ← Uref −Up

i
yp

i ← Kp × Ep
i + Kp

i × (Ep
i + TEp

i )
TEp+1

i ← TEp
i + Ep

i

Sp+1
i ← Sp

i + yp
i

if Ci − Sp+1
i ≤ ∆thr then

Sp+1
i ← Ci − ∆thr

end if
dp+1

i ← Ci − Sp+1
i

p←p + 1
return Sp+1

i and dp+1
i

until Node i is in the network

P2P Nwk 1, a node keeps all of its capacity for download, while in P2P Nwk 2 a

node initially allocates half of its capacity for upload. Thereafter, the nodes in the

network adjust their capacity based upon Algorithm 1.

Fig. 5.3 demonstrates how closely the results calculated using transfer function

follow the simulation results of both types of P2P networks. This validates the

accuracy of the transfer function and the PI controller tuning parameters (Kp

and Ki), which were derived in section 5.5.3 by linearizing the actual system.

Initially, there is slight deviations between the three systems however, for most

part of node’s life time, these systems follow each other, hence these deviations

can be tolerated. Variable step size (y) is used to modify the upload capacity and

consequently the total capacity distribution between upload and download. The

step size y, is proportional to the error between current U and desired U, i.e., Uref,

as mentioned in Algorithm 1. As the system reaches steady state, error→ 0 so

does the step size. Due to dynamically adjusting step size, the upload capacity

and thereby the system, stabilizes around the optimal point (Uref), unlike existing

algorithms where fixed step size causes shared capacity to oscillate around optimal

point. This will be discussed in more detail under section 6.3.1.
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Figure 5.3: Transfer Function Comparison with Actual Network

While linearizing the system model for driving the transfer function, it was as-

sumed that node operates around Uref = 1. When there is large deviation of Ui of

node i from Uref, then it take some time for system to settle down. This happens in

P2P Nwk 1 and transfer function implementation, where node starts with Ui = 0

as node initially share nothing. This deviation is more prominent in P2P Nwk 1,

where during start of network, a node’s output overshoots the (Uref) in Fig. 5.3.

This large deviation happens because initially all the nodes share nothing, so any

node i receives 0 resources (Ti) from the network. The error input (Uref − Ui) to

controller becomes very high. This causes PI output to reach very large value

for the next period, which leads to node i sharing large amount of si. After some

time, there is abundance of resources across network as all nodes are sharing large

proportion of their capacity due to initial high error. So Ui of node i overshoots

Uref. The PI controller again readjusts its output to modify the shared capacity

97



5.6 Performance Evaluation

so that Ui stabilizes around Uref. This scenario is analogous to supply and price

of a commodity in market. Initially (Ti), commodity available in market is scarce

so its price in terms of the upload capacity (si) of a node is very high. As all the

nodes start sharing, the Ti available to a node i increases, so its cost in terms of

si decreases. However, si values are updated in next round, therefore, Ui over-

shoots Uref. Node i readjusts its price si based upon current availability of Ti in

market and finally, commodity (Ti) attains a stable value in market corresponding

to Ui → Uref.

In P2P Nwk 2, any node i initially shares its capacity equally between upload

and download. Therefore its Ui is close to Uref when node joins the network.

Consequently, all the members always work around optimal point of operation.

Fig. 5.3 shows that nodes are at loss if they initially share nothing. Nodes will

prefer to be members of P2P Nwk 2 over P2P Nwk 1. Therefore, P2P Nwk2 will be

used for all further simulation and comparison in this thesis. Thus in Algorithm

1, we have set initial upload capacity si as half of total capacity Ci
2 . This also

justifies our assumption while deriving transfer function, that system had already

attained the steady state, i.e., working close to Uref.

5.6.3 Control system’s adaptiveness to Change in Network Dy-

namics

In this section, we study the adaptiveness of the proposed system to the changing

network dynamics. Dynamic changes occur due to the nodes entering or the

existing nodes either leaving the network or becoming free-riders.

A node becoming free-rider is even worse than node leaving the network because

departing nodes will neither contribute nor consume resources, whereas free-

riders in spite of no contribution, try to consume resources. Therefore, system

behaving appropriately for free-riders will also be robust for nodes leaving the

network. Thus, we check system’s adaptability for only the free-riding nodes. In

the simulation model, the percentage of free-riders is gradually increased from

0% to 99.99% of the total nodes. Network bootstraps with 1000 node with no

free-rides. At the end of rounds, which are multiple of 100, there is increment
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Figure 5.4: System Performance under Changing Network Dynamics

in free-riders percentage by 10% of the initial number of nodes. Thus, after 100th

round 10% contributing nodes become free-riders, this percentage increases to

20% after 200th round and so on. At the end of 1000 rounds, 90% of the nodes

free-ride. Finally, to model worse case scenario, after 1050 rounds, 99.99% of the

total nodes in the network are free-riding.

As shown in Fig. 5.4, contributing nodes also referred as genuine nodes are

able to maintain their level of optimality (UFree Riders Nwk), around optimal value,

i.e., Uref, even when other nodes become free-riders. There is slight deviation in

UFree Riders Nwk from Uref because there arise scarcity of resources when contributing

nodes become free-riders. This condition arises because, their is more demand

for resources across the network and less resources available, as new free-riders
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stop contributing but they are still eligible to receive resources. Free-riders will

continue to receive resources for some time, till their reputation falls below thresh-

old value. Therefore, in Fig. 5.4, UFree Riders Nwk initially falls down. As genuine

nodes start operating below Uref, they start sharing more to achieve Uref. At

the same time the reputation of free-riders also start decreasing because of their

non cooperative behavior and after some time it reduces below threshold value.

Once all the nodes who have just started free-riders get barred from resource

reception, the amount of resources available for download becomes greater than

the net resource demanded across the network, because of extra resources put in

by genuine nodes. Hence, UFree Riders Nwk overshoots Uref. The proposed control

system automatically adjusts the shared capacity of member nodes to bring back

UFree Riders Nwk to Uref. The amplitude of perturbations in UFree Riders Nwk from Uref,

increases with increase in percentage of free-riders as there are more free-riding

nodes and less genuine nodes to compensate for the reduced resources. Thus,

greater fall in UFree Riders Nwk value is encountered when more nodes become free-

riders. The genuine nodes have to contribute more than earlier scenario which had

lesser percentage of free-riders. Hence, when new free-riders get debarred from

service, there are greater amount of extra resources w.r.t. resources demanded in

the network. Consequently, increase in UFree Riders Nwk from Uref is more. However,

amplitude of perturbations is not very large to cause any major concerns and pro-

posed system is able to bring back UFree Riders Nwk to Uref after some time. Hence,

the system is robust to free-riding behavior of nodes.

We now ascertain the robustness of the proposed system in handling new entrants

in the network. Initially there are 100 nodes is the network. After end of the

rounds, which are multiple of 100, 100 new nodes arrive in the network. It

implies that when 100th and 200th round ends, the total number of nodes in

the network become 200 and 300, respectively. This process continues till 900th

round, where total count of members in network reaches 1000. The new entrants

start contributing as soon they enter the network. Therefore, the net resources

demanded is equal to resources available across the network. Consequently,

demand and request equilibrium is maintained so there is no appreciable change

in (UNew Nodes Nwk), as depicted in Fig. 5.4. Thus new nodes entering the system

do not disturb the optimal point operation of the other nodes in the network.
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Hence, simulation result clearly demonstrate that the proposed control system is

adaptive to changing network dynamics.

5.6.4 Compatibility Analysis of Control System
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Figure 5.5: Comparability Analysis of Control Systems.

We now analyze the effectiveness of control system when it is deployed together

with existing system, i.e., portion of peers are using control system and remaining

peers are using some other partitioning strategy.

The control system is implemented at each node in such a way that it is indepen-

dent of partitioning strategy employed by the other nodes. It will optimize on

the basis of resources received from the other nodes in the network. Therefore,
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analysing performance of ASZ w.r.t. efficient partitioning strategies13 [15, 69] is

almost similar to analysis, where all the nodes are employing ASZ. In such sce-

nario, all the nodes will be able to easily achieve and subsequently maintain their

level of optimality around 1 (refer section 5.6.1). The real performance issue lies in

more adverse scenario where net resources available across network is less than

resources demanded. Therefore we consider a scenario, where there is scarcity of

resources across the network, i.e., other nodes are either free-riders or employ in-

efficient strategies, such that it is always allocating greater part of its link capacity

for download, independent of the resources received by the node. The simulation

model is described as follows.

Every node is connected to the network with a single capacity link of 18 Mbps as

in [15]. In the network, 20% of peers are normal peers, who share according to the

proposed control system. Their corresponding received bandwidth is denoted by

BWnrm. The nodes employing inefficient partitioning strategies are modeled as

follows. 20% of peers completely free-ride, i.e., they use their entire link capacity

of 18 Mbps for download, other 20% peers will contribute 2 Mbps capacity at max

for uploading, while other 20% will provide maximum 6 Mbps for upload and the

remaining 20% peers left, will provide maximum 8 Mbps of their link capacity for

upload. The corresponding bandwidth received back from network is denoted

by BW18−0, BW16−2, BW12−6, and BW10−8 respectively. These peers are designated

as free-riders, as they request more and share less than what is prescribed by the

control system.

From Fig. 5.5, it is evident that normal peers who follow the proposed control

system receive maximum bandwidth from the network. The amount of band-

width received by them, does get slightly affected as there is scarcity of resources

across the networks arising due to high level of free-riding (80% of the peers free-

ride in some form). While linearizing system in section 5.5.3.2, it was assumed

that node’s operational range is close to the optimal partitioning. To achieve

this, nodes initially allocate half of their total capacity for upload (refer section

(5.6.2) for details). However due to resource scarcity, sharing half of total capacity

initially is not enough to make the system operate close to optimal partitioning.

13The strategies in which average bandwidth allocated for upload and download are close to
optimal partition are referred as efficient partition strategy
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Hence, an initial oscillatory behavior is observed in received bandwidth for nor-

mal nodes (refer Fig. 5.5), which settles down at optimal partitioning after some

time. This is in line with output of P2P Nwk 1 in Fig. 5.3, where nodes initially

operating in the region far away from optimal partitioning. The other peers are

not using control system to adapt their link capacity to maximize their output.

Therefore they do not show any oscillatory behavior. However, such peers are

at loss as the bandwidth received by the nodes decreases with decrease in ca-

pacity allocation for upload, even though they have more download bandwidth

available at their disposal. This happens because of decrease in contribution level

with the decline in upload capacity. Thus, there is no advantage for nodes in

allocating more portion of their total capacity for download. As nodes employing

ASZ receive highest payoff, so the free-riding nodes in network will gradually

start implementing ASZ algorithm.

Hence, without any modification in a network, new node employing ASZ can be

deployed. In addition exiting nodes can also employ ASZ as partitioning strategy

so as to receive higher resources from the network.

The capacity partitioning algorithms [15, 71] are run in a distributed manner at

every node to maximize node’s utility/usable bandwidth. This objective is in

line with the definition of Nash equilibrium (NE) (refer (1.3)), where each player

is playing its best response i.e. maximizing its usable bandwidth. Closer the

capacity partitioning is to the NE, higher the usable bandwidth received by the

node, attaining the maximum value at NE. Therefore, NE can be used to ascertain

which algorithm provides higher usable bandwidth and therefore, should be

preferred.

5.7 ASZ’s Equilibrium analysis

We analyse the efficiency of ASZ in utilization of the network resources by com-

paring the partitioning of access link capacity achieved by it with the partitioning

during Nash equilibrium (NE) state evaluated in Chapter 4. When network is in

NE state, every node divides its access link capacity equally between upload and
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User
Capacity

Upload
Capacity

(Mbps)

Download
Capacity

(Mbps)

(Mbps) ASZ(Nash) ASZ(Nash)

4 1.97(2.0) 2.03(2.0)

5 2.49(2.5) 2.51(2.5)

6 2.99(3.0) 3.01(3.0)

7 3.51(3.5) 3.49(3.5)

8 4.03(4.0) 3.97(4.0)

Table 5.3: ASZ Comparison with Nash Equilibrium.

download. As discussed earlier in Chapter 4, greater the deviation of partitioning

achieved by any algorithm w.r.t. partitioning in NE state, lesser its efficiency.

Based on existing models [15, 71], we consider a network of 100 nodes. Nodes

are distributed in equal proportion into 5 groups of different link capacities viz.

4, 5, 6, 7 and 8 Mb/s. The partition of link capacity is carried out using ASZ,

described in algorithm 1. Table 5.3 shows that capacity partitioning achieved by

ASZ closely follows the NE. Hence, ASZ efficiently utilizes the network resources.

The partitioning algorithm is run independently at each node to maximize its

utility. This is equivalent to every node playing its best response, i.e., playing

strategies which maximize its payoff. At NE, no player can increase its utility by

unilateral deviation, so every player is also playing its best response at NE. There-

fore, objective of partitioning algorithm shows congruence with the definition of

NE. Hence, an efficient partitioning algorithm will finally lead the network to NE

state.

104



5.8 Conclusions and Future Work

5.8 Conclusions and Future Work

The authors successfully modeled the partitioning of a node’s total capacity be-

tween upload and download as a feedback control problem. Based on this mod-

eling, we proposed adaptive step size (ASZ) algorithm which make the nodes to

operate at optimal partitioning level, i.e., U = 1. When U = 1, a node can fulfill its

download requirement with minimum upload. The proposed control system is

also adaptive to changing network dynamics, as nodes are able to maintain their

U around 1, even during arrivals and exits of the nodes from the network. At

the same time, ASZ can be easily deployed together with the existing schemes

to help nodes achieve maximum utility from the network. Finally, we also com-

pared partitioning achieved by ASZ with link capacity partitioning during Nash

equilibrium. Results indicate that capacity partition achieved by ASZ, converges

towards Nash equilibrium, thereby establishing that ASZ efficiently partitions

access link capacity.

In future, we plan to do the transient analysis of the P2P system in more detail,

using non linear tools like state space analysis.
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Chapter 6

Control System Comparison with

Existing Schemes

6.1 Introduction

Until now, we have evaluated our proposed capacity partitioning system in gen-

eral setup for P2P networks and explored its effectiveness in optimally partitioning

the access link capacity. In this section, we compare the proposed model with ex-

isting schemes, i.e., BitTorrent [1] and Reputation-Based Allocation Policy (RRA)

[15] to determine the improvement achieved in terms of efficiency and fairness

w.r.t. these schemes. Efficiency signifies how effectively the available resources

across the network are exploited, whereas fairness implies that the resources re-

ceived should be in proportion to their cooperative behavior. We also derive

control theoretic model of RRA to show that capacity partitioning achieved by it

will be oscillatory. Our claim about RRA gets subsequently verified by simulation

results.

A typical swarm1 in BitTorrent consists of 50 peers [15][75], whereas Satsiou

and Tassiulas [15] simulated a network of 100 peers for analyzing RRA. For

ease of analysis, same sized P2P network is used for comparison purpose. In

the subsequent section, we provide details of simulation setup along with the

1The set of peers actively uploading and downloading data [1]
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comparison results. We also discuss the limitations of earlier models and describe

how the proposed model is able to overcome them.

6.2 BitTorrent

In year 2001, Brahm Cohen developed BitTorrent, a communication protocol to

help users share files in a P2P network [1]. The files typically consist of videos,

audio, software etc. After its initial launch, BitTorrent has gained enormous

popularity among Internet users to share content.

Unlike most of the P2P networks, BitTorrent uses a central repository (called

tracker) which contains address of the peers possessing a particular file. For

sending and receiving files using BitTorrent, the user should have BitTorrent

client installed in his device. BitTorrent client is a software which implements

BitTorrent protocol. It communicates with tracker to find out other users in the

P2P network, which have file (or portion of file) of our interest. A file is divided

into large number of chunks and most of peers in network have portion of file, i.e.,

some of the chunks of the required file. Peers trade chunks among themselves to

get complete copy of file. This trading is accomplished using ”tit for tat” strategy.

In ”tit for tat” strategy, peers trade chunks with those peers who provide them

with highest download rate. In addition, peers also randomly try some new peers

in the network for downloading file. Random selection of peers for service, allows

newcomers in the network to receive chunks and it also helps a peer to find out

peers, who could provide better download rate than existing service providers.

In this manner, ”tit for tat” strategy induces cooperation among members of Bit-

Torrent application.

BitTorrent was developed during the time when most of the peers were using

wired connection, where there is strict separation between upload and download

capacities, e.g., asymmetric digital subscriber line (ADSL) [50] links. Therefore,

capacity partitioning mechanism to optimally divide link capacity between up-

load and download is absent in BitTorrent[15]. In this section, we compare our
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proposed approach with BitTorrent and illustrate improvements achieved in terms

of fairness.

6.2.0.1 Simulation Setup

We have simulated elementary version of BitTorrent [1, 15] based upon Azures,

a popular BT Client. All the peers are connected by single capacity link. As the

main focus of the thesis is on evaluating performance of allocation strategy, we

overlook block selection algorithm and assume that a peer is always interested

in blocks of its neighbor. Section 5.3.2 describes, how this assumption will not

lead to appreciable deviation in results w.r.t. original network. The time in

BitTorrent model is broken into periods, each lasting for 10 seconds. Each peer

say x, implements choking algorithm [1] for its resource distribution. Top four

peers who have provided highest download rate to x receive upload from the peer

x. After every third period, peer x randomly selects a peer for resource allocation

regardless of its download performance, thereby allowing new entrants to obtain

initial chunks and trying out other peers to find out better service providers. Once

requesters are finalized by serving node x, the upload bandwidth is allocated

equally among the requesting peers.

6.2.0.2 BitTorrent Modeling as Control System

The BitTorrent protocol lacks capacity adaptation algorithm [15] which can dy-

namically adapt upload and download capacities in single capacity link to opti-

mize the overall performance. Therefore we cannot design a control system model

for capacity devision in the system employing BitTorrent protocol.

6.2.1 Comparison with BitTorrent

In the simulation model, peers are grouped on the basis of maximum upload

capacity they are willing to share. In Fig. 6.1, 18 − 0, 16 − 2, 12 − 6, 10 − 8 and

9 − 9 represents group of peers sharing upload bandwidth up to 0, 2, 6, 8 and
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Figure 6.1: BitTorrent Comparison

9Mbps, respectively. The last three groups consisting of nodes sharing upload

bandwidth up to 6, 8 and 9Mbps, receive greater resources when they implement

control system instead of BitTorrent for bandwidth division between upstream

and downstream. The optimistic unchoke slots2 and round robin schemes3 of

seeders in BitTorrent [75] provide some chances for free-riders to download. Free-

riders get these undue share of resources at the expense of reduced resources

awarded to the deserving high reputation peers, thereby compromising fairness

in BitTorrent protocol. Unlike BitTorrent, the proposed model heavily penalizes

the free-riders giving them no opportunity to download once their reputation

falls below a threshold value. This leads to better performance of our system

2Each peer periodically unchoke a neighboring peer, transferring some resources to it for free.
3When seeder has nothing to download, they distributes resources independent of what re-

questers have shared. In fact some torrent protocols [1] in such scenario, distribute resources on
the basis of download capacity of requesters, which unintentionally benefits free-riders.
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over BitTorrent as shown in Fig. 6.1, where nodes with low cooperation level, i.e.,

sharing up to 2Mbps, receive meager amount of resources.

6.3 Reputation based Resource Allocation (RRA) Pol-

icy

As peers are rational, they always seek to maximize their utility derived from the

network. In current context utility derived is the fraction of received resources

that can be utilized (refer (2.3)). Therefore, Satsiou and Tassiulas in [15], assumed

that initially every peer will allocate their entire link capacity for download, in

expectation of utilizing greater amount of received resources from the network.

However, this reduces contribution of a peer and consequently its reputation.

Therefore, peers will start receiving less resources from the network. Thus repu-

tation system employed by P2P network, forces each peer to allocate some portion

of its access link capacity for upload, in order to receive resources from the net-

work. In such scenario, member peers will seek to maximize their utility with

minimum possible contributions.

RRA [15] strives to divide peer i′s total capacity between upload and download in

such a way that a peer is able to derive maximum utility from network with least

possible contribution. Let Ci, sp
i and dp

i represent total, upload and the download

capacity of the peer i during time period p. Peers initially upload nothing and

then, after each round change their upload capacity in fixed step size ∆ = Ci
10 ,

until they get desired bandwidth from the network or it doesn’t exceed their

total capacity. As discussed earlier, increase in upload capacity increases peer’s

chances of getting more resources from the network. However, when a peer

receives as much bandwidth as its current downlink can handle, it will further

try to maximize its utility by incrementing its download capacity by step size ∆

at the expense of decreased upload bandwidth. This process is represented by

Algorithm 2. After adjusting its shared capacity, a serving peer i distributes its

resources among requesters in decreasing order of their reputation to demand

ratio.
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Algorithm 2 RRA Bandwidth Allocation Algorithm

Initialization:
Initialize Ci from Table 5.2
Set s0

i = 0, d0
i = Ci and ∆ = Ci

10
p← 0
Shared Capacity Evaluation:
repeat

Compute Tp
i by adding all the resources received by i, during period p

if (Tp
i < dp

i ) AND (Sp
i < Ci − ∆) then

Sp+1
i ← Sp

i + ∆

else if (Tp
i ≥dp

i ) AND (Sp
i≥∆) then

Sp+1
i ← Sp

i − ∆
end if
dp+1

i ← Ci − sp+1
i

p←p + 1
return sp+1

i and dp+1
i

until Node i is in the network

6.3.1 Comparison with Reputation-Based Allocation Policy (RRA)

6.3.1.1 RRA Modeling as Control System

The total capacity distribution between download and upload capacity can be

modeled as feedback control problem, where based upon the feedback (amount

of download (Ti)), a user is receiving from the network, it keeps on adjusting its

upload capacity (si) and consequently its download capacity (di). To simplify the

modeling of RRA algorithm as a control system, ′′I f ” conditions in original RRA,

i.e., Algorithm 2, are re-written in terms of level of optimality U. The modified

RRA is represented by Algorithm 3. The RRA algorithm at node i will strive to

achieve Ui = 1, i.e., optimal point of resource sharing. The output of the RRA

algorithm is the amount by which si will be modified in the subsequent round.

As RRA permits the modification of the upload capacity (si) in fixed step size ∆,

the output of controller used to implement RRA can take only two values +∆ or

∆. Input for the RRA controller is the error signal, i.e., Uref − Ui. According to

RRA strategy, si is to be increased by amount ∆, when the feedback (i.e., amount of

download (Ti)) a node receives from the network is less than its current download

capacity (di). As Ui = Ti
di

, therefore incrementing shared capacity by ∆ corresponds
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Algorithm 3 RRA Algorithm Modeled as Control System

Initialization:
Initialize Ci from Table 5.2
Set s0

i = 0, ∆ = Ci
10 and Uref = 1

p← 0
Shared Capacity Evaluation:
repeat

Compute Up
i as in equation (5.6) and update

if (Up
i < 1) AND (Sp

i < Ci − ∆) then
Sp+1

i ← Sp
i + ∆

else if (Up
i ≥ 1) AND (Sp

i > ∆) then
Sp+1

i ← Sp
i − ∆

end if
dp+1

i ← Ci − sp+1
i

p←p + 1
return sp+1

i and dp+1
i

until Node i is in the network

��

��

� �� �

Figure 6.2: I/P and O/P of Controller in RRA.

to state when error is positive. Similarly, other way around, the output of RRA

controller is −∆ for the negative error. Hence GRRA(s), the transfer function of

controller used to implement RRA is (∆ × signum function) shown in Fig. 6.3.

Laplace transform of signum function is given by 2
s [86] (refer Fig. 6.2). Therefore

GRRA(s) =
2∆

s
. (6.1)

The control system model of resource allocation process using RRA is presented

in Fig. 6.3. The transfer function C(s), derived in the section 5.5.3.2 is reused to

represent actuator and plant. The controller’s transfer function, which is specific
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Figure 6.3: Control Loop at Node i for RRA Implementation.

to the partitioning algorithm is derived as follows. Since the derived controller

is not tuned keeping system’s stability under consideration, therefore simulation

of the linear model (T(s) = GRRA(s)×C(s)) of the system using Simulink, leads to

unbounded output U, oscillating between (−∞,∞). In actual network simulation,

as the link capacities are finite so U does not reach ∞ but it saturates and keeps

on oscillating with a finite amplitude. Hence, resource allocation using RRA

when compared with ASZ will be less efficient. Results along with discussion are

elaborated in the next subsection

6.3.1.2 RRA Result Comparison and Limitation

The level of optimality (URRA) received by nodes in a network employing RRA

is calculated using equation (5.6). Let UCONTROL denote the level of optimality

received by the nodes employing the proposed control system. The comparison

between the RRA and control system is demonstrated in Fig. 6.4 and 6.5. Fig. 6.4

shows level of optimality (U) observed at a single node whereas Fig. 6.5 plots the

U which is averaged out across all the nodes in the network.

As RRA uses a fixed step size ∆ for modification in capacity partitioning, the

level of optimality (U) received by any node will not settle down and it will

keep on oscillating around Uref = 1 with the amplitude proportional to the step

size ∆. To demonstrate this problem, we observed bandwidth allocation at one

particular node selected randomly from the network (Fig. 6.4). It clearly shows

that URRA never becomes equal to Uref, but oscillates around it. However in

control system based approach, due to the inherent integral action [79] of the
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Figure 6.4: RRA Comparison at Single Node

PI controller, the steady state error4 gets reduced and node level of optimality

(UCONTROL) follows desired Uref (Fig. 6.4). Satsiou and Tassiulas [15] who proposed

RRA, studied average bandwidth allocation for the overall network, i.e., authors

took the sum of the bandwidth received at every node and then averaged it

out. However this method of averaging is unable to show the unsettled behavior

in the network because it gives mean and not the higher order moments like

variance. It physically implies that the average across the overall network gives

the false impression that bandwidth has stabilized, because some of the nodes

whose capacities are getting increased in current round are being compensated

by the nodes whose capacities are decreasing. When the level of optimality (URRA)

achieved by using RRA algorithm is average out, URRA does stabilizes but at a

4 Steady state error refers to the difference between Uref and actual level of optimality (UCONTROL)
received, when system is already working close to Uref.
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Figure 6.5: RRA Comparison Averaged Over Network

point lower than Uref = 1, as shown in Fig. 6.5. Averaged URRA is unable to achieve

Uref because there is greater wastage of resources in the network implementing

RRA. Bandwidth wastage occurs when a node is getting more than its current

download capacity. A node can not utilize this additional capacity. At the same

time a needy node, who receives less than its current capacity will be deprived

of the resource. In RRA, this wastage is proportional to fixed step size (∆),

while the control system minimizes bandwidth wastage by adjusting step size

according to error, i.e., (Uref − UCONTROL). UCONTROL denotes average efficiency of

node implementing ASZ algorithm. Fig. 6.5 substantiates this claim where nodes

implementing proposed control system are able to achieve U = 1.

Hence the proposed control system is a better resource allocation mechanism than

RRA in terms of efficient allocation of resources
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6.3.1.3 Complexity Comparison

The PI parameters calculation is one time process, therefore its time complexity

is O(1). Although the number of arithmetic operations and storage variables

required in ASZ are more than in RRA, their asymptotic bound is same, which

results in same time (O(n)) and space (O(n)) complexity for both the algorithms.

Hence, the proposed ASZ algorithm gives better performance than RRA, without

any significant increase in the system’s complexity.

6.4 Conclusion

We have compared the proposed control system with the existing schemes like

BitTorrent and RRA. The proposed system when compared with BitTorent, is more

stringent in adhering to contribution level while distributing resources among the

requesters. Therefore, lesser resources get awarded to the free-riders in proposed

scheme w.r.t. BitTorrent. We have also carried out the control theoretic modeling of

Reputation-Based Allocation Policy (RRA) and demonstrated that RRA is unable

to maintain node’s U close to 1, thereby reducing its efficiency w.r.t. the proposed

model in terms of received bandwidth. When nodes implement the proposed

model they are able to receive greater bandwidth for the same contribution level.

This improvement is obtained by using the PI controllers to generate adaptive

sizes for modifying the total capacity partitioning.
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Chapter 7

Conclusions and Future Directions

With advancements in wireless technology, high data rate can be provided to users

at low cost. Hence, usage of wireless communication technology is becoming

popular in the P2P network. In wireless technologies like WiFi, WLAN, LTE

and WiMAX (in time division duplex (TDD) mode), nodes are connected to the

backbone network via an access link through which uplink and downlink data

flow. The partitioning of access link capacity between uplink and downlink can

be altered by the users. In order to seek maximum resources from the network, a

user will try to allocate the entire link capacity for download. However, incentive

mechanisms (eg. Reputation System) force users to maintain certain level of

contribution (in the form of upload) to continue receiving resources from the

network. Therefore, the best strategy for a node is to maintain a minimal level of

upload, such that it receives resources equal to its current download capacity. The

capacity partitioning corresponding to minimal upload level to achieve maximum

download is referred to as optimal point of partitioning.

7.1 Conclusions

In this dissertation, we have evaluated the optimal point of partitioning, where

nodes are able to receive maximum download with minimum upload. We also

proposed a mechanism/algorithm which helps nodes in the network to operate at
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optimal partitioning level. This algorithm is implemented in a distributed fashion,

in line with the basic structure of P2P networks which lack any central authority.

In Chapter 1, we have presented an overview about P2P network along with

the major research challenges in their implementation. This chapter also details

some basic concepts of game theory, which will be helpful in understanding game

theoretic analysis in the later part of dissertation. Further, we have provided

a detailed explanation about the problem of capacity partitioning. Finally, we

conclude this chapter with the discussion about existing state of art to solve this

problem.

Chapter 2, deals with the study of optimal capacity partitioning in homogeneous

P2P networks. P2P networks consisting of users using the same WiFi or wireless

LAN network can be considered as homogeneous network, i.e. one where all

nodes have the same access link capacity. We have modeled partitioning of access

link capacity as a game and evaluated its Nash equilibrium (NE). The strategy

of equal partitioning of access link capacity between uplink and downlink is

found to be NE. In addition, this NE comes out to be socially optimal. Hence,

equal partitioning strategy ensures maximum resource utilization at a node. The

theoretical analysis on homogeneous network has been further verified using the

simulation results.

Most of the incentive mechanisms used to prevent free-riding consider only con-

tribution level of the node for resource distribution. In Chapter 3, we have estab-

lished that, if such incentive mechanism is used for capacity partitioning, then high

capacity nodes can easily manipulate resource distribution process such that they

receive resources which should have been allocated to the lower capacity nodes.

Thus some lower capacity nodes will receive no resource, even if they allocate the

maximum possible link capacity for upload. Using game theoretic analysis we

prove that for unbiased resource distribution, the serving node should distribute

resources in decreasing order of the ratio of the contribution to the consumption

of the resources by requesters.

In Chapter 4, we have extended our game theoretic model to the P2P networks

containing nodes with heterogeneous access link capacity and evaluated the op-

timal capacity partitioning for heterogeneous P2P networks. When resources are
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distributed in the decreasing order of the ratio of the contribution to the consump-

tion of resources by requesters, then the strategy of equal division of link capacity

between uplink and downlink is the NE of capacity partitioning game. Beside

being the NE, strategy of equal partitioning is also socially optimal. Therefore,

this strategy maximizes the resource utilization at a node.

To help nodes in the P2P network to operate at optimal partitioning level, we have

proposed adaptive step size (ASZ) algorithm in Chapter 5. ASZ considers many

aspects of real time P2P system. This algorithm dynamically adjusts capacity par-

titioning at the node when new nodes enter or existing nodes leave the network.

Further ASZ can be easily integrated in the network, where other nodes may not

partition their link capacity according to the proposed mechanism. In addition,

if the network contains free-riding nodes, then the nodes implementing ASZ re-

ceive maximum possible download from the network. We have also provided

simulation results to verify the above mentioned claims.

Finally in Chapter 6, we have compared the proposed ASZ algorithm with exist-

ing state of art. Reputation-Based Resource Allocation Policy (RRA) uses fixed

step size while ASZ uses variable step size to change capacity partitioning be-

tween upload and download. The step size in ASZ is directly proportional to

difference in current partitioning level and the optimal partitioning. Hence, ASZ

outperforms RRA in efficient distribution of resources across the network. In

addition, through simulation we demonstrate that ASZ is fairer than BitTorrent

in distribution of resources across the network. Further, using simulation results

we have established that the nodes employing ASZ for capacity partitioning are

able to operate near the optimal partitioning level.

7.2 Future Directions

This dissertation is mainly focused on study and design of optimal partitioning

of the link capacity (between uplink and downlink) for efficient content sharing

across the network. However, as discussed earlier in Chapter 1, content sharing

between nodes across P2P networks involves many issues. In this thesis, we have

investigated one of the issues which is very critical in efficient performance of P2P
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network containing wireless links. Other issues in capacity partitioning can be

part of future study. Some possible extension of our work in future could be the

following.

• In this dissertation, we have considered incentive mechanisms which dis-

tribute resources on the basis of cooperation level of a node. However,

there are malicious users which publish fake content. Even if such peers

are cooperative, the fake content is of no use to the requesting node. To

counter this problem, a new incentive mechanism may be devised which

considers content relevance along with cooperation level for determining

the incentive level of a node. It will be interesting to analyse whether the

Nash equilibrium in the capacity partitioning game based upon the new

incentive mechanism, shifts or remains the same. In addition, a modified

version of ASZ algorithm will be required to maintain a node’s operation

around the new optimal point.

• The game theoretic analysis can be extended to the whitewashing prob-

lem. An efficient incentive mechanism needs to be designed which makes

whitewashing unprofitable for the nodes in the network.

• As we have already discussed in Chapter 5, we have approximated P2P

system to be a linear system for simplifying the mathematical analysis. We

can use control theoretic tools like state space analysis to perform non linear

analysis of the P2P network. Non linear analysis is closer to real life scenario

and should result in more efficient partitioning of link capacity w.r.t. ASZ

algorithm.

• The control theoretic analysis can be extended beyond single capacity links.

Such kind of links (e.g. ADSL links) will have fixed partitioning between

uplink and downlink. The control theoretic analysis can be used by the nodes

to share minimum resources corresponding to a fixed download capacity.

In this way nodes can receive resources at the minimum cost/upload from

the network.

• Finally, verification of the proposed algorithm in real life networks is very

important. It would be interesting to see how the ASZ performs when it
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is deployed together with the existing system, i.e., when a portion of the

peers use state of art mechanism for capacity partitioning and the remaining

nodes use ASZ strategy.
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Appendix A

Laplace to Fourier Conversion of

Transfer Function

The Laplace transform of any function f (t) is
∫ t

0
f (t)e−stdt =

∫ t

0
f (t)e−(σ+ jw)tdt, where

s = σ + jw. The real part σ adds to the term e−σt. This term decays to zero during

steady state (t→∞) and only the jw part which gives the sinusoidal steady state

response i.e. e− jwt = cos(wt) − jsin(wt) remains. Life time of every P2P systems

is very large, compared with the initial bootstrapping period. Hence, it can be

assumed that P2P network reaches steady state. Therefore, σ can be neglected

and s = jw can be substituted in the overall transfer function of the control loop.
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