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DESIGN OF UNIPOLAR (OPTICAL) ORTHOGONAL CODES AND 

THEIR MAXIMAL CLIQUE SETS 

 
Ram Chandra Singh Chauhan 

(Enrolment No.: PhD/07/EC/539) 

 

ABSTRACT 
 

In the present age of communication, people from different regions, cultures and 

languages are coming closer through different mediums of communication to share their 

knowledge and information. These communication systems are being developed by scientists and 

technocrats from all across the world. Entrepreneurs, scientists and technocrats are keen to 

develop systems providing faster communication with higher capacity and bandwidth. They wish 

to build the cheapest way to provide better quality of service so that every person can afford to 

communicate with others in the world to share information and knowledge. This information 

could be anything ranging from data to audio and video. 

Every day better ideas are being implemented to fulfill the basic desire of people to 

have better communication medium.  Now-a-days, the common mediums for communication are 

Internet, telephone (mobile phone), television and AM/FM radio. These mediums of 

communication are either wired or wireless i.e. the transmitters and the receivers are connected 

with each other through a cable (wires) or through a wireless medium. The wireless medium may 

be atmosphere or tropospheric layers which reflects the radio waves with limited bandwidth 

(Mega-Hertz range) and power. The other mediums providing wireless communication are based 

on human made satellites which can provide faster communication limited up to few Mbps 

through stations or towers on the earth. 

There is another medium which uses optical signals with huge bandwidth, of the 

order of Tera-Hertz, and it can provide faster communication. Optical transport can be wireless 

as well as wired.  The optical wireless communication is done by highly directional laser beams 

limited by the line of sight. Optical wired medium i.e. optical fiber can provide communication 

to a much higher distance with higher capacity and higher speed. The optical cables between two 

locations have many optical fibers, thus increasing the capacity of optical channel up to 

thousands of Tera-Hertz. These optical channels can be shared by thousands of users at the same 

time without any interference. The optical channels with such huge bandwidth started attracting 

the researchers to explore this communication medium. A lot of hurdles have been resolved by 

research community since 1970 but new challenges and limits are still being faced. 

Optical code division multiple access (CDMA) is a possible scheme to access the 

optical channel by thousands of users simultaneously with acceptable bit error rate (BER) 

performance.  In Optical CDMA each user at one end is connected to an optical star coupler 

(OSC). This OSC is connected to other optical star couplers from other end through optical 

fibers. Each user has its own transmitter and receiver section with separate assignment of optical 

orthogonal codes (OOCs). The codes assigned to the transmitter section of a user (information 

source) will also be provided to receiver section of other user as information sink and vice versa. 
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These optical orthogonal codes within a set are designed by an optical orthogonal code design 

scheme. Since the spectral width of CDMA signal is large, this scheme is also called spread-

spectrum communication. 

In this thesis, the topic of deliberation is design of one dimensional as well as two 

dimensional unipolar (optical) orthogonal codes and their maximal clique sets by proposed 

general algorithms. The designed one dimensional or two dimensional unipolar (optical) 

orthogonal codes (OOC) are utilized for assignment of orthogonal codes to all pairs of 

transmitter of information source and receiver of information sink in the network. The algorithms 

to design one dimensional unipolar (optical) orthogonal codes and their multiple sets are being 

compared with already proposed schemes in the literatures for designing one dimensional 

orthogonal codes. An ideal scheme designing all possible sets of one dimensional unipolar 

orthogonal codes with maximum cardinality is assumed and compared with the proposed 

schemes as well as schemes in literature for relative performance evaluation. The algorithms to 

design two dimensional unipolar (optical) orthogonal codes and their multiple sets are being 

compared with already proposed schemes in the literature for designing two dimensional 

orthogonal codes.  An ideal scheme designing all possible sets of two dimensional unipolar 

orthogonal codes with maximum cardinality is assumed and compared with the proposed 

schemes as well as schemes in literature for relative performance evaluation. 

This thesis is organized into six chapters. First chapter gives the historical 

perspective of optical code division multiple access (OCDMA) and optical cdma codes or 

unipolar (optical) orthogonal codes. This historical perspective is organized into two subsections. 

First subsection gives the evolution of one dimensional unipolar (optical) orthogonal codes and 

optical cdma employing one dimensional orthogonal codes with fixed length and weight. The 

subsection also deals with the development of multi-length, multi-weight unipolar (optical) 

orthogonal codes and optical cdma employing these codes. The second subsection deals with the 

evolution of two dimensional unipolar (optical) orthogonal codes and optical cdma employing 

these codes. This subsection also gives the development of three and multi-dimensional unipolar 

(optical) orthogonal codes and optical cdma employing these codes. This chapter also deals with 

types of optical CDMA based on optical coding as well as multiple access interference with its 

reduction schemes. The first chapter also addresses motivation and the research problem to be 

resolved. 

Second chapter discusses one dimensional optical orthogonal codes, their 

conventional representations, the conventional methods to calculate auto-correlation and cross-

correlation constraints along-with the properties of sets of codes and the schemes proposed in 

literature finding code words. This chapter also introduces the cardinality bounds on the set of 

one dimensional optical orthogonal codes called Johnson’s bound. The comparison of these 

schemes with each other and with an ideal one have also been discussed. The comparison of the 

scheme with the ideal one gives the idea of further improvements. 
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In the chapter three, the generation of one dimensional unipolar (optical) orthogonal 

codes in multiple sets is discussed. Each set contains the codes with maximum cardinality for 

given code length ‘n’, given code weight ‘w’, auto-correlation constraints less than or equal to 

a , and cross-correlation constraints less than or equal to c  with positive integer values and 

boundaries like 1 ,a c w n     and w is co-prime with n. The maximum cardinality or upper 

bound of each set of codes is given by Johnson bounds. A unique representation named be 

difference of positions representation (DoPR) and new simple methods for calculation of auto-

correlation as well as cross-correlation constraints of one dimensional unipolar (optical) 

orthogonal codes are also proposed in this chapter. Two search algorithms are proposed which 

find multiple sets of unipolar (optical) orthogonal codes. The first algorithm finds all possible 

sets of unipolar (optical) orthogonal codes with maximum cardinality for code length ‘n’, code 

weight ‘w’ such that w and n are co-prime, auto-correlation constraint and cross-correlation 

constraint in the range lying from 1 to w-1 using direct search method. This algorithm works 

well upto n= 47 and w=4 for auto-correlation and cross-correlation constraints lying from 1 to 3. 

The second algorithm uses clique search method to find all sets of codes not only for the same 

length and the same weight but also for the multi-length and multi-weight one dimensional 

unipolar orthogonal codes. This algorithm work well upto n= 256 and w=5 for auto-correlation 

and cross-correlation constraints lying from 1 to 2. The algorithm work well is quoted in the 

sense of timing required in execution of programs. 

Second algorithm is proposing the codes and their all multiple sets using clique 

search method which reduces computational complexity. These algorithms are generating their 

codes in difference of positions representation (DoPR) proposed here. These codes can be 

converted into proper binary sequences which can be assigned to multiple users of incoherent 

optical cdma system. 

Fourth chapter gives details of two dimensional optical orthogonal codes used in 

optical CDMA systems. It describes the conventional representations and conventional methods 

to calculate correlation constraints. It explains the proposed schemes in literature for the design 

of set of two dimensional optical orthogonal codes. The Johnson’s bound or cardinality for the 

set of two dimensional optical orthogonal codes has also been given here. The ideal scheme for 

design of two dimensional optical orthogonal codes has been assumed with ideal results and 

compared with the proposed schemes in literature. This comparison provides an idea about how 

close the existing schemes are to the ideal one. 

Fifth chapter discusses two dimensional unipolar (optical) orthogonal codes, with a 

new and unique representation of two dimensional optical orthogonal codes, a novel and simple 

method for calculation of correlation constraints. Two new search algorithms for design of two 

dimensional unipolar (optical) orthogonal codes through one dimensional unipolar (optical) 

orthogonal codes and finding their multiple sets have been discussed. The cardinality of each 

code-set approach the Johnson’s bound for different correlation constraints. This newly proposed 

scheme has also been compared with ideal one which is assumed in chapter four. The first 

algorithm finds all possible sets of unipolar (optical) orthogonal codes with maximum cardinality 
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for matrix code dimension  L N , code weight ‘w’ such that w and LN  are co-prime, auto-

correlation constraint and cross-correlation constraint from the range 1 to w-1 using direct search 

method. This algorithm works well upto LN = 46 and w=4 for auto-correlation and cross-

correlation constraints lying from 1 to 3. The second algorithm uses clique search method to find 

all sets of codes not only for the same length and the same weight but also for the multi-length 

and multi-weight one dimensional unipolar orthogonal codes. This algorithm work well upto 

LN= 256 and w=5 for auto-correlation and cross-correlation constraints lying from 1 to 2. 

Finally, in chapter six the first conclusion has drawn from the comparison of 

proposed one dimensional unipolar (optical) orthogonal codes with already proposed schemes to 

design one dimensional optical orthogonal codes and one assumed scheme with ideal results for 

one dimensional optical orthogonal codes. The proposed schemes of designing one dimensional 

optical orthogonal codes is very close to ideal one but with higher computational complexity. 

The second conclusion drawn from the comparison of proposed two dimensional unipolar 

(optical) orthogonal with already proposed schemes to design two dimensional optical 

orthogonal codes and one assumed scheme with ideal results for two dimensional optical 

orthogonal codes. The proposed scheme of designing two dimensional optical orthogonal codes 

is very close to ideal one but with higher computational complexity. The third conclusion drawn 

from comparison of proposed two dimensional unipolar (optical) orthogonal codes with 

proposed one dimensional unipolar (optical) orthogonal. The cardinality of the set of two 

dimensional optical orthogonal codes is much better than the set of one dimensional optical 

orthogonal codes of same temporal length and code parameters at the cost of computational 

complexity. The design of three dimensional and multidimensional optical orthogonal codes may 

be taken as future work. The challenge is to reduce the computational complexity of the 

schemes. 

The designed one dimensional unipolar (optical) orthogonal codes can be utilized 

for direct sequence incoherent optical CDMA system to access the optical fiber in asynchronous 

manner by multiple users. The designed two dimensional unipolar (optical) orthogonal codes can 

be utilized for wavelength hopping time spreading optical CDMA system with increased 

cardinality and spectral efficiency. The multiple sets of these codes are designed. It provides 

flexibility for selection of set of unipolar orthogonal codes with maximum cardinality. The code 

set with maximum cardinality provides flexibility for selection of unipolar orthogonal codes 

from same set. 

The multiple access interference or probability of error is directly proportional to 

correlation constraints ( a ,
 c ). The multiple access interference can be minimized by setting 

the value of ( a =1,
 c =1) but compromise with lower cardinality or maximum number of codes 

generated in the set. While with increasing values of correlation constraints (1< a <w,1<
 c <w), 

the cardinality of the system can be increased but with the cost of orthogonality which increases 

the MAI or probability of error or BER. 
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CHAPTER 1 

 

1. INTRODUCTION:               

In the present age of communication, people from different regions, cultures and 

languages are coming closer through different mediums of communication to share their 

knowledge and information. These communication systems are being developed by scientists and 

technocrats from all across the world. Entrepreneurs, scientists and technocrats are keen to 

develop systems providing faster communication with higher capacity and bandwidth. They wish 

to build the cheapest way to provide better quality of services so that every person can afford to 

communicate with others in the world to share their information and knowledge. This 

information could be anything ranging from data to audio and video.  

Every day better ideas are being implemented to fulfill the basic desire of people to 

have better communication medium.  Now-a-days, the common mediums for communication are 

Internet, telephone (mobile phone), television and AM/FM radio. These mediums of 

communication are either wired or wireless i.e. the transmitters and the receivers are connected 

with each other through cable (wires) or through a wireless medium. The wireless medium may 

be atmosphere or tropospheric layers which reflects the radio waves with limited bandwidth 

(Mega-Hertz range) and power. The other mediums providing wireless communication are based 

on human made satellites which can provide faster communication limited up to few Mbps 

through stations or towers on earth.  

There is another medium which uses optical signals with huge bandwidth, of the 

order of Tera-Hertz, and it can provide faster communication. Optical transport can be wireless 

as well as wired.  The optical wireless communication is done by highly directional laser beams 

limited by the line of sight. Optical wired medium i.e. optical fiber can provide communication 

to a much higher distance with higher capacity and higher speed. The optical cables between two 

locations have many optical fibers, thus increasing the capacity of optical channel up to 

thousands of Tera-Hertz. These optical channels can be shared by thousands of users at the same 

time without any interference. The optical channels with such huge bandwidth started attracting 

the researchers to explore this communication medium. A lot of hurdles have been resolved by 

research community since 1970 but new challenges and limits are still being faced [1]. 

This thesis pertains to one such challenge in optical communication and proposes a 

better solution. The huge bandwidth of optical fiber can be simultaneously accessed by multiple 

users using optical multiplexing schemes. In this thesis, the optical code division multiplexing is 

being investigated as a mechanism to access the optical fiber bandwidth by multiple users. In this 

scheme, every user is assigned an optical orthogonal code (OOC) or unipolar orthogonal code 

(UOC) from a code set. Every user‟s binary information is spread spectrum modulated using the 

unipolar (optical) orthogonal code assigned to it. Information from all users is multiplexed in the 

same frequency band after being modulated with the assigned codes. At the receiver side original 
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information is extracted from the received multiplexed signal by correlating it with the 

transmitter‟s signature sequence (unipolar (optical) orthogonal code). This thesis pertains to the 

algorithms to find multiple sets of one dimensional as well as two dimensional unipolar (optical) 

orthogonal codes. The algorithms have been compared with existing as well as a hypothetical 

ideal scheme for designing unipolar (optical) orthogonal codes.   

In this chapter, the historical perspective of optical code division multiple access 

(OCDMA) and optical CDMA codes or unipolar (optical) orthogonal codes as well as motivation 

and introduction to the research problem are given. The historical perspective is organized into 

two subsections. First subsection gives the evolution of one dimensional unipolar (optical) 

orthogonal codes and optical CDMA employing one dimensional codes with fixed length and 

weight. This subsection also deals with the development of multi-length, multi-weight unipolar 

(optical) orthogonal codes and Optical CDMA employing these codes. The second subsection 

deals with the evolution of two dimensional unipolar (optical) orthogonal codes and Optical 

CDMA employing these codes. This subsection also gives the development of three and multi-

dimensional unipolar (optical) orthogonal codes and Optical CDMA employing these codes.  

1.1 Historical Perspective:                

The history of communication among people is as old as the history of humans. 

Human beings had communicated with very slow methods transacting small amount of 

information for thousands of years. The invention of conversion of real time signals into electro-

magnetic signals as well as their transmission and reception through cables and wireless channels 

evolved during 1840 to 2013 creating a revolution in human history. It became possible for 

persons separated by thousands of kilometers, to communicate in real time. This led to immense 

possibility of collaboration and cooperation between human beings leading to drastic change in 

social fabric. The electronic wireless channels and man-made satellite for transmission and 

reception of electromagnetic signals in the range of tens of Mega-Hertz bandwidth provided 

faster communication with good quality. As time passed, people felt  the need of communication 

which is not only limited to text, audio and video signals among limited number of users but 

provides high data rate transport to large number of users at same time. One needs a channel with 

very high bandwidth and capacity to provide high data rate.  It is possible upto certain extent 

through electronic wireless channels. We are already utilizing same electronic wireless channel 

for communication by multiple users at same time through well known multiple access schemes 

to fully utilize their capacity. As an alternative, the optical fiber had been a point of attraction for 

researchers as a medium of communication since 1970 due to availability of huge bandwidth 

(BW) of the order of tens of Tera-Hertz. The invention of optical fibers (with low attenuation 

and dispersion) in 1970 by Bell laboratory, LASER sources in 1958 by Charles Townes and 

Arthur Schawlow, optical amplifiers in 1986 by David Payne and PIN detectors in1950 by      

Jun-ichi Nishizawa has revolutionized the research in the area of optical communication. 

Different techniques to exploit the huge available bandwidth in fiber efficiently have been 

explored in past.  Wavelength division multiplexing (equivalent to frequency division 

multiplexing in electronics channels) was first introduced in 1970 [2] by O.E. Delange and was 

realized in laboratory in 1978 by Tomlinson at two wavelengths 1310 and 1550 nm [3]. The 
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modern system can handle up to 160 signals using DWDM (dense WDM) and thus can expand a 

basic 10 Gb/s system over a single fiber pair to over 1.6 Tb/s.  Another multiplexing known as 

optical time division multiplexing (optical TDM) was first introduced in 1968 by T. S. Kinsel 

and R.T. Dinton.  In 1988, S. Fujita developed the system employing optical TDM providing 

data rate of 10 Gbps. Recently, WDM/OTDM transmission systems with a channel rate of 

160Gb/s (19 channels), 200Gb/s (7 channels), and 320Gb/s (10 channels) have been reported   

[4– 6] and the maximum capacity has reached 5Tb/s by using this hybrid scheme [7]. The third 

and well known multiplexing scheme is code division multiplexing which may be utilized to 

access an optical channel by multiple users at the same time after spread spectrum modulation of 

every user‟s information. The optical CDMA provide all advantages of spread spectrum 

communication over WDM and OTDMA. The drawback of spread spectrum is overcome here 

due to huge amount of available bandwidth with optical channel. The story of OCDMA and in 

turn optical orthogonal codes started around 1980. The evolution of optical orthogonal codes and 

optical CDMA system can be categorized into following subsections. 

 

1.1.1 Evolution of one dimensional uni-polar (optical) orthogonal codes and optical 

CDMA systems:          

The advantages of CDMA (code division multiple access) system over other 

multiple access systems are well known to researchers in the field of communication. These 

advantages forced them to think to access the optical fiber bandwidth using code division 

multiplexing in optical domain. The Optical CDMA has come across a lot of hurdles and 

challenges from its inception. The wireless CDMA system requires bipolar orthogonal codes for 

spread spectrum modulation with binary information of multiple users. But the optical fiber 

could process only unipolar codes while transmitting the multiplexed information. The design of 

optical transmitter and optical receiver for CDMA system were big challenges along-with the 

design of uni-polar orthogonal codes [8]. The researchers accepted the challenges to take 

advantages of CDMA system to access huge bandwidth of optical fibers.  

In 1986, Fan, Prucnal and Santoro gave a basic idea to spread spectrum fiber-optic 

local area network using optical processing [19]. In 1988, Gagliardi, Khansefid with Taylor  

proposed a new design of binary sequence sets for pulse coded system [21]. In 1988, Foschini 

and Vannucci gave the concept of using spread spectrum for making a high capacity fiber optic 

local area network [22]. In 1989,  Salehi. J   presented fundamental principles for code division 

multiple access techniques in optical fiber networks [24, 27]. In 1989,  Kiasaleh. K proposed the 

spread spectrum optical on-off keying communication system [28]. In the same year Gagliardi, 

Garmire, Kuroda and Mendez  proposed a generalized temporal code division multiple access 

scheme for optical communications [29]. At the end of this year Kwong, Prucnal, and Perrier 

gave detailed comparison of synchronous versus asynchronous CDMA for fiber-optic LANs 

using optical signal processing [30, 51]. In 1996, Gagliardi and Mendez gave the performance 

improvement of optical communications with hybrid WDM and CDMA [72]. In 2002, Sergeant 

and Stock, described the role of optical CDMA in access network telling merits and demerits of 

optical CDMA system which makes new challenges in the field of optical CDMA systems [101]. 

It was a big milestone in this field, with the realities of optical CDMA systems about their 

physical realization. 
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The work for design of one dimensional unipolar (optical) orthogonal codes started 

with the advent of spread spectrum multiplexing. Many researchers had proposed multiple 

design schemes of unipolar orthogonal codes and their sets. One of these code-sets was proposed 

by Robinson in 1967 in his research paper [8]. At the same time in 1967 Gold, R. proposed 

optimal binary sequences for spread spectrum multiplexing [9]. In 1971, Reed proposed a new 

scheme to generate k
th

 order near – orthogonal codes [10], while in 1979 Shedd and Sarwate  

proposed another scheme for design of binary orthogonal sequences [11]. The orthogonal binary 

sequences design was in its early stage and there was a need to convert these binary codes into 

optical signal. Marom, E in 1978, explained the method to put the optical pulses at the position 

of bit 1‟s and no pulses at bit 0‟s positions of the binary code-word [12]. In 1981, Stark and 

Sarwate developed the pseudo orthogonal sequences named Kronecker sequences for spread-

spectrum communications [14]. In 1983, Davies and Shaar proposed a well known optical 

orthogonal code design scheme based on Prime sequences and gave an scheme for asynchronous 

multiplexing for an optical-fiber local area network [15 -16]. This work was a milestone in 

design of one dimensional optical orthogonal codes using simple mathematics of prime numbers. 

In 1987, Heritage, Salehi and Weiner proposed frequency domain coding of femto-second pulses 

for spread spectrum communications [20]. In 1989, Chung, Salehi and Wie  proposed another 

milestone research work  on optical orthogonal codes for its basic design, analysis and 

application [26]. In 1990, Chung and Kumar explained the new bounds for optical orthogonal 

codes and an optimal construction of these codes [45]. A.E. Brouwer, J.B. Shearer, N.J.A. 

Sloane, and W.D. Smith had proposed a new table of constant weight codes which can be used as 

optical orthogonal codes [46]. In 1992, Nguyen, Gyorfi, and Massey proposed the constructions 

of binary constant weight cyclic codes and cyclically permutable codes which can be used as one 

dimensional optical orthogonal code [54]. In the same year, Holmes and Syms proposed All-

optical CDMA using “quasi-prime” codes which was a milestone work related with prime codes 

[55].  In 1993, Maric, Kostic, and Titlebaum proposed a new family of optical code sequences to 

be used in spread-spectrum fiber-optic local area networks [56, 57].  

In 1994, Kwong, Zhang and Yang proposed 2
n
 prime sequence codes and its optical 

CDMA coding architecture [59]. In 1995, Argon and Ahmad [64] proposed optimal optical 

orthogonal code design using difference sets and projective geometry. Choudhary, Chatterjee, 

and John had proposed new code sequences for fiber optic CDMA systems [65, 91]. These new 

code sequences were based on table of prime, quadratic residues and number theory. Bitan and 

Etzion had proposed constructions of optimal constant weight cyclically permutable codes based 

on difference families [66]. In 1996, Zhang had proposed strict optical orthogonal codes for 

purely asynchronous code division multiple access applications [77]. In 2001, Choudhary, 

Chatterjee, & John  proposed one dimensional optical orthogonal codes using hadamard matices 

[90]. In 2002, Keshavarzian and Salehi  proposed optical orthogonal code acquisition in fiber-

optic CDMA systems via simple serial-search method [96]. Lam had proposed symmetric prime-

sequence codes for all-optical code division multiple access local area networks [103]. Moschim 

and Neto proposed some optical orthogonal codes for asynchronous CDMA systems [104]. In 

2003, Moreno, Kumar and Omrani provided new construction for optical orthogonal codes, 

distinct difference sets and synchronous one dimensional optical orthogonal codes [112]. In 

2004, Djordjevic and Vasic had proposed combinatorial construction of optical orthogonal codes 

for OCDMA systems [125] a milestone work. In 2007, Oscar Moreno, Reja Omrani and P. Vijay 
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Kumar  proposed a generalized Bose Chowla family of optical orthogonal codes and distinct 

difference sets [140]. This construction is optimal with respect to the Johnson bound and can be 

termed as a milestone work. In 2010, Masanori Sawa  proposed optical orthogonal signature 

pattern codes with maximum collision parameter 2 and weight 4 [150]. In 2010, R.C.S Chauhan, 

R. Asthana and Y.N. Singh (authors of this thesis) [148,149]  had proposed a general algorithm 

to design sets of all possible one dimensional unipolar (optical) orthogonal codes of same code 

length and weight. This scheme not only generates one set with maximum number of codes or 

theoretical upper bound of set but all possible such set with upper bound cardinality for general 

values of code length „n‟, weight „w‟ and correlation constraints. In 2011, R.C.S. Chauhan and R. 

Asthana propsed an unique representation named be difference of positions representation 

(DoPR) and simple calculation of auto-correlation and cross-correlation constraint of one 

dimensional unipolar orthogonal codes based on DoPR [155].  

To overcome the challenges mentioned in [101], some researchers had proposed 

one dimensional optical orthogonal of multi-length [100] to provide multi-rate optical CDMA 

system and multi-weight [71, 128, 151, 153] to provide multi QoS in optical CDMA systems. In 

1995, G. C. Yang and T. E. Fuja  proposed one dimensional optical orthogonal codes with 

unequal auto- and cross-correlation constraints [70]. In 1996, G. C. Yang, also proposed variable 

weight optical orthogonal codes for CDMA networks with multiple performance requirements 

[71]. In 2002, Kwong and Yang proposed designing of multi-length optical orthogonal codes for 

optical CDMA multimedia networks [100]. In 2005, F. R. Gu and J. Wu  proposed construction 

and performance analysis of variable-weight optical orthogonal codes for asynchronous optical 

CDMA systems [128]. In 2010, D. Wu, H. Zhao, P. Fan, and S. Shinohara proposed optimal 

variable-weight optical orthogonal codes via difference packing [151]. In 2011, M Buratti, Y 

Wei, D. Wu  proposed relative difference families with variable block sizes and their related 

OOCs to design variable weight optical orthogonal codes [153]. In 2012, R.C.S Chauhan, Y.N. 

Singh and R. Asthana had proposed another search method using clique search algorithms to find 

multiple sets of one dimensional unipolar orthogonal codes for given code parameters in very 

efficient manner [156].  

As soon as basic fundamentals of optical cdma are becoming more clear along with 

some schemes which were proposing design of one dimensional orthogonal codes, some 

researchers started studying the performance analysis of optical cdma system employing these 

codes. In 1981, Weber and Batson gave the performance analysis of code division multiple 

access system employing pseudo orthogonal sequences [13]. In 1985, Tamura and Okazaki gave 

the analysis related to optical code division multiplexed transmission by employing the Gold 

sequences [17]. In 1988, MacDonald, R.I. proposed fully orthogonal optical code division 

multiplexing for broadcasting [23]. In 1989, Brackett with Salehi gave system performance 

analysis of the code division multiple access techniques in optical fiber networks [25]. In 1990, 

Gagliardi, Khansefid and Taylor had proposed performance analysis of code division multiple 

access techniques in fiber optics with on-off and PPM pulsed signaling [47]. In 1994, Walker 

gave a theoretical analysis of the performance of code division multiple access communications 

over multimode optical fiber channel. There are two parts of his analysis, part-I showing 

transmission and detection and part-II with system performance evaluation [60, 61]. In 1995, 

Yang, G. C. and  Kwong, W. C. employed prime codes [15] to study the performance analysis of 
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optical CDMA system [69]. Kavehrad and Zaccarin proposed optical code-division-multiplexed 

systems based on spectral encoding of non-coherent sources [63]. In 1996, Ho, C.L. described 

the performance analysis of optical CDMA communication systems with quadratic congruential 

one dimensional optical orthogonal codes [76].  In 2002, Argon and Mclaughlin gave the 

comparative study of optical OOK-CDMA and PPM-CDMA systems with turbo product codes 

[102]. Forouzan, Kenari and Salehi had proposed frame time-hopping fiber-optic code-division 

multiple-access using generalized optical orthogonal codes [105]. In 2007, P. Saghari, R. omrani, 

with P.V. Kumar had proposed a scheme of increasing the number of users in an optical CDMA 

system by pulse position modulation [142]. 

Some of the researchers are doing experimental demonstration of the optical cdma 

systems.  In 1991, Macdonald and Vethanayagam demonstrated a novel optical code division 

multiple access system at 800 mega-chips per second [50]. In 1994, Gagliardi and Mendez gave 

synthesis of high speed and bandwidth efficient optical code division multiple access and its 

demonstration at 1Gb/s throughput [62]. In 2002, Sotobayashi, Chujo and Kityama had 

demonstrated 1.6-b/s/Hz, 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM X 40 WDM X 40 Gb/s) 

transmission using optical hard thresholding [97]. 

1.1.2 Evolution of Two and multi-dimensional uni-polar (optical) orthogonal codes 

and optical CDMA systems:        
  

 Researchers started to explore the optical orthogonal codes and optical CDMA 

system in more than one dimension [48, 53, 58, 67] to take advantages of multidimensional over 

one dimensional OOC [133] like good spectral efficiency without cost of affecting BER 

performance. In 1992, Garmire, Mendez and Park gave design and demonstration for 

temporal/spatial optical CDMA network and comparison with temporal networks [53]. In 1996, 

Tancevski, and Andonovic, described hybrid wavelength hopping/time spreading schemes for 

use in massive optical networks with increased security [74, 75]. In 1998, Deppisch and Elbers 

proposed coarse WDM/CDM/TDM concept for optical packet transmission in metropolitan and 

access networks supporting 400 channels at 2.5 Gb/s peak rate [87]. In 2001 Yegnanarayanan, 

Bhushan and Jalali proposed fast wavelength hopping time spreading encoding / decoding for 

optical CDMA [88]. In 2006, Reja Omrani and P. Vijay Kumar proposed an overview of one 

dimensional and two dimensional optical orthogonal codes as well as some new results relating 

to bounds on code size and code construction [133]. Ken-ichi Kityama, Xu Wang, and Naoya 

Wada described optical CDMA over WDM PON – Solution path to Gigabit-Symmtric FTTH 

[136]. 

 Some researchers started exploring the optimal design of two dimensional optical 

orthogonal codes. In 1993, Gagliardi and Mendez developed the matrix or two dimensional 

optical orthogonal codes for ultra-dense Giga-bit optical CDMA networks [58] a milestone work. 

In 1996, Yang and Wong proposed two-dimensional spatial signature patterns [73]. In 1997 

Iversen, Jugl and Kuhwald proposed an algorithm for construction of unipolar (0,1) matrix codes 

[78]. In 1998, Selvarajan, Shivaleela and Shivrajan proposed a new design of new family of two 

dimensional codes for fiber optic CDMA networks [80] a milestone work. In 2002, Lee and Seo 

proposed new construction of multi-wavelength optical orthogonal codes [106]. In 2003, 
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R.M.H.Yim, Jan Bajcsy, L.R.Chen had described a new family of 2-d wavelength-time codes for 

optical CDMA with differential detection [113].  Pu, Li and Yang researched algebraic 

congruent codes used in two dimensional optical CDMA system [114]. In 2004, Yang and 

Kwong provided a new class of carrier-hopping codes for code division multiple-access optical 

and wireless systems [115, 126] a milestone work. Griner and Arnon had proposed a novel 

bipolar wavelength-time coding scheme for optical CDMA systems [119]. Yang, Kwong and 

Chang had provided multiple-wavelength optical orthogonal codes under prime-sequence 

permutations [120]. Kwong and Yang also proposed extended carrier-hopping prime codes for 

wavelength-time optical code-division multiple accesses [127]. Both [126, 127] of them are 

milestone works in design of two dimensional OOC.  

Some of the researchers felt need of unique representation of two dimensional 

optical orthogonal codes and simple calculations of auto-correlation and cross-correlation 

constraints in parallel with exploring designing methods of two dimensional unipolar orthogonal 

codes. In 2006, Hossein Charmchi with Jawed A. Salehi had proposed outer-product matrix 

representation of two dimensional optical orthogonal codes instead of applying commonly used 

approaches based on inner product to construct optical orthogonal codes [138]. In 2009, H. Cao 

and R Wei proposed combinatorial construction for optimal two dimensional optical orthogonal 

codes [146]. In 2011, Y C Lin, G C Yang, and W C Kwong given construction of optimal 2D 

optical codes using (n,w,2,2) optical orthogonal codes [154]. In 2013, R C S Chauhan, Y N 

Singh and R Asthana proposed not only a scheme to design two dimensional unipolar (optical) 

orthogonal codes through one dimensional unipolar (optical) orthogonal codes but also an unique 

representation and simple method to calculate correlation constraints of two dimensional 

unipolar orthogonal codes [157]. 

After having basic knowledge of wavelength hopping time spreading optical cdma 

system and two dimensional or matrix orthogonal codes, some researchers started studying 

performance analysis (BER and spectral efficiency) of WHTS optical cdma system employing 

2D OOC. In 1991, Kiasaleh, K. proposed fiber optic frequency hopping multiple access 

communication system employing two dimensional optical orthogonal codes [48]. In 1995, 

Andonovic and Tancevski developed hybrid wavelength hopping time spreading code division 

multiple access systems employing two dimensional optical orthogonal codes [67]. In 2001, Hu 

and Wan proposed two dimensional optical CDMA differential system with prime optical 

orthogonal codes [93]. In 2002, Yim Chen and Bajcsy proposed design and performance of 2-D 

codes for wavelength-time optical CDMA [98]. In 2003, Mendez, Gagliardi, Hernandez, Bennett 

and Lennon provided the design and performance analysis of wavelength/time (W/T) matrix 

codes for optical CDMA [111]. In 2004, Mendez, Gagliardi, Hernandez, Bennett and Lennon 

proposed high performance optical CDMA system based on 2-D optical orthogonal codes [121]. 

  In this period of 2005-2010, researchers of this stream was mainly focusing on 

interference avoidance, increasing spectral efficiency and improving the security performance of 

optical CDMA system. In 2005, Yang and Kwong given the performance analysis of extended 

carrier-hopping prime codes for optical CDMA [129]. Kwong, Yang and Chang proposed 

wavelength hopping time spreading optical CDMA with bipolar codes [130]. Kutsuzawa and 

Minto proposed a field demonstration of time spread/wavelength –hop OCDM using fiber Bragg 
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grating encoder/decoder [131]. E. S. Shivaleela, A. Shelvarajan, and T. Srinivas proposed two 

dimensional optical orthogonal codes for fiber-optic CDMA networks [132]. In 2006, Sun 

Shurong, Hongxi Yin, Ziyu Wang and Anshi Xu proposed a new family of 2-D optical 

orthogonal codes and analysis of its performance in optical CDMA access networks [137]. In 

2007, Xu Wang, Naoya Wada with Ken-ichi Kityama [141] proposed 111 km error free field 

transmission of asynchronous 3-WDM x 10-OCDMA x 10.71-Gbps with differential phase shift 

keying for data modulation and balanced detection [141] which may be termed as big milestone 

work in realization of two dimensional optical CDMA system. 

The historical perspective over the development of 3D optical orthogonal codes is 

as follows. In 1991, Gagliardi and Mendez proposed performance analysis of pseudo orthogonal 

codes in temporal, spatial and spectral code division multiple access systems [48]. In 2000, Kim, 

Kyungsik and Park proposed a new family of space / wavelength / time spread three dimensional 

optical orthogonal codes for optical CDMA networks [84]. McGeehan, Nezam, Omrani and 

Kumar proposed three dimensional time-wavelength-polarization OCDMA coding for increasing 

the number of users in OCDMA LAN [118]. In 2010, J Singh and M L Singh proposed design of 

3-D wavelength/time/space codes for asynchronous fiber optic CDMA system [152] which may 

be termed as beginning in the field of three dimensional OOC. N. Tarhuni, M. Elmusrati and T. 

Korhonen proposed polarized optical orthogonal code for optical CDMA systems, by exploiting 

the polarization property of the fiber and the chip‟s polarization state which may be treated as 

third dimension of the code [134] is a milestone work. 

1.2 Optical CDMA Systems: 

          

1.2.1 Introduction  

The Optical code division multiple access (CDMA) is a scheme of accessing the 

optical channel by multiple users simultaneously. Every user of optical CDMA system has been 

assigned one individual signature sequence or optical orthogonal code from the same set of 

optical orthogonal codes. The user spreads binary data by spread spectrum modulation with the 

assigned optical orthogonal code. All users‟ spread spectrum information gets code division 

multiplexed before transmission over the optical channel. The multiplexed information from the 

channel is received and gets correlated with the authorized signature sequence or optical 

orthogonal code at dedicated receiver. The original information is extracted only at those 

receivers which have the same optical orthogonal codes as assigned to multiple users accessing 

the channel. The cardinality or maximum number of users of OCDMA system, is always less 

than or equal to the cardinality of the set of orthogonal codes used for assignment [1, 23, 29]. 

The Optical CDMA accesses the optical channel either in asynchronous or synchronous way. 

The asynchronous access of channel by multiple users makes the system free from the 

centralized control so that any user can start accessing the channel at any time with its assigned 

code sequence. While the synchronous access of channel requires centralized control so that 

every user could send information at some specific time. In asynchronous or synchronous optical 

CDMA system, all users accessing the channel are connected through optical star coupler (OSC). 

In a network span, there may be two or more than two such optical star couplers connected with 

each other via optical channels and couplers as in figure 1.1. Each user is connected to OSC and 
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has a transmitting as well as receiving unit with different optical orthogonal codes as shown in 

figure 1.2. 

The code assigned to receiver unit is the same code as assigned to the transmitter 

from which the receiver unit is to receive the information. Every transmitting unit send optical 

signal to nearby star coupler to get code division multiplexed with optical signals from other 

users connected to the same star coupler. Similarly, every receiving unit receives the code 

division multiplexed optical signal from nearby star coupler to de-multiplex and decode the 

information at the destination. The way of multiplexing of optical signals at star coupler decides 

about asynchronous or synchronous access of channel. In synchronous optical CDMA, the 

optical signal from every transmitter unit get code division multiplexed with synchronized data 

bits from every user. While in asynchronous optical CDMA, the optical signal from every 

transmitter unit get code division multiplexed with synchronized optical pulses or optical chips 

not necessarily data bits from every user [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Optical CDMA network    
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Figure 1.2: optical CDMA user with transmitter and receiver section 

Every transmitting unit is equipped with source of binary information, optical pulse 

generator and optical orthogonal encoder or optical spread spectrum modulator. Every receiving 

unit is equipped with optical hard limiter, optical orthogonal decoder and destination for received 

binary information. Conventionally in transmitter section optical pulse generator generates a 

coherent optical pulse of narrow width for data bit „1‟ and no pulse for data bit „0‟ following on-

off keying modulation. This on-off keying modulation may be replaced by pulse position 

modulation (PPM) or phase shift keying (PSK) modulation. The optical orthogonal encoder 

consists of optical splitter (OS), filter with optical delay lines and optical combiner (OC). The 

filter with optical delay lines is designed as per the optical orthogonal code assigned to particular 

transmitter section as shown in figure 1.3a. Let the optical orthogonal code with code length „n‟, 

and code weight „w‟ or „w‟ positions of bit „1‟ spread over code length „n‟. The optical delay line 

filter consists of „w‟ parallel optical delay lines [12, 18] with delays equal to position of bit „1‟s 

of the code assigned to the transmitter section. For example the code with code length n=7, code 

weight w=3, with weighted positions (1, 2, 4) so that optical delay lines with delays equal to     

(1, 2, 4) respectively. At the receiver section the optical hard limiter receives the multiplexed 

pulse information and limits them at fix level of amplitude. 

The optical orthogonal decoder consists of optical splitter, matched delay line filter, 

optical combiner and optical threshold detector. The optical splitter receives the multiplexed 

optical pulses and sends them to every line of matched delay line filter. The matched delay line 

filter consists of w=3 parallel optical delay lines with delays decided by the position of bit „1‟s of 

the particular code assigned to the receiver section as (n-1=6, n-2=5, n-4=3) shown in figure 

1.3b. The optical combiner receives the optical pulses from every delay line of filter and 

arranged them in order. The pulses received at same time are overlapped with each other to be 

detected by threshold detector for auto-correlation peak. The auto-correlation peak within bit 

duration is detected as bit „1‟ by threshold detector while no auto-correlation peak within bit 

duration is detected as bit „0‟.   
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Figure 1.3a.   Optical orthogonal encoder for  code length n =7, weight w =3 with weighted 

positions at  (1,2,4). (OS – Optical Splitter ), (OC – Optical Combiner). 

 

 

 

 

 

 

Figure 1.3b. Optical orthogonal decoder for the code length n =7,with weight w =3 at weighted 

positions (1,2,4) and delays (n-1=6, n-2=5, n-4=3). 

 

1.2.2 Types of Optical CDMA Systems based on Optical Coding Techniques:      

The optical delay line filter is used to generate incoherent optical pulse signal for a 

particular optical orthogonal code and data bits. This optical delay line filter can be replaced by 

another filter generating M-ary coherent optical pulse signal for particular optical orthogonal 

codes and data bits. Suppose for M=2, bit „1‟s of the code are replaced by optical pulses with 0 

phase difference  while all „0‟s within code are replaced by optical pulses with phase difference 

„π‟ to generate coherent bipolar phase shift keying (BPSK) optical signal. On the basis of 

generating incoherent and coherent optical pulse signal for data bits and particular optical 

orthogonal codes, the optical CDMA can be categorized into incoherent optical CDMA and 

coherent optical CDMA. For incoherent optical CDMA, only unipolar (optical) orthogonal codes 

can be employed as optical signature sequence for spread spectrum modulation. While for 

coherent optical CDMA system unipolar as well as bipolar optical orthogonal codes can be 

employed as optical signature sequence for spread spectrum modulation. But the cardinality of 

set of bipolar orthogonal codes is higher than the set of unipolar orthogonal codes for code length 

„n‟. The cross-correlation of bipolar orthogonal codes is always zero, therefore, generally bipolar 

orthogonal codes are used in coherent optical CDMA system.   

1.2.2.1 Incoherent Optical CDMA Systems: 

As we know that the spread spectrum modulation of an optical pulse with unipolar 

(optical) orthogonal code generates the optical signal with incoherent pulses. In an Incoherent 

Optical CDMA system, each user is assigned a unique unipolar (optical) orthogonal code which 

is used by other user as signature sequence to send the information to the authorized user of that 

signature sequence. The information bit „1‟ is sent by sending the signature sequence of 
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authorized user for the bit period Tb, while bit „0‟ is represented by no optical pulses for the bit 

period Tb. The problem of collision arises if two or more than two users are trying to send their 

information to the same destination with unique address or signature sequence. This can be 

solved by setting a central distributor of signature sequences to the active user from a specific 

code set and keeping the information that which code is busy and which is free. Any active user 

first checks for availability of destination by looking the status of codes available and then 

process the information to avoid the problem of collision mentioned above. The incoherent 

encoding for Optical CDMA can be done in following ways.  

(a) Temporal Spreading:  

 It is the very first and well known incoherent coding schemes, in which the data bit 

period 𝑇𝑏  is divided into „n‟ chip time intervals. Here „n‟ is the length of one dimensional 

unipolar (optical) orthogonal code. The optical pulsed signal is created by putting the optical 

pulses at the weighted chips by bit „1‟s in the code, so that optical pulses present in a bit period 

𝑇𝑏   are equivalent to weight of the code. The once generated optical pulsed signal is sent to the 

optical star coupler (OSC) for information bit „1‟, while the code of zero weight and same code 

length n is sent for bit period 𝑇𝑏  for information bit „0‟ [23,24] for code division multiplexing at 

OSC. All other active users are also sending their optical pulsed signals or (temporally spread 

signal) generated with their assigned optical orthogonal codes in every bit period 𝑇𝑏  to OSC for 

multiplexing with others. At every authorized receiver the original information is decoded with 

assigned optical orthogonal code. It should be very clear that all users use zero weight code for 

sending information as bit „0‟. If the cross correlation of received signal and assigned code is less 

than the cross correlation constraint, the decision is taken as bit „0‟ for bit period 𝑇𝑏  and if cross-

correlation is greater than correlation constraint, the decision is taken in favor of bit „1‟ in time 

duration 𝑇𝑏 .  The received information with all „0‟ bits has no meaning at any destination. 

 A lot of schemes are proposed for designing of sets of one dimensional unipolar 

(optical) orthogonal codes in literature. A suitable set of codes can be selected for assigning of 

optical orthogonal codes to distinct users of temporally spread incoherent optical CDMA 

systems. The limitations of temporal spreading are requirement of long codes and short optical 

pulses for good correlation properties [121].  

(b) Spectral Amplitude Coding (SAC): 

In the SAC-OCDMA system, the source spectrum is assumed to be flat over a 

bandwidth and the transmitted spectrum is divided into „n‟ rectangular slices which are 

amplitude masked as per the optical orthogonal sequence of the user by the use of diffraction 

grating and spatial masks [79]. The coded spectrum and its complement are propagated for 

transmitting the binary information „1‟ and „0‟ respectively [63]. The unipolar SAC codes can be 

generated with proposed schemes in the literature for design of one dimensional unipolar 

(optical) orthogonal codes to improve the performance of the SAC-OCDMA system. The optical 

encoded information as per their codes from other users is passed to star coupler for 

multiplexing. This code division multiplexed information reaches to all the active receivers 

through single mode optical fibers. At each receiver the information is decoded using wavelength 

splitter and wavelength combiners for the known optical orthogonal codes [79].    
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(c) Spatial Coding:  

The Spatial coding can be employed with temporal spreading and / or spectral 

amplitude coding to advance the coding into two or three dimensional optical coding in multiple 

fiber system using fiber tapped delay lines for encoding and decoding [1]. The multimode fibers 

can also be employed for spatial techniques using 2D spatial masks for encoding the specific 

speckle patterns as code sequences [73, 1]. The use of spatial coding is limited by the 

requirement of multiple star couplers and equal optical path length from encoder/decoder to the 

couplers. 

(d) Wavelength Hopping Time Spreading:  

 The Wavelength Hopping Time Spreading (WHTS) OCDMA system uses the 2D 

optical orthogonal codes to spread the coded information in time and wavelength domains 

simultaneously. The two dimensional optical orthogonal codes or WHTS codes can be generated 

in matrix form by the proposed schemes in literature [53, 58, 73, 80, 88, 93, 98, 106, 111, 113, 

114, 119, 120, 121, 126, 127, 132, 137] also known as matrix codes. The WHTS codes can be 

implemented with multi-wavelength Laser source hopping from one wavelength to another very 

rapidly. The encoder uses w specific wavelengths pulses, to position them at weighted chips 

within bit period 𝑇𝑏 . These WHTS encoders are based on arrayed waveguide gratings (AWG) 

and thin film filters (TFF) while linear array of fiber Bragg gratings ( FBG) based encoder 

require complex schemes for independently delaying each wavelength [1]. The WHTS decoders 

are also implemented with AWGs and TFFs [1]. The function of WHTS decoder is to 

discriminate between desired and interfering signals by using the correlation of received signal 

with assigned WHTS signature sequence or matrix code. If the received signal is matched with 

assigned matrix code at each wavelength, the amplitude of autocorrelation peak becomes equal 

to weight „w‟ of the matrix code. While the unmatched matrix code generate the Multiple access 

Interference (MAI) at the correlator output.  

The 2D WHTS codes have better spectral efficiency as compared to the temporally 

spread one dimensional optical orthogonal codes over wavelength division multiplexing (WDM) 

in incoherent optical CDMA systems [122].    

1.2.2.2 Coherent Optical CDMA Systems:  

In the coherent optical CDMA system, the phase shift keying or phase coding of the 

optical pulsed signal is used with the assigned orthogonal code to the user. The optical pulsed 

signal is derived from highly coherent wideband source such as mode locked laser. The coherent 

Optical CDMA receiver section is made synchronous with transmitter section so as coherent 

reconstruction of user‟s data is possible. This coherent transmission and reconstruction is also 

possible with Polarization shift keying of the optical signal field over user‟s code. On the basis of 

coherent encoding schemes, the Coherent Optical CDMA system can be classified into following 

schemes. 

a. Temporal Phase Coded Optical CDMA 

b. Spectral Phase Coded Optical CDMA 

c. Polarization encoded Optical CDMA     
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(a) Temporal Phase Coded Optical CDMA  

  In Temporal Phase Coded Optical CDMA system [91], the mode-locked laser with 

short pulse capabilities is used to generate mode locked pulses to modulate the user data stream 

with On-Off keying format, DPSK or Duo-binary or any other complex modulation format at 

each encoder [1]. The temporal phase encoder creates „n‟ pulse copies of modulated pulse output 

with  𝑇𝑐  chip interval between any two consecutive pulses, in a bit period 𝑇𝑏 . These „n‟ pulse 

copies are set with a specific relative phase shift depending on the user‟s code. The specific 

relative phase shift is determined by simple binary code (1,0) such as 0,   or M –ary phase shift 

keying [82]. To decode the information, the receiver is employed with time domain matched 

filter to perform temporal correlation of the „n‟ copies of the received signal with appropriate 

temporal phase code. The received signal is delayed by „n‟ delay elements, each of   𝑗𝑇𝑐  delay for 

j = 0 to n-1 so that received signal in  each chip interval is multiplied with pulse in corresponding 

chip interval of the temporal code and then integrated over a bit period  𝑇𝑏  [1]. The auto-

correlation peak output is obtained, if temporal phase code is matched otherwise cross 

correlation output will be low, noise like, which is also known as multiple access interference or 

the effect of presence of other signals. 

(b) Spectral Phase Coded Optical CDMA 

 In Spectral Phase Coded Optical CDMA [122,139], a mode locked laser generating 

broadband multi-wavelength and highly coherent light in frequency domain is employed. The 

user data is modulated with continuous pulse output of mode locked laser by on – off keying or 

any other modulation format as in temporal phase coded optical CDMA. All users are assigned 

their signature sequences or orthogonal codes from a set of n element spectral phase codes. This 

modulated data output can be expressed in frequency domain and „n‟ copies of it, are created in a 

bit period  𝑇𝑏   by using diffraction grating or virtual imaged phase array grating or micro ring 

resonator [1], with the phase difference (0 or  ) applied to each spectral elements as per binary 

(1,0) code of length n bits. In the time domain, it is equivalent to temporal broadening of mode 

locked laser temporal pulse output, making the encoded signal more like a noise. The optical 

channel accepts n such encoded output, which is passed, in combined form, to each receiver for 

decoding purpose. The decoder is employed with the same device as encoder but with conjugate 

spectral phase coded mask in order to recover the original signal after correlation by matched 

filtering (time gating) and then optical thresholding [1,122].  

(c) Polarization Encoded Optical CDMA:  

In Polarization encoded Optical CDMA system, the mode locked laser pulse output 

is modulated with binary data in on –off or any other modulation format. The modulated data 

output in a bit period  𝑇𝑏  is used to make its „n‟ copies at the interval of chip duration  𝑇𝑐   to fully 

cover the bit duration 𝑇𝑏 . Each pulse in the chip period 𝑇𝑐  is given either of two state of 

polarization (SOP) by Polarization Shift Keying as per the binary (0,1) optical orthogonal code 

assigned to the user. All such n outputs are intermixed into single mode optical fiber to transfer it 

to all n receivers. At each receiver, the assigned polarized optical orthogonal code is generated 

and used for correlation to recover original signal after optical thresholding [134]. 
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1.2.3 Multiple Access Interference and Reduction Schemes :      

MAI is a common drawback of any CDMA system. it is the interference to the signal due 

to presence of un-orthogonal signals from other transmitters at each receiver of OCDMA system. 

This interference is caused in the optical channel due to simultaneous access of same channel by 

two or more than two optical transmitters with imperfect optical orthogonal codes as signature 

sequences. This MAI is caused only when at least one other transmitter is sending  the imperfect 

optical orthogonal code for  data bit „1‟, while for data bit „0‟ no MAI, because for data bit „0‟ no 

optical pulses are sent to the channel. Hence the main reason for MAI is use of imperfect 

orthogonal code as signature sequences to access the optical channel. 

For the case of Incoherent Optical CDMA system the optical orthogonal codes are uni-

polar. The uni-polar codes are formed from binary digits ( 0 and 1 ) with code length „n‟ 

representing the number of bits in code-word and with code weight „w‟ representing the number 

of total „1‟ bits in the code word. As by the definition of perfect orthogonal code the dot product 

of two or more than two perfect orthogonal code is zero. As per definition of optical orthogonal 

codes and its auto-correlation properties [25] the uni-polar orthogonal code and its all shifted 

sequences represent to same uni-polar orthogonal code word. The dot product of these shifted 

sequences with optical orthogonal code word should be minimized upto zero for proper detection 

of autocorrelation peak as synchronizing pulse at receiver and detection of data bit „1‟. The dot 

product of orthogonal code word with its shifted sequences can be constraint upto a limit called 

auto-correlation constraint a  which is not responsible for MAI but its higher value close to 

auto-correlation peak (amplitude w) may be responsible for wrong detection at receiver, hence it 

should be minimized upto zero. For the case of uni-polar orthogonal code word auto-correlation 

constraint a  can not be less than one because of binary dot product. The auto-correlation 

constraint a  has a range from 1 to w-1.  

As per definition of optical orthogonal code and its cross-correlation properties [25], the 

maximum value of dot product of one uni-polar orthogonal code word with other orthogonal 

code word and its shifted sequences is called the cross correlation constraint c . No uni-polar 

orthogonal code word pair has c  equals to zero because of binary dot product. This cross-

correlation constraint c is ranged from 1 to w-1. The non zero value of c  is responsible for 

MAI. Hence MAI is always present at the receiver in case of Incoherent optical CDMA system 

with uni-polar orthogonal codes. The MAI can be minimized by the use of uni-polar orthogonal 

codes of minimum value of c  i.e. one. Similarly for correct detection and synchronization, 

minimum value of a  should be one. Hence we search for the code set of maximum possible 

optical orthogonal codes with minimum a  and c . The maximum possible optical orthogonal 

code number N of code length „n‟, code weight „w‟ with  a  c  is given by Johnson‟s‟ 

bounds [25]. 

The Optical CDMA transmitter sends the optical orthogonal encoded information for data 

bit „1‟ and no optical pulses for data bit „0‟ to the channel. The channel accepts such N signals to 
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transmit them at every receiver. The receiver correlates this intermixed signal from channel with 

its signature sequence (assigned optical orthogonal code for data bit detection). If one user is 

sending data bit „0‟, i.e. no optical pulses in the bit period Tb, the receiver accepts N-1 encoded 

signal, which is correlated with already stored user‟s code, if it has a finite value exceeding 

particular threshold value, it may be detected as bit „1‟ which is the wrong decision by detector 

as bit „0‟ was forwarded. While there is no error if bit „1‟ was sent, as it is always decoded as bit 

„1‟ even in the presence of multiple access interference [23-24]. It can be estimated how the 

probability of error is related with the MAI and other parameters of the orthogonal code set. The 

probability of error for chip synchronous and noise free OCDMA [24] is calculated as 
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Here N is number of active user,   is the threshold value, w is the weight of the code, and L is 

Tb/Tc or length of the code word. 

To reduce the MAI or P(E) which is responsible for bit error, a lot of schemes are proposed in 

[34-44] by Researchers time to time for different optical cdma systems. The schemes which 

ultimately improve the performance of system are being summarized as follows 

(i) There is a scheme with modified PN sequences  and Fiber Bragg Grating (FBG)  encoder and 

decoder [34], Where the modified PN codes has even number of „1‟ and „0‟ in the code of even 

length. Suppose a modified PN sequence (11100100) is assigned to one user. This user generates 

a optical stream of different pulses as 1 2 3 6( 00 00)     by FBG encoder for data bit „1‟, and it‟s 

complement as 4 5 7 8(000 0 )    is generated by same FBG encoder for data bit „0‟. The receiver 

is equipped with FBG decoder and two photo diode PD1 and PD2. The received signal is 

matched by FBG decoder and passes to either of photo diode. The PD1 detects the signal as data 

bit „1‟ and PD2 detects the signal as data bit „0‟. This proposed system can obtain the same 

performance at a lower Signal to Interference Noise Ratio (SINR) by 6 dB than that of 

convention system with uni-polar capacity. 

(ii) There is high performance optical thresholding technique is demonstrated by using super-

continuum (SC) generation in normal dispersion-flattened-fiber (DFF) for reducing the MAI in 

high chip rate coherent OCDMA system [35]. The proposed SC is comprised of an EDFA, a 2 

km long DFF, and a 5nm  band pass filter (BPF). The operating principle is that the decoded 

optical signal is boosted by EDFA to high peak power with 2 ps pulse width which can generate 

SC in the DFF. The incorrectly decoded signal is spread over large time span with low peak 

power so that it is unable to generate SC. The BPF only allow the SC signal and rejects the 

otherwise so that MAI noise is suppressed. 

(iii) The Adaptive Resonance Code (ARC) are generated with a given algorithm in [36] and 

compared with other Time Wavelength Hybrid (TWH) codes for Multiple Access Interference 

(MAI). The MAI  is most responsible factor for Bit Error Rate (BER). 
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( )iMAI  is multiple access interference at ith node (for ith user) 

And  Rxy(m) is cross correlation of two sequences  X and Y 

 As less as MAI at ith node, as less as the bit error rate for that node. The ARC code are selected 

on the basis of the least value of MAI between two codes as compared with the MAI of selected 

codes. So that the ARC always present with lowest value of MAI as compared with other code 

set like OW ( OOC + WDMA), PH (Prime Hop), EP (Eqc. Prime), MW (Multi Wavelength) , 

OC (Optimal Code). The MAI of these different coding schemes is compared in [36] and found 

ARC with lowest MAI, i.e. with lest probability of error or BER. 

(iv) The Interference Avoidance  for Optical CDMA system is described in two parts (i) State 

estimation and (ii) Transmission scheduling [37]. 

In state estimation the node estimate the state of line and next the transmission scheduling 

decides the appropriate time to send the packet  so that lower  number or no collision of weighted 

chips occur. The packets sent between state estimation and transmission scheduling may causes 

interference. By the  protocol Interference sensing/ Interference detection (IS/ID), the node 

estimate the state and schedule the transmission. In [38-41], the estate estimation and 

transmission scheduling are described along with there algorithms. 

(v) The serial interference cancellation with first stage in which the interference is reproduced 

and then subtracted from received data is described in [42]. For N number of users there are N-1  

serial cancellation stages along with N-1 different optical orthogonal codes. Here first 

cancellation stage is described for desired user #1 with consideration of interference produced by 

N
th

 user with different threshold values starting from 1 to w, the weight of the code. 

The BER performance of the described system is compared with conventional optical 

cdma system for different number of users yielding better performance as compared with others.                                                                                                                                                                              

(vi) The parallel interference cancellation stage is described with lowest threshold value [43]. 

Initially BER performance of conventional OCDMA system is compared with OCDMA system 

with optical hard limiter before the OCDMA receiver. It reduces the effect of MAI upto some 

level but not the effect of other noises in the receiver at lowest threshold value. This problem can 

be solved by using parallel interference cancellation stages. All N-1 interference cancellation 

stages are connected in parallel to get the sum of all interference produced by each respective 

unwanted users. This complete interference is subtracted from the received signal to get the 

desired signal without MAI. 

(vii) A simple direct detection optical PPM – CDMA system is described with interference 

cancellation [44]. The modified prime sequences are used as signature sequence, and at receiver 

the Poisson effects of photo-detection process are considered.  
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1.3 Motivation & Objectives:        

The dream of communication Engineers and research persons is to fully utilize the 

available bandwidth of optical fibers for errorless communication. To make this dream come 

true, there are a lot of challenges to be resolved. These may be related with ultra-short optical 

pulse design, optical pulse modulation schemes, optical code design, optical fiber with lower 

attenuation over wide band of wavelength of optical signal, optical fiber with zero dispersion, 

integration of many multimode fibers within an optical cable with zero interference, multiple 

access interference reduction schemes, optical amplifiers or repeaters, optical detector with lower 

receiver noises, optical delay line filters, optical decoder or demodulator, optical pulse memories, 

etc. In this  thesis, the authors are motivated to accept and resolve the challenges related to code 

division multiple access scheme and optical orthogonal code design. The well known schemes 

for design of one dimensional as well as two dimensional unipolar (optical) orthogonal codes and 

their multiple sets have been studied. It is found that the schemes proposed in literature [8-11, 

14-15, 21, 25, 55-57, 59, 64, 65, 68, 77-78, 90-91, 95-96, 103-104, 112, 125, 133, 138, 140, 145-

146] for design of one dimensional unipolar (optical) orthogonal codes are generating one set of 

these codes. The maximum code set size is given by Johnson bounds [25, 45, 133], but only 

some of these proposed schemes are generating codes with maximum code size. These schemes 

are specific for selection of code length „n‟, code weight „w‟, maximum auto-correlation and 

cross-correlation constraint of the codes within a set. It motivates to explore an scheme which 

can generate all one dimensional unipolar (optical) orthogonal codes within a set for all general 

values of code length „n‟ code weight „w‟ and given maximum auto-correlation and cross-

correlation constraint of the codes within a set. 

It also motivates to explore a general scheme to design all possible sets of 

maximum number of one dimensional unipolar orthogonal codes for any given value of code 

length „n‟ code weight „w‟, maximum auto-correlation and cross-correlation constraint of these 

codes within a set.  

In a similar way all well known two dimensional unipolar (optical) orthogonal 

codes and their multiple sets design schemes [53, 58, 73, 80, 88, 93, 98, 106, 111, 113, 114, 119, 

120, 121, 126, 127, 132, 137] are studies. The situation is almost same as in one dimensional 

orthogonal code design schemes. No scheme is generating a set with maximum number of two 

dimensional codes. While some of these scheme [84], [118] are trying to design multiple sets of 

these codes of same matrix size, L x N, weight „w‟ and given maximum auto-correlation and 

cross-correlation constraint of codes within a set, the designed sets have number of codes less 

than maximum code set size. The maximum number of matrix codes within a set is given by 

Johnson bounds [133]. It motivates to explore the algorithms generating a set of matrix codes 

with maximum code set size with codes of any code length „n‟, code weight „w‟ and given 

maximum auto-correlation and cross-correlation constraint of codes within a set. It also 

motivates to explore a general scheme generating all such multiple sets of these matrix codes 

with maximum code set size. Based on these motivations, some objectives are decided to be 

resolved in this thesis as follows.  
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1. Exploration to algorithm or scheme generating the multiple sets of one dimensional unipolar 

(optical) orthogonal codes with maximum code set size for any code length „n‟, code weight „w‟, 

maximum auto-correlation and cross-correlation constraint of codes within each set.   

2. Exploration to algorithm or scheme generating the multiple sets of two dimensional unipolar 

(optical) orthogonal codes with maximum code set size for any code matrix L x N, code weight 

„w‟, maximum auto-correlation and cross-correlation constraint of matrix codes within each set. 

In this thesis, the topic of deliberation is design of one dimensional as well as two 

dimensional unipolar (optical) orthogonal codes and their maximal clique sets by proposed 

general algorithms. The designed one dimensional or two dimensional unipolar (optical) 

orthogonal codes (OOC) are utilized for assignment of orthogonal codes to all pairs of 

transmitter of information source and receiver of information sink in the network. The algorithms 

to design one dimensional unipolar (optical) orthogonal codes and their multiple sets are being 

compared with already proposed schemes in the literatures for designing one dimensional 

orthogonal codes. An ideal scheme designing all possible sets of one dimensional unipolar 

orthogonal codes with maximum cardinality is assumed and compared with the proposed 

schemes as well as schemes in literature for relative performance evaluation. The algorithms to 

design two dimensional unipolar (optical) orthogonal codes and their multiple sets are being 

compared with already proposed schemes in the literature for designing two dimensional 

orthogonal codes.  An ideal scheme designing all possible sets of two dimensional unipolar 

orthogonal codes with maximum cardinality is assumed and compared with the proposed 

schemes as well as schemes in literature for relative performance evaluation. 

This thesis is organized into six chapters. First chapter gives the historical 

perspective of optical code division multiple access (OCDMA) and optical cdma codes or 

unipolar (optical) orthogonal codes. This historical perspective is organized into two subsections. 

First subsection gives the evolution of one dimensional unipolar (optical) orthogonal codes and 

optical cdma employing one dimensional orthogonal codes with fixed length and weight. The 

subsection also deals with the development of multi-length, multi-weight unipolar (optical) 

orthogonal codes and optical cdma employing these codes. The second subsection deals with the 

evolution of two dimensional unipolar (optical) orthogonal codes and optical cdma employing 

these codes. This subsection also gives the development of three and multi-dimensional unipolar 

(optical) orthogonal codes and optical cdma employing these codes. This chapter also deals with 

types of optical CDMA based on optical coding as well as multiple access interference with its 

reduction schemes. The first chapter also addresses motivation and the research problem to be 

resolved. 

Second chapter discusses one dimensional optical orthogonal codes, their 

conventional representations, the conventional methods to calculate auto-correlation and cross-

correlation constraints along-with the properties of sets of codes and the schemes proposed in 

literature finding code words. This chapter also introduces the cardinality bounds on the set of 

one dimensional optical orthogonal codes called Johnson‟s bound. The comparison of these 

schemes with each other and with an ideal one have also been discussed. The comparison of the 

scheme with the ideal one gives the idea of further improvements. 
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In the chapter three, the generation of one dimensional unipolar (optical) orthogonal 

codes in multiple sets is discussed. Each set contains the codes with maximum cardinality for 

given code length „n‟, given code weight „w‟, auto-correlation constraints less than or equal to 

a , and cross-correlation constraints less than or equal to c  with positive integer values and 

boundaries like 1 ,a c w n     and w is co-prime with n. The maximum cardinality or upper 

bound of each set of codes is given by Johnson bounds. A unique representation named be 

difference of positions representation (DoPR) and new simple methods for calculation of auto-

correlation as well as cross-correlation constraints of one dimensional unipolar (optical) 

orthogonal codes are also proposed in this chapter. Two search algorithms are proposed which 

find multiple sets of unipolar (optical) orthogonal codes. The first algorithm finds all possible 

sets of unipolar (optical) orthogonal codes with maximum cardinality for code length „n‟, code 

weight „w‟ such that w and n are co-prime, auto-correlation constraint and cross-correlation 

constraint in the range lying from 1 to w-1 using direct search method. This algorithm works 

well upto n= 47 and w=4 for auto-correlation and cross-correlation constraints lying from 1 to 3. 

The second algorithm uses clique search method to find all sets of codes not only for the same 

length and the same weight but also for the multi-length and multi-weight one dimensional 

unipolar orthogonal codes. This algorithm work well upto n= 256 and w=5 for auto-correlation 

and cross-correlation constraints lying from 1 to 2. The algorithm work well is quoted in the 

sense of timing required in execution of programs. 

Second algorithm is proposing the codes and their all multiple sets using clique 

search method which reduces computational complexity. These algorithms are generating their 

codes in difference of positions representation (DoPR) proposed here. These codes can be 

converted into proper binary sequences which can be assigned to multiple users of incoherent 

optical cdma system. 

Fourth chapter gives details of two dimensional optical orthogonal codes used in 

optical CDMA systems. It describes the conventional representations and conventional methods 

to calculate correlation constraints. It explains the proposed schemes in literature for the design 

of set of two dimensional optical orthogonal codes. The Johnson‟s bound or cardinality for the 

set of two dimensional optical orthogonal codes has also been given here. The ideal scheme for 

design of two dimensional optical orthogonal codes has been assumed with ideal results and 

compared with the proposed schemes in literature. This comparison provides an idea about how 

close the existing schemes are to the ideal one. 

Fifth chapter discusses two dimensional unipolar (optical) orthogonal codes, with a 

new and unique representation of two dimensional optical orthogonal codes, a novel and simple 

method for calculation of correlation constraints. Two new search algorithms for design of two 

dimensional unipolar (optical) orthogonal codes through one dimensional unipolar (optical) 

orthogonal codes and finding their multiple sets have been discussed. The cardinality of each 

code-set approach the Johnson‟s bound for different correlation constraints. This newly proposed 

scheme has also been compared with ideal one which is assumed in chapter four. The first 

algorithm finds all possible sets of unipolar (optical) orthogonal codes with maximum cardinality 

for matrix code dimension  L N , code weight „w‟ such that w and LN  are co-prime, auto-
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correlation constraint and cross-correlation constraint from the range 1 to w-1 using direct search 

method. This algorithm works well upto LN = 46 and w=4 for auto-correlation and cross-

correlation constraints lying from 1 to 3. The second algorithm uses clique search method to find 

all sets of codes not only for the same length and the same weight but also for the multi-length 

and multi-weight one dimensional unipolar orthogonal codes. This algorithm work well upto 

LN= 256 and w=5 for auto-correlation and cross-correlation constraints lying from 1 to 2. 

Finally, in chapter six the first conclusion has drawn from the comparison of 

proposed one dimensional unipolar (optical) orthogonal codes with already proposed schemes to 

design one dimensional optical orthogonal codes and one assumed scheme with ideal results for 

one dimensional optical orthogonal codes. The proposed schemes of designing one dimensional 

optical orthogonal codes is very close to ideal one but with higher computational complexity. 

The second conclusion drawn from the comparison of proposed two dimensional unipolar 

(optical) orthogonal with already proposed schemes to design two dimensional optical 

orthogonal codes and one assumed scheme with ideal results for two dimensional optical 

orthogonal codes. The proposed scheme of designing two dimensional optical orthogonal codes 

is very close to ideal one but with higher computational complexity. The third conclusion drawn 

from comparison of proposed two dimensional unipolar (optical) orthogonal codes with 

proposed one dimensional unipolar (optical) orthogonal. The cardinality of the set of two 

dimensional optical orthogonal codes is much better than the set of one dimensional optical 

orthogonal codes of same temporal length and code parameters at the cost of computational 

complexity. The design of three dimensional and multidimensional optical orthogonal codes may 

be taken as future work. The challenge is to reduce the computational complexity of the 

schemes. 

The designed one dimensional unipolar (optical) orthogonal codes can be utilized 

for direct sequence incoherent optical CDMA system to access the optical fiber in asynchronous 

manner by multiple users. The designed two dimensional unipolar (optical) orthogonal codes can 

be utilized for wavelength hopping time spreading optical CDMA system with increased 

cardinality and spectral efficiency. The multiple sets of these codes are designed. It provides 

flexibility for selection of set of unipolar orthogonal codes with maximum cardinality. The code 

set with maximum cardinality provides flexibility for selection of unipolar orthogonal codes 

from same set. 
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CHAPTER 2 

 

2. ONE DIMENSIONAL UNIPOLAR (OPTICAL) ORTHOGONAL CODES   

(1-D U(O)OC)                                                      

2.1 Introduction :  

The one dimensional unipolar orthogonal codes or optical orthogonal codes or 

pseudo orthogonal codes are employed with incoherent optical CDMA system. These codes are 

used for spread spectrum modulation of information bits from every users of optical CDMA 

system.  The same set of these codes is employed at receiver section to demodulate every user‟s 

information. To increase the cardinality of optical CDMA system, the set of codes with maximum 

size is used for the purpose of modulation and demodulation. The one dimensional optical 

orthogonal code is a binary sequence of code length „n‟ and code weight „w‟ such that (w<<n). 

For the codes within set, the maximum non-zero shift auto-correlation and cross-correlation of 

any pair of codes should be minimum for good orthogonal codes described in this chapter. 

Conventionally these codes are represented as binary sequences as well as weighted position 

representation described in next section. The conventional methods of calculating the auto-

correlation constraints and cross-correlation constraints are also described in next sections. The 

already proposed schemes to design the sets of orthogonal codes are also discussed and compared 

with an assumed ideal scheme.     

2.2 Conventional Representations of One Dimensional Unipolar (Optical) 

Orthogonal Codes  

2.2.1 Weighted Position Representation (WPR): 

The one dimensional unipolar (optical) orthogonal code word X of code length n 

and code weight w includes w number of 1‟s and   (n-w) number of 0‟s. There are n positions of 

code X in binary form which are termed as 0
th

 position to (n-1)
th

 position out of which there are 

w weighted positions and n-w non weighted positions. The code X can be represented by 

showing only weighted positions of code X. There can be such n representations for each of n 

circular shifted versions of code X.  This type of representation of an unipolar orthogonal 

codeword may be called as weighted positions representation (WPR) or bit 1‟s positions 

representation. For example, suppose one dimensional unipolar orthogonal code X of length n= 

19, code weight w=4 such that X = 1000100001000000100, which can be represented as WPR 

(0,4,9,16). Each of n circular shifted versions of code X represent to same unipolar orthogonal 

code X. All other weighted position representations of code X can be given as (3,8,15,18), 

(2,7,14,17), (1,6,13,16), (0,5,12,15), (4,11,14,18), (3,10,13,17), (2,9,12,16), (1,8,11,15), 

(0,7,10,14), (6,9,13,18), (5,8,12,17), (4,7,11,16), (3,6,10,15), (2,5,9,14), (1,4,8,13), (0,3,7,12), 

(2,6,11,18), (1,5,10,17). Anyone of these can be used to represent the one dimensional unipolar 

orthogonal code X supposed as above in WPR. 
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2.2.2  Fixed Weighted Position Representation (FWPR) 

The „n‟ representations of a unipolar code in WPR can be reduced by making a 

compulsory position of bit „1‟ at position zero. This will reduce the number of weighted positions 

representations of the unipolar orthogonal code to w from n representations. This reduced 

weighted positions representation may be called as fixed weighted positions representation 

(FWPR). The code X in FWPR can be given as 
0 00 01 0( 1)( , ,..., )F x x x wX f f f  which means that the 

positions 
00 01 0( 1), ,...,x x x wf f f 

 are  „1‟ (weighted) while other „n-w‟ positions are „0‟(non-

weighted).The shifting of X  in binary form by 
00 01 0( 1), ,...,x x x wf f f 

units in left circularly convert 

the code X into other FWPRs like 
1 2 ( 1), ,..., .F F F wX X X 

  

1 10 11 1( 1)

0 20 21 2( 1)

( 1) ( 1)0 ( 1)1 ( 1)( 1)

( , ,..., )

( , ,..., )

...

( , ,..., )

F x x x w

F x x x w

F w x w x w x w w

X f f f

X f f f

X f f f





    






  

0 00 01 0( 1)

1 10 11 1( 1)

. . . . .

. . . . .

( 1) ( 1)0 ( 1)1 ( 1)( 1)

...

...

. . . . .

...

F x x x w

F x x x w

F

F w x w x w x w w

X f f f

X f f f

X

X f f f





    

   
   
   

    
   
   
        

The code X in its matrix FWPR FX contains all FWPR 0 1 2 ( 1)( , , ,..., )F F F F wX X X X  of code X in 

the rows of matrix FWPR FX . These rows of FX  always have at least one common element 

weighted at zero position so that the first column of code matrix FX  is always zero. For the same 

example as for WPR, X =1000100001000000100, the fixed weighted position representations of 

code are given as WPR with 0
th

 weighted positions like (0,4,9,16), 

(0,5,12,15),(0,7,10,14),(0,3,7,12).  

0

1

2

3

(0, 4,9,16)

(0,5,12,15)

(0,7,10,14)

(0,3,7,12)

F

F

F

F

X

X

X

X








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The matrix FWPR for this code X is given as 

0 4 9 16

0 5 12 15

0 7 10 14

0 3 7 12

FX

 
 
 
 
 
 

.
 

Such FWPR representation of an unipolar orthogonal code is not unique as it has w 

representations of an orthogonal code. To make the representation of an orthogonal code as 

unique, a new representation is proposed in next chapter. 

2.3 Conventional Methods for Calculations of Correlation Constraints of One 

Dimensional Unipolar (Optical) Orthogonal Codes: 

Let two uni-polar code words X and Y belong to a code set with code parameters 

( , , , )a cn w   .  
0 1 1 0 1 1( , ,..., ), ( , ,..., ); , (0,1) .n n t tX x x x Y y y y x y t        

Definition 2.3.1: [25] 

The maximum of non-zero shift auto-correlation of uni-polar or binary code X is 

given as ax . 

 

1

0

0 1.

( ) mod( ).

n

ax t t m

t

x x for m n

t m implies t m n








   

 


 

 

Example 2.3.1(a): 

Let the code X with length „n‟=13 and code weight „w‟=4, be [0 1 0 1 0 0 1 0 0 0 1 

0 0]. For 0 12,m  the left circular shifted binary sequences (X1,X2,…,X12) of the code X, are 

as follows.     

X =  [0 1 0 1 0 0 1 0 0 0 1 0 0],  X1=  [1 0 1 0 0 1 0 0 0 1 0 0 0],   X2=  [0 1 0 0 1 0 0 0 1 0 0 0 1], 

… , X12= [0 0 1 0 1 0 0 1 0 0 0 1 0].  

The overlapping of weighted bits or non zero shift auto-correlation of code X with its circular 

shifted binary sequences (X1,X2,…X12) are (0,1,1,2,1,1,1,1,1,1,1,0).  The maximum of all such 

values is termed as maximum non-zero shift auto-correlation ax of the code. It will be 2 in this 

case.  

Definition 2.3.2:  [25]                  

If XP is weighted positions representation (WPR) [155] of uni-polar orthogonal 

code X of length „n‟ and weight „w‟, the maximum non-zero shift auto-correlation ax of the code 

is given as  ( ) ( ), ( ), 0 ( , ) 1.ax P Pa X b X a b a b n          XP contains „w‟ integer values 

showing weighted positions or positions of bit 1‟s of the code X. Here

{( )mod : }P P P Pa X a x n x X    . 
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Example 2.3.2(a): 

  Let the uni-polar code X = [1 0 1 0 0 1 0 0 0 1 0 0 0] with code-length „n‟=13, and 

the code-weight „w‟=4, has its weighted positions representation XP  = (0,2,5,9). The circular 

shifted sequences of the code X, or (a+ XP) or (b+ XP) for 0 ( , ) 12,a b   are given as 

following. [(0,2,5,9), (1,3,6,10), (2,4,7,11), (3,5,8,12), [(0,4,6,9), (1,5,7,10), (2,6,8,11), 

(3,7,9,12), (0,4,8,10), (1,5,9,11), (2,6,10,12), (0,3,7,11), (1,4,8,12)]. The intersection of these 

circular shifted weighted position sequences (a+XP) with (b+XP) is not greater than 2. Hence the 

maximum non-zero shift auto-correlation of the code X is equal to 2. 

 

Definition 2.3.3:[142]                  

If XP is weighted positions representation [155] of uni-polar orthogonal code X of 

length „n‟ and weight „w‟, the maximum non-zero shift auto-correlation ax of the code is also 

given as ( ) ( ), (0 1)ax P PX a X a n        

Example 2.3.3(a):                 

Let us take same code X as in examples 2.3.1(a) and 2.3.2(a). The intersection of 

WPR of code X, XP = (0,2,5,9) with circular shifted sequences of X or (a+XP) is not greater than 

2. Hence the maximum non-zero shift auto-correlation ax  of the code X is equal to 2. 

Definition 2.3.4: [23],[25] 

The auto-correlation constraint a  for the set of 1-DUOC (one dimensional 

unipolar orthogonal codes) is always greater than or equal to maximum non-zero shift auto-

correlation ax of every code within the set. .a ax   

Example 2.3.4(a):  

Let the set of one dimensional uni-polar orthogonal codes is (X,Y,Z,A,B). The 

maximum non-zero shift auto-correlation ax of the codes X,Y,Z,A,B are 1,2,1,2,2 respectively. 

The auto-correlation constraint a  for the set is maximum of (1,2,1,2,2)  i.e., 2.a   

Lemma 2.3.5: [23],[25] 

For code X, the maximum non-zero shift auto-correlation ax  satisfy the following 

relation, 1 1,ax w   for 1-DUOC with code parameters ( , 2)n w . 

Proof:  

In the uni-polar code with 2w , at least one weighted bit will always overlap with 

one of the ( 1)n  non-zero circular shifted versions. No uni-polar code      

with its every non-zero circular shifted version results in ' 'w overlapped weighted bits. Because 

' 'w overlapping weighted bits occurs only with the codes un-shifted or zero (mod (n)) circular 

shifted versions. Then the maximum overlapping of code with its non-zero circular shifted 

versions is less than w  i.e. less than equal to ( 1).w Hence for the code parameters ( , 2)n w the 

values of maximum non-zero  

shift auto-correlation of the codes lies in the range 1 to ( 1).w   
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Definition 2.3.6: [23],[25] 

The maximum cross-correlation of a uni-polar code X with another code Y and all 

the ( 1)n  circular shifted versions of code Y is defined as cross-correlation 
cxy  for the pair of 

codes X and Y and satisfies 
1 1

0 0

, 0 1.
n n

cxy t t m t t m

t t

x y or y x for m n
 

 

 

                      

Example 2.3.6(a):                  

Let the code length „n‟=13, code weight „w‟=4, the uni-polar code X =[0 1 0 1 0 0 1 

0 0 0 1 0 0] and code Y=[1 1 0 1 0 0 0 0 0 1 0 0 0]. The maximum non-zero shift auto-correlation 

of both X and Y is 2. The overlapping of weighted bits of code Y with X and all 12 circular 

shifted versions of code X i.e. (X1,X2,…,X12) (as given in example 2.3.1(a)) are 

(2,0,1,2,1,0,2,1,2,0,2,1,2). The maximum of these cross correlation values is 2 which is the cross-

correlation for the pair of codes X and Y, i.e. 2cxy  . 

Definition 2.3.7:  [25]                   

If XP and YP are weighted positions representation (WPR) [144] of uni-polar 

orthogonal code X and Y respectively with code-length „n‟ and weight „w‟, the cross-correlation 

cxy of the pair of code X and Y is given as ( ) ( ), 0 ( , ) 1.cxy P Pa X b Y a b n         

Example 2.3.7(a):  

Let the code length „n‟=13, code weight „w‟=4, the uni-polar code X= [1 0 1 0 0 1 0 

0 0 1 0 0 0] and code Y= [1 1 0 1 0 0 0 0 0 1 0 0 0] with its weighted positions representation XP 

= (0,2,5,9) and YP = (0,1,3,9) respectively. The circular shifted 

sequences of the code X, or (a+XP) with its weighted positions are given as [(0,2,5,9), (1,3,6,10), 

(2,4,7,11), (3,5,8,12)], (0,4,6,9), (1,5,7,10), (2,6,8,11), (3,7,9,12), (0,4,8,10), (1,5,9,11), 

(2,6,10,12), (0,3,7,11), (1,4,8,12)]. The circular shifted sequences of the code Y, or (b+Yp) with 

its weighted positions are given as [(0,1,3,9), (1,2,4,10), (2,3,5,11), (3,4,6,12), (0,4,5,7), 

(1,5,6,8), (2,6,7,9), (3,7,8,10), (4,8,9,11), (5,9,10,12), (0,6,10,11), (1,7,11,12), (0,2,8,12)]. The 

intersection of these circular shifted sequences (a+XP) and (b+YP) with its weighted positions is 

not greater than 2. Hence the cross-correlation 
cxy  for the code X and Y is equal to 2.  

Definition 2.3.8: [153] 

 If uni-polar code X and Y of length „n‟ and weight „w‟ are represented with its „w‟ 

weighted positions, the cross-correlation cxy of the code is also given as  

( ) ( ), (0 1)

( ) ( ), (0 1)

cxy P P

cxy P P

X a Y a n

Alternatively

Y a X a n





     

     
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Example 2.3.8(a):  
Let the code length be „n‟=13, code weight „w‟=4, the uni-polar code X= [1 0 1 0 0 

1 0 0 0 1 0 0 0] and code Y= [1 1 0 1 0 0 0 0 0 1 0 0 0] with their weighted  

positions representation XP = (0,2,5,9) and YP = (0,1,3,9) respectively. The circular shifted 

sequences of the code Y, or (a+YP) are given as in example 2.3.7(a). The intersection of code XP 

and the circular shifted sequences (a+YP) with its weighted positions is not greater than 2. Hence 

the cross-correlation 
cxy  of the code X and code Y is equal to 2. 

 

 

Definition 2.3.9: [23],[25] 

The cross-correlation constraint c for the set of 1-DUOCs is always greater than or 

equal to cross-correlation 
cxy of any pair of codes within the set . ; , .c cxy x y    

 

Example 2.3.9(a):  

Let the set of 1-DUOCs be (X,Y,Z,A,B). The pairs of codes within set are 

(XY,XZ,XA,XB,YZ,YA,YB,ZA,ZB,AB). Let the cross-correlation values for these pairs of 

codes are (2,1,2,2,1,1,2,1,1,2) respectively. The cross-correlation constraint c for the set is 

maximum of (2,1,2,2,1,1,2,1,1,2), i.e. 2c   for the set of codes (X,Y,Z,A,B). 

 

Lemma 2.3.10: [23],[25] 

For the pair of 1-DUOC with code- parameters ( , 2)n w , X and Y, the cross-

correlation  cxy  satisfies the following relation, 1 1cxy w   . 

Proof: In a pair of uni-polar codes with code parameters ( , 2)n w , at least one weighted bit of 

one uni-polar code will always overlapped with other code or one of the ( 1)n non-zero circular 

shifted versions of other code. Further no uni-polar code will results in ' 'w overlapping of 

weighted bits with other code or non-zero circular shifted versions of other code. Because ' 'w
overlapping of weighted bits occurs only with its own un-shifted or zero (mod (n)) circular 

shifted versions. Thus the maximum overlapping of code with other code or non-zero circular 

shifted versions of other code may result in less than w  or less than equal to ( 1)w overlapping. 

Hence, for the code parameters ( , 2)n w , the cross-correlation of the pair of codes lies between 

1 to ( 1).w  The one-dimensional uni-polar orthogonal codes with 1cxy   are perfect uni-polar 

orthogonal codes, while the codes with 1 ( 1)cxy w    are quasi orthogonal.   

 

Theorem 2.3.11:  

The orthogonality and cardinality of the maximal set of one-dimensional uni-polar 

orthogonal codes are inversely proportional to each other.  

 

Proof: 

 The pair of uni-polar codes with 1,c   is termed as maximum orthogonal             
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1-DUOC pair. While the pair of uni-polar codes with 1,c w   is termed as minimum 

orthogonal pair of 1-DUOC. For a c      where  1 1w   ,the maximum number 

of one dimensional uni-polar orthogonal codes Z, within a set, is given by following Johnson 

bound [25],[34],[78],[122] 
1 1

( , , ) ( , , ).
1

A

n n
Z n w J n w

w w w


 



     
         

 Here a    represents 

largest integer less than equal to a. For 1w   , 

1
1 1 ( 1)

( , , 1)
1 1

n

wn

n n w
Z n w w C

w w

      
             

which represent maximum number of 1-

DUOCs within one set with minimum orthogonality. For, 11
1

1, ( , ,1) n
w w

Z n w 


       , which 

represents to minimum number of uni-polar orthogonal codes in one set with maximum 

orthogonality.  For ( )p  , (1 1)p w   , the cardinality of  maximal set is 

1 1
( , , )

1

n n p
Z n w p

w w w p

    
    

     

, which is less than the cardinality of maximal set for  ( 1)p   , 

 

1 1 ( 1)
( , , 1)

1 ( 1)

n n p n p
Z n w p

w w w p w p

       
      

         

. While the orthogonality for the set with ( )p  is 

greater than for the set with ( 1)p   . It proves that orthogonality and cardinality of maximal  

set are inversely related to each other.   

Lemma 2.3.12: 

The maximal set of 1-DUOCs with parameters ( , , , )a cn w    forms a maximal clique 

of codes.  

 

Proof:  

All the codes in a set are such that every pair of codes is having correlation 

properties within given range. If the codes are assumed to be nodes, then each node is connected 

with all others with the given properties. This shows that all the codes within set form a clique. If 

the cardinality of the set is maximum or equal to upper bound; it means that the formed clique of 

codes is maximal. A code is chosen and we can keep on adding another code to extend the set so 

that extended set is a clique. Once it is no more possible to extend the set further, we have 

achieved a maximal clique.    

 

Theorem 2.3.13:  

For the code parameters ( , , , )a cn w   , the cardinality of maximal clique set and 

number of maximal clique sets are inversely proportional to each other.  

Proof:  As per Theorem 2.1, a single set of the 1-DUOC  is possible with minimum orthogonality 

or ( 1)w   and maximum cardinality. Moreover, for ( )p  , (1 1)p w   , the cardinality of 

the maximal set is less than for ( 1)p   . Then more codes are available for forming more sets 

for ( )p  than for ( 1)p   . It proves that cardinality of maximal set and numbers of 
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maximal sets are inversely proportional to each other.   

 

Lemma 2.3.14:  

The minimum cross-correlation among the multiple maximal clique sets for the 

code parameters ( , , , )a cn w   is equal to ( 1)c  .  

 

Proof: 

For the code parameters ( , , , )a cn w   , the maximal clique set contains the codes 

with auto-correlation constraint less than or equal to a  and cross-correlation constraint less than 

or equal to c . The cross correlation between two independent maximal clique sets is equal to 

maximum cross-correlation for the pair of codes. One code is taken from one set and other one 

from the second. This maximum cross-correlation cannot be less than or equal to c because both 

the sets are maximal. It will always be greater than c . Hence the minimum value of the cross-

correlation among the multiple independent maximal clique sets is equal to ( 1)c  . This also 

implies that no code shall be common between two maximal clique sets. If such a code exist, 

cross correlation between codes taken from two sets will be less than equal to c  and thus sets 

are not maximal clique sets.    

 

Lemma 2.3.15: [25],[34],[78],[122] 

For a c      where1 1,w    The maximum number of 

unipolar/optical orthogonal codes, Z, in one set is given by the following Johnson bounds.
 

Johnson‟s bound A is, 

1 1
( , , ) ( , , ).

1
A

n n
Z n w J n w

w w w


 



    
         

  

The Johnson‟s bound B holds only when
2w n , and is, 

2
( , , ) 1, ( , , );B

w
Z n w Min J n w

w n


 



  
     

 

The improved Johnson‟s Bound C for any integer k, 1 1k    ; such that
2( ) ( )( ),w k n k k    is given as  

1 1 ( 1)
( , , ) ( , , );

1 ( 1)
C

n n k
Z n w h J n w

w w w k
 

     
     

      
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Here 
2

( )( )
(n-k), 

( ) ( )( )

n k w
h Min

w k n k k





   
   

     
 ; 

 a   denotes the largest integer value less than  „a‟ . In short,  JA, JB, and JC denotes the Johnson 

bound A, B, and C respectively [25], [45], [133]. 

The one dimensional unipolar orthogonal codes have application in incoherent 

optical code division multiple access systems. The optical orthogonal pulsed signal can be 

generated by putting an optical pulse at the each position of bit „1‟ and no pulses at the positions 

of bit „0‟s in the unipolar orthogonal codes using optical delay lines [12,18]. In literature there is 

a lot of one dimensional optical orthogonal code design schemes are proposed [8-11, 14-14, 21, 

25, 55-57, 59, 64, 65, 68, 77-78, 90-91, 95-96, 103-104, 112, 125, 133, 138, 140, 145]. Out of 

which some schemes are discussed which design set of unipolar orthogonal codes for fixed 

values of code length, code weight, and correlation constraints.  

 

2.4 Already Proposed 1-D OOC Design Schemes in Literature              
In literature some optical orthogonal code design schemes are proposed time to time, some of 

these are discussed as following 

2.4.1 OOCs based on Prime sequences 
Suppose a Galois Field GF(p) = (0,1,2,….p-1), p is a prime, is used to construct the 

prime sequence   p p p p

x x x xs (0),s (1),s (2),...,s ( 1) ,P

XS p   here ( ) . (mod( )) ,p

xs j x j p for 

, ( ),x j GF p The binary code word  (0), (1),..., ( 1)p p p p

x x x xC c c c n  with 

1 ( ) ( ); 0,1,.. 1
 ( ) =

0

p

p x

x

for i s j jp mod p j p
c i

otherwise

    



  Where i = 0, 1,…,p
2
-1. 

This scheme generate the set of optical orthogonal codes ( , , , )a cn w    for any prime number p, 

such that weight w = p, length n = p
2
, auto-correlation constraint 1a p    and cross correlation 

constraint 2c  . The number of optical orthogonal codes in the set are given by N = p [15]. The 

computational complexity of this scheme is of the order  
3( )O w .           

For example p=5, GF(p) = (0,1,2,3,4), 0

PS  = {0, 0, 0, 0, 0}, 1

PS  = {0, 1, 2, 3, 4},                         

2

PS  = {0, 2, 4, 1,3}, 3

PS  =  {0, 3, 1, 4, 2},  4

PS  = {0, 4,  3, 2, 1}.                        

0

PC  = {10000 10000 10000 10000 10000}                                                                                 

1

PC  = {10000 01000 00100 00010 00001}                                                                                   

2

PC  = {10000 00100 00001 01000 00010}                                                                                 
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3

PC  = {10000 00010 01000 00001 00100}                          

4

PC  = {10000 00001 00010 00100 01000} 

These designed codes are assigned to users of incoherent optical CDMA system to improve the 

bit error rate (BER) performance of the system [16, 69]. 

2.4.2 Quasi Prime OOCs 
This scheme is the extension of the OOC set based on prime sequences and is 

explained in [55]. A quasi prime code qp

xkC  is a time shifted and extended (or contracted) version 

of prime sequence code p

xC . It is given as, with q number of 1‟s, ( ) ([ ] )qp p

xk x nc i c i kp   ;   where i 

= 0,1,….qp-1. Here in code set ( , , , )a cn w  
 
n = qp, (r-1)p<q<rp ;p is a prime number, q,r and k 

are positive integers; weight w = q; auto-correlation constraint a  = (p-1)r, cross-correlation 

constraint c  = 2  and the number of code-words N = p ; The computational complexity of 

this scheme is of the order of
3( )O w . for example p =5, q=7, k=3, with the example given as in 

(2.4.1), the extended version of prime codes                         

0

qp

kC  = {10000 10000 10000 10000 10000 10000 10000}                      

1

qp

kC  = {00010 00001 10000 01000 00100 00010 00001}                       

2

qp

kC  = {01000 00010 10000 00100 00001 01000 00010}                                                       

3

qp

kC  = {00001 00100 10000 00010 01000 00001 00100}                                                        

4

qp

kC  = {00100 01000 10000 00001 00010 00100 01000}                                            

for another example p=5, q=4, k=3, with the example given as in  (2.2.1), the contracted version 

of prime codes                                                               

0

qp

kC  = {10000 10000 10000 10000}                          

1

qp

kC  = {00010 00001 10000 01000}                                                                                 

2

qp

kC  = {01000 00010 10000 00100}                                                                                           

3

qp

kC  = {00001 00100 10000 00010}                          

4

qp

kC  = {00100 01000 10000 00001} 

2.4.3 OOCs based on Quadratic Congruence 

The optical orthogonal code  (0), (1),..., ( 1)p p p p

x x x xC c c c n  is based on quadratic 

placement operator )(kyx , for a prime integer p, x = [1,2,…,p-1], and 
i
p

k     ,
such that 

2
1 ( ) ,

( ) 0 : 1
0

xp

x

if y k kp i
c i i p

otherwise

 
  

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Here ( 1)
( ) ( ( ))

2
x

xk k
y k mod p




 
and  ( 1) ( ) 1 ( ( ))x xy k y k k mod p                                      

here the orthogonal code set ( , , , )a cn w    is constructed for the length n = p
2
; weight w = p ; a  

= 2 ; c  = 4  as in [45]. The computational complexity of this scheme and its extended version is 

of the order
3( )O w .                                                                         

For example, p=5, x=2, the quadratic placement operators are given as   
1

ky {0 1 3 1 0},      

2

ky {0 2 1 2 0}, 
3

ky {0 3 4 3 0}, 
4

ky {0 4 2 4 0} and corresponding codes are given as         
5

1C  = {10000 01000 00010 01000 10000}                          

5

2C  = {10000 00100 01000 00100 10000}                         
5

3C  = {10000 00010 00001 00010 10000}                         
5

4C  = {10000 00001 00100 00001 10000}                  

The Extended Quadratic Congruence, where the length of Quadratic Congruence code is 

extended, can be used for construction of code of length n = p(2p-1),  weight w = p, 

autocorrelation constraint a  =1, and cross correlation constraint c  = 2 as explained in [46].  

5

1C  = {100000000 010000000 000100000 010000000 100000000}                                 
5

2C  = {100000000 001000000 010000000 001000000 100000000}                                   

5

3C  = {100000000 000100000 000010000 000100000 100000000}                                 
5

4C  = {100000000 000010000 001000000 000010000 100000000} 

2.4.4 OOCs based on Projective Geometry 
A Projective Geometry PG(m,q) of order m, is constructed from a vector space 

V(m+1,q) of dimension m+1 over GF(q), where GF(q) is Galois Field with q elements.. An s-

space in a PG(m,q) corresponds to (s+1) dimensional space through the origin in V(m+1,q) [64]. 

Here one-dimensional subspaces of V are the points and the two dimensional subspaces of V are 

the lines. Number of points in PG(m,q),  
1 1

1

mq
n

q

 
  

 
 will give the  length of the codeword 

Number of points in the s-space, 
1 1

1

sq
w

q

 
  

 
 will give the weight of the codeword The 

intersection of two s space is an (s-1)-space. Number of points in the (s-1)-space, 

1
max( , )

1

s

a c

q

q
  

 
  

 
. The cyclic shift of an s space is also an s-space. The orbit is the set 

of all s-spaces that are cyclic shift of each other. The number of code words is always equal to 

number of complete orbits. A codeword consists of discrete logarithm of points in each 
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representative s-space.  The intersection of two s space is an (s-1) space. Number of points 

in the   (s-1)-space, 
1

max( , )
1

s

a c

q

q
  

 
  

 
.   

The cyclic shift of an s space is also an s-space. The orbit is the set of all s-spaces 

that are cyclic shift of each other. The number of code words is always equal to number of 

complete orbits. A codeword consists of discrete logarithm of points in each representative s-

space.         

Total number of s-spaces, 
1

1

s

n

s
M

w

s

 
 

 
 
 

 
   

Total number of code words constructed using 

PG(m,q) for given value of s are equal to M = 








n

M s , [64,65].                                                    

For example, m=2, q=2, then n = 7, w = q+1=3, for s=1,  =1, the number of lines M1=n(n-

1)/w(w-1) =7 for which total number of code words M = 1 /M n   =1, using Galois Field 

GF(q
m+1

) i.e. GF(8) and taking x
3
+x

2
+1 as the primitive polynomial with primitive element α, 

such that α
i
 = β to be element of GF(8) for 

10 2mi q    . Here α
0
 = 001, α

1
 = 010, α

2
 = 100, α

3
 

= 101, α
4
 = 111, α

5
 = 011, α

6
 = 110, with the lines of PG(2,2) with their constituent points can be 

given such as {(0,1,5), (0,2,3), (0,4,6), (1,2,6), (1,3,4), (2,4,5), (3,5,6)}. These lines represent to 

same single code with their weighted positions given by any one of the lines as above.  

2.4.5 OOCs based on Error Correcting Codes 
 An  „t‟ error correcting code is represented by (n,d,w), where n is length, d is 

minimum hamming distance between any two code words, w is the constant weight of a code 

from the code-set. The minimum distance d   2t+1. An OOC  (n, w, a , c ) is equivalent to 

constant weight error correcting codes with minimum distance d = 2w – 2 , where   is 

maximum of ( a , c ) [45,46,54,66]. Only those error correcting code are selected for optical 

orthogonal code set whose cyclic shifts are also code word. For example the constant weight 

error correcting codes (n,d,w) = (19,4,3) can be used to generate optical orthogonal codes            

( n,w, ) = (19,3,1), here  =(2w-d)/2. The generated optical orthogonal codes are 

C1=(12,17,18), C2=(11,15,18), and C3=(8,16,18). 

2.4.6 OOCs based on Hadamard Matrix 
The hadamard matrix of lowest order 2 is as given below 

  H2 = 








01

11
and                         

The hadamard matrix of order 2n can be given as          
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  H2n = 








nn

nn

HH

HH

        

 
nH is complement of nH

                          
The possible order of hadamard matrix is 2,4, 8,16,42, 64,….   

The construction of optical orthogonal codes using hadamard matrix can be studied by taking 

hadamard matrix of order 8 in the given example. 

 H8 = 

































01101001

11000011

10100101

00001111

10011001

00110011

01010101

11111111

 

the other matrix H7 can be constructed from Hadamard matrix H8 by deleting first row and first 

column, hence H7 is 

   H7 = 





























0110100

1100001

1010010

0000111

1001100

0011001

0101010

 

Each row from H7 can be written in form of weight set as R1 = (1,3,5), R2 = (0,3,4), 

R3 = (2,3,6), R4 = (1,2,3), R5 = (1,4,6), R6 = (0,5,6), R7 = (2,4,5). After checking the periodicity, 

we find R1 = R5 ;  R2 = R3 ;  R4 = R6 ; hence non repeated orthogonal codes are                     

C1 = 0101010; C2 = 1001100; C3 = 1110000; C4 = 0010110;                       

The generated orthogonal code set of length n = 7 ; weight w = 3 ; a = 1 ;  c  = 2 In the same 

way any Hadamard matrix of order n can be used to generate the matrix of order n-1 by deleting 

1
st
 row and 1

st
 column. The rows of the matrix of order n – 1 form a code set. From the same 

code set the repeated or cyclically shifted codes are included only once to form the optical 

orthogonal code set of length n =4t-1, weight w =2t-1, a = t-1, c  = t, t is any positive integer 

[90]. 
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2.4.7  OOCs based on Skolem Sequences 
The skolem sequences of order M, can be written as collection of ordered pairs 

 ( , ) :1 ,i i i ia b i M b a i    with    Mba
M

i ii 2,.....,2,1,
1


 . The skolem sequence of order M 

exist only for M = 0 (mod 4) or 1 (mod 4). M is the number of code words and the length of code 

word n = 6M+1. The orthogonal codes of weight w =3 can be written as  321 ,, iii xxx , x ij  

represents the j
th

 position of bit „1‟ in the  

i
th

 code word for 1 i M  .                     

x 1i  = 0 for all i,                       

x 2i  = i for all I,                      

x 3i  is obtained from the skolem sequence in the way such that for example skolem sequence of 

order M =5 is given as S =  (1,2) (7,9) (3,6) (4,8) (5,10)   For i =1,   x 3i  = M+2 = 7 ;        

For i =2,  x 3i  = M+9 = 14;  For i =3,   x 3i  = M+6  =11;  For i =4,   x 3i  = M+8  =13;                   

For i =5    x 3i  = M+10 =15; The optical orthogonal code set is {(0,1,7), (0,2,14), (0,3,11), 

(0,4,13), (0,5,15)} The corresponding codes of length n =31, w=3, 1a , c =1;           

C1 = (1100000100000000000000000000000)                                        

C2 = (1010000000000010000000000000000)                         

C3 = (1001000000010000000000000000000)                         

C4 = (1000100000000100000000000000000)                          

C5 = (1000010000000001000000000000000) 

Similarly other code words of length n =6M+1, weight w=3 and 1a , c =1 can be generated 

using skolem sequences of order M as in [91].  

2.4.8 OOCs based on Table of Prime 
The elements of Galois Field GF(p), where p is prime, are (1,2,3,….p-1). Suppose

  is a primitive root for prime p, then all the elements of GF(p) can be represented by {  x , for 

x = (0,1,2….p-2)}. The prime sequence codes are given as  
pS1 = ( 0 , 1 ,……., 2p )mod(p);        

pS2  = 2
pS1 (mod(p)) ; pS3  = 3

pS1 (mod(p));  … 
p

pS 1  = (p-1) 
pS1 (mod(p)).    

          It can be best understood by following example for  p=5 and it‟s primitive root     

  =2 and GF(5) = (1 2 3 4) then  2
0
  =  1, 2

1
  =  2,     2

2
  =  4,    2

3
  =  8mod(5) =3.                   

The prime sequence codes  
pS1  = (1 2 4 3)                                                                                                         

pS2  = (2 4 8 6)mod(5) = (2 4 3 1)                             
pS3  = (3 6 12 9)mod(5) = (3 1 2 4)                             

pS4  = (4 8 16 12)mod(5) = (4 3 1 2)                        

Then the orthogonal code set with weighted positions is given below           
pC1  = ( 1  p+2  2p+4  3p+3 )  = ( 1  7  14  18 )             
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pC2  = ( 2  p+4  2p+3  3p+1 )  = ( 2  9  13  16 )             
pC3  = ( 3  p+1  2p+2  3p+4 )  = ( 3  6  12  19 )            

pC4  = ( 4  p+3  2p+1  3p+2 )  = ( 4  8  11  17 )                        

The corresponding M= p-1 = 4 codes of length n = p
2
-p =20, weight w = p-1= 4, 1a ,           

c = p-2 =3 will be                    

C1 = ( 01000 00100 00001 00010) ;                 

C2 = ( 00100 00001 00010 01000) ;                 

C3 = ( 00010 01000 00100 00001) ;                 

C4 = ( 00001 00010 01000 00100) ; Similarly for other prime p and root   

 , the GF(p), its elements, prime sequence codes and then orthogonal code set can be generated 

as in [91]. 

2.4.9 OOCs based on Number Theory 
This generate [91] the orthogonal codes (n, 3, 2, 2), for length n to be prime             

n = 3t+2 for some selected integer values of t and    is primitive root of n.  The i
th 

codeword out 

of t possible code words is given by following equation                                     

Ci  =   {1,   )1(  iw ,   )1(2  idw  }, where d = c                             
It can be best understood by following example of t=5, n =17, w =3, a  c = 2.                     

The primitive root of prime number 17 is  =3.                

S1 = (1,  3
,   8

 )  =  (1, 10, 16)                   

S2 = (1,  4
,   9

 )  =  (1, 13, 14)                 

S3 = (1,  5
,   10

)  =  (1, 5,   8 )                            

S4 = (1,  6
,   11

)  =  (1, 15, 7 )                 

S5 = (1,  7
,   12

)  =  (1, 11, 4 ),                                                                                                          

The corresponding codes are                                                                                          

C1 = ( 01000000001000001)                                    

C2 = ( 01000000000001100)                                       

C3 = ( 01000100100000000)                             

C4 = ( 01000001000000010)                                      

C5 = ( 01001000000100000). 

2.4.10 OOCs based on Quadratic Residues 
For any prime p, the quadratic residues (QR) a is defined as a = x

2
 mod(p);  for any 

integer x. The prime „p‟ has following residues (0, x1, x2,……., x(p-1)/2 )   the QR sequence is Q1 =  

(q1, q2, q3,……qp) with q1 = qp = 0 ;  q2 = qp-1 = x1 ;  q3 = x2 ;  and qk = qp-k+1 for 1  k   p. The j
th

 

QR sequence is obtained by multiplying Q1 by j with all elements are given under mod(p) for j = 

1 to p-1.These (p-1) QR sequence  when considered as weighted positions of the binary codes 

with length n represents the orthogonal code set.        

          For example p=5, the quadratic residues are (0,1,4)                                                               

QR sequence Q1 = (0, 1, 4, 1, 0)                                     

QR sequence Q2 = (0, 2, 3, 2, 0)                          
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QR sequence Q3 = (0, 3, 2, 3, 0)                                                                              

QR sequence Q4 = (0, 4, 1, 4, 0)                                       

the orthogonal code set (n, w, ,a  c  ) = ( p
2
, p, 2, 2)                        

S1 = (0, p+1, 2p+4, 3p+1, 4p+0)  = ( 0, 6, 14, 16, 20 )                          

S2 = (0, p+2, 2p+3, 3p+2, 4p+0)  = ( 0, 7, 13, 17, 20 )                           

S3 = (0, p+3, 2p+2, 3p+3, 4p+0)  = ( 0, 8, 12, 18, 20 )                                 

S4 = (0, p+4, 2p+1, 3p+4, 4p+0)  = ( 0, 9, 11, 19, 20 )  

The corresponding code words of code set ( 25, 5, 2, 2) are…                                  

C1 = ( 10000 01000 00001 01000 10000 )                                      

C2 = ( 10000 00100 00010 00100 10000 )                                    

C3 = ( 10000 00010 00100 00010 10000 )                                         

C4 = ( 10000 00001 01000 00001 10000 )  As generated in [91]. 

2.4.11  OOCs based on Balanced Incompleted Block Design (BIBD)  

In [68], there are two families of OOC  sets are constructed using BIBD. First is (n, 

w, 1, 1) with  optimal cardinality N, the second is (n, w, 1, 2) with cardinality 2N.  the code 

design is described [1,68] as follows.  

 (n, w, 1, 1) OOC for odd w 

The weight w = 2m+1 for a positive integer m, the code length n = w(w-1)t+1 for 

those values of t so that n be a prime number. Consider a Galois Field GF(n) with α be the 

primitive root of GF(n) such that values of { logα[α
2mkt 

– 1] } for mk 1  are all distinct with 

modulo m. The generated code „
22 4 4[ , , ,..., ]mi mi mt mi mt mi m t

iC                                                                            

for  i = 0 to t-1 such that code set Ca contains   (C0, C1, C2…Ct-1) optical orthogonal codes. 

          For example w=3, t=5 which shows m=1, n=31, α=3 (primitive root of GF(31). The 

codes are generated as follows 

10 20

0 [1, , ]C     =  [1,25,5]                              
11 21

1 [ , , ]C     = [3,13,15]                                       
2 12 22

2 [ , , ]C    = [9,8,14]                             
3 13 23

3 [ , , ]C     = [27,24,11]                           
4 14 24

4 [ , , ]C    = [19,10,2]                                            

 (n, w, 1, 1) OOC for even w                   
The weight w = 2m for a positive integer m, the code length n = w(w-1)t+1 to be 

prime for some selected values of t. the Galois Field GF(n) with  α be the primitive root of GF(n) 

such that values of { logα[α
2mkt 

– 1] } for mk 1  are all distinct with modulo m. The generated 

code     Ci = [0, α
mi

 , α
mi+2mt

, α
mi+4mt

, . . . ,  α
mi+4m(m-1) t

]   for  i = 0 to t-1, such that code set Ca 

contains (C0, C1, C2,…..Ct-1) optical orthogonal codes.  
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 (n, w, 1, 2) OOC                   
The code set of  (n, w, 1, 2) OOC can be generated from the code set  (n, w, 1, 1) 

OOC  as follows, suppose (n, w, 1, 1) OOC code set Ca contains the codes (C0, C1, C2,…..Ct-1). 

By reversing the order of bit position of all the code, the generated code words are (C0
‟
, C1

‟
, 

C2
‟
,…..Ct-1

‟  
). If  C0 = (c0 c1 c2 c3 …….cn-1)  ; cj  is either 0 or 1 for j to be 0 to n-1, then C0‟ = (cn-

1 cn-2 cn-3 . . . . . . . c2 c1 c0 )  similarly for others. The code set of (n, w, 1, 2) is defined as Cb = (  

C0, C1, C2,…, Ct-1, C0
‟
, C1

‟
, C2

‟
,…..Ct-1

‟  
). 

 

2.5 Comparisons with Ideal Scheme               

All the schemes proposed in literature, for design of one dimensional optical 

orthogonal codes, have some limitation over cardinality of code set, number of code sets 

designed, specific code length, code weight, and correlation constraints. It can be imagined an 

ideal scheme for design of one dimensional unipolar (optical) orthogonal codes and their 

multiple possible sets for all general values of code length, code weight and correlation 

constraints. The ideal scheme might be generating one dimensional unipolar  (optical) orthogonal 

codes for any code length n, n>0, any weight w, 0 w n  and correlation constraints ,a c  , 

such that 1 , 1a c w    along with all possible such sets for given parameters 

( , , , )a cn w   . The computational complexity of ideal scheme should be very low. The detailed 

comparison is given in following Table 2.1.  

2.6 Conclusion                    

In this chapter, the conventional representation and conventional methods for 

calculation of auto-correlation constraint and cross correlation constraints are discussed. Besides 

of it, the properties of one dimensional unipolar (optical) orthogonal codes are described under 

some lemmas, definitions and theorems which are nothing but the re-explanation of the 

properties observed in literature for optical orthogonal codes. Some of schemes already proposed 

in literature, are detailed with design of one dimensional optical orthogonal codes within a set for 

specific code length „n‟, code weight „w‟ and correlation constraints. These schemes are being 

compared with an assumed ideal scheme which might be generating all possible sets of one 

dimensional unipolar (optical) orthogonal codes with maximum cardinality for general values of 

code length „n‟, code weight „w‟ and correlation constraints ( , )a c  .  

The next chapter deals with difference of positions representation (DoPR) and a 

new less complex method to calculate correlation constraints of one dimensional unipolar 

(optical) orthogonal codes. It also discuss about two proposed schemes to design one 

dimensional unipolar (optical) orthogonal codes and their some new properties by mentioning 

lemmas, definitions and theorems.   
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Table 2.1:  Comparison of already proposed 1-D OOCs design schemes with ideal scheme.   

 

      

 

 

 

OOC(1D

) based 
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Code 

length 
„n‟ 

Weight 
„w‟ 

Auto-

correlation 

constraint 

a  

Cross-

correlation 

constraint c  

Cardina

lity of 

code-

set 

No. of code 

sets 
Computation

al 

complexity 

Other 
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Sequence 
p

2 p p-1 2 p < Z one 3( )O w  p is a prime 

number 

Quasi-

prime 
qp q r(p-1) 2r P < Z one 3( )O w  „‟,     

(r-1)p< 
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r,q  
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Qad. 

Congr 
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p
2 

p 2 4 p-1<Z  one 3( )O w  p is a prime 

Projectiv
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Geometr
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PG(m,q) 
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











1

11

q

qm

 













1
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q

q s

 














1

1

q

q s

 












1

1

q

q s

 

=Z one ( )wO n  q is no. of 

elements in 

Galois field 

GF(q) 

Error 
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n w (2w-d)/2 (2w-d)/2 =Z one ( )wO n  d is min. 

hamming 

dist. 
Hadamar

d Matrix 
2

v
-1 v 1 2 < Z one ( )wO n  v is +ve 

integer 
Skolem 
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6M+1 3 1 1 M<Z one ( )wO n  M is +ve 

intg. 

Table of 

Prime 
p

2
-p p-1 1 p-2 p-1<Z one ( )wO n  p is a prime 

Number 

Theory 
 n =3t+2 3 2 2 t one ( )wO n  n is a prime 

Quad. 

residues 
p

2 p 2 2 p-1 one ( )wO n  P is a prime 

BIBD n =w(w-

1)t+1 
w=2m 
w=2m+1 

1 1,2 t one ( )wO n  n is a prime, 

m +ve intg. 
Ideal 

Scheme 
n>0 0<w<n 1 to w-1 1 to w-1 Z All possible ( )wO n  This scheme 

is not in 

existence 
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CHAPTER 3 

 

3. DESIGN OF ONE DIMENSIONAL UNIPOLAR (OPTICAL) 

ORTHOGONAL CODES AND THEIR MAXIMAL CLIQUE SETS     

  

3.1 Introduction: 

In this chapter, the generation of one dimensional unipolar (optical) orthogonal 

codes in multiple sets is discussed. Each set contains the codes with maximum cardinality for 

given code length „n‟, given code weight „w‟, auto-correlation constraints less than or equal to 

a , and cross-correlation constraints less than or equal to c  with positive integer values and 

boundaries like 1 ,a c w n     and w is co-prime with n. The maximum cardinality or upper 

bound of each set of codes is given by Johnson bounds [25],[45],[89],[133]. A unique 

representation named be difference of positions representation (DoPR) and new lower complex 

method for calculation of auto-correlation as well as cross-correlation constraints of one 

dimensional unipolar (optical) orthogonal codes are also proposed in this chapter. These 

generated codes provide flexibility for selection of one dimensional unipolar (optical) orthogonal 

codes from same set to multiple users of incoherent optical code division multiple access 

(CDMA) systems. The generated multiple sets provide flexibility for selection of a set of one 

dimensional unipolar orthogonal codes to be assigned to a set of users of incoherent optical 

CDMA systems. Two search algorithms are proposed which find multiple sets of unipolar 

(optical) orthogonal codes. The first algorithm finds all possible sets of unipolar (optical) 

orthogonal codes with maximum cardinality for code length „n‟, code weight „w‟ such that w and 

n are co-prime, auto-correlation constraint and cross-correlation constraint from the range 1 to w-

1 using direct search method. This algorithm works well upto n= 47 and w=4 for auto-

correlation and cross-correlation constraints lying from 1 to 3. The second algorithm uses clique 

search method to find all sets of codes not only for the same length and the same weight but also 

for the multi-length and multi-weight one dimensional unipolar orthogonal codes. This algorithm 

work well upto n= 257 and w=5 for auto-correlation and cross-correlation constraints lying from 

1 to 2. The algorithm work well is quoted in the sense of timing required in execution of 

programs.  

Second algorithm, proposing the codes and their all multiple sets using clique 

search method has reduced computational complexity. These algorithms are generating their 

codes in difference of positions representation (DoPR) proposed here. These codes can be 

converted into proper binary sequences which can be assigned to multiple users of incoherent 

optical cdma system. 

 

3.2 Difference of Positions Representation (DoPR) of 1-D U(O)OC 

Conventionally optical orthogonal codes are represented with their weighted 

positions [66],[70],[89],[92],[110],[116],[117],[128],[153] which is not a unique representation 

of the code because weighted positions always change with circular shift of the code. One-
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dimensional uni-polar orthogonal codes are assumed to be the same with every circular shift of 

the code [128] for asynchronous use of the code in the multiple access systems. The difference of 

positions representation (DoPR) of the code remains same even with circular shift of the code. 

The DoPR is taken from difference families of optical orthogonal codes discussed in [140-143], 

[153]. 

Lemma 3.2.1:  

The „w‟ differences of consecutive weighted positions of one-dimensional uni-polar 

orthogonal code remain unchanged for every circular shift of the uni-polar code [128]. 

 

Proof: 

The uni-polar code X with code length „n‟ and weight „w‟ has „w‟ weighted  

positions. The binary code X can be put on the periphery of the circle in serial  

order so that last and first bits of the code are adjacent. Now on every circular shift of the binary 

code around the circle, the difference of second and first weighted position remains the same. 

Similarly for every circular shift of the code, the difference between (j+1)
th

 and j
th

 weighted 

positions also remains the same.
 
Finally, it can be observed that all the „w‟ differences of 

consecutive weighted positions of the code remains unchanged on every circular shift of the 

code. Here ( )j w and difference is calculated under modulo n arithmetic.   

The lemma 3.2.1 gives the idea for unique representation of the code having „w‟ 

differences of consecutive weighted positions of the code. These „w‟ differences of consecutive 

weighted positions of the code is termed as difference of positions representation (DoPR) of the 

code. There are „w‟ or less than „w‟ circular shifted DoPR of the code. One of these circular 

shifted DoPR can be standardized to represent the code uniquely.  

 

Example 3.2.1(a):  

Let us take the code X =[0 1 0 1 0 0 1 0 0 0 1 0 0] with its WPR, XP = (1,3,6,10). 

The differences of consecutive weighted positions of the code are (2,3,4,4) under modulo n = 13 

arithmetic. For every circular shifted version of code X, (X1,X2,…,X12), the differences of 

consecutive weighted positions of these shifted version remain un-changed and these will be  

(2,3,4,4) or (3,4,4,2) or (4,4,2,3) or (4,2,3,4). The DoPR of the code X is (2,3,4,4) and the 

circular shifted DoPR of the code are (3,4,4,2), (4,4,2,3),(4,2,3,4). 

 

Lemma 3.2.2:  

The difference of any two weighted positions of the uni-polar code always lies from 

one to (n-1).   

  

Theorem 3.2.3: [153] 

The sum of all the „w‟ differences of consecutive weighted positions or the elements 

of DoPR of the uni-polar code is always equal to code length „n‟ .  

Proof:  

 For the WPR of uni-polar code X, XP = 1 2( , ,..., )p p pwx x x . 

First difference 1xd of positions 1 2 2 1( , ) ( )p p p px x x x   

Second difference of positions 
3 2 2 3 2( , ), ( )p p x p px x d x x   



42 

UPTU/PhD/07/EC/539 

… 

(w-1)
th

 difference of positions ( 1) ( 1) ( 1)( , ), ( )p w pw x w pw p wx x d x x     

(w)
th

 difference
 
of positions 1 1( , ), ( )pw p xw p pwx x d n x x    

the (w)
th

 difference xwd
 
is calculated under modulo „n‟ arithmetic because 

1( )p pwx x .  

The sum of all „w‟ differences 1 2( ... )x x xwd d d     

1 ( 1) 1(( ) ( ) ... ( ) ( ))pi p pj pi pw p w p pwx x x x x x n x x n          


        Hence proved 

 

3.2.4 Formation of Standard DoPR of the Code: 
 The one-dimensional uni-polar orthogonal code has a proper representation as 

DoPR containing „w‟ differences of consecutive positions (DoPs).  The uni-polar code can be 

represented by any one of the „w‟ circular shifted DoPR. One of these „w‟ circular shifted DoPR 

can be fixed as standard DoPR following the procedure given below. 

 

Step 1. Out of the „w‟ circular shifted DoPR, the DoPR with last element greater than other (w-1) 

DoPs, is selected as standard DoPR of the code. 

Example 3.2.4(a): 

Let the uni-polar code with code length n= 31, weight w=5, be (2,5,13,4,7) in 

DoPR. The circular shifted DoPRs are (5,13,4,7,2), (13,4,7,2,5), (4,7,2,5,13), and (7,2,5,13,4). 

The standard DoPR of the code is (4,7,2,5,13), which has highest value as last element. 

 

Step 2. If after the step „1‟, the code has more than one DoPR with highest last element but equal 

to some DoPs of that DoPR, the DoPR with smallest value of first DoP element, is selected as 

standard DoPR of the code. 

Example 3.2.4(b): 

Let the uni-polar code with code length n= 31, weight w=5, be (6,6,7,5,7) in DoPR. 

The other circular shifted DoPRs of the code are (6,7,5,7,6), (7,5,7,6,6), (5,7,6,6,7),(7,6,6,7,5). 

The DoPRs selected after step 1 for standard DoPR are (6,6,7,5,7) and (5,7,6,6,7). The standard 

DoPR of the code is  (5,7,6,6,7) with smaller first element.  

 

Step 3. If in the step „2‟ we get more than one DoPR with highest last and smallest first DoPs, 

the DoPR with smaller value of second DoP, is selected as standard DOPR. 

Example 3.2.4(c): 

 Let the uni-polar code with code length n= 31, weight w=5, is (6,5,7,6,7) in DoPR. 

The other circular shifted DoPRs of the code are given as follows (5,7,6,7,6), (7,6,7,6,5), 

(6,7,6,5,7), (7,6,5,7,6). The DoPRs selected from step 1 for standard DoPR are (6,5,7,6,7) and 

(6,7,6,5,7). The step 2 could not standardize the code from two DoPR (6,5,7,6,7) and (6,7,6,5,7) 

of the code because first element of both DoPR is same and equal to 6. The step third results in 

the standard DoPR of the code as (6,5,7,6,7) with smaller second DoP element out of both 

circular shifted DoPRs. 
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Step 4. The process may continue till unique and standard DoPR of the code  is found, by 

comparing third, fourth and so on elements in the same fashion.  

 

Lemma 3.2.5:  

In the standard DoPR of the unipolar code of length „n‟ and weight „w‟,  the range 

of first 1
2

w    DoP elements lies from 1 to 1
2

n w   while the range of next 1
2

w    DoP elements 

lies from 1 to 2
2

n w    . 

Proof:  

Let the standard DoPR of the uni-polar code is  1 2( , ,..., )x x xwd d d . The minimum 

values of all the 
1 2 ( 1)( , ,..., )x x x wd d d   

 is equal to 1 as per lemma 3.2.2. The first DoP element 

1( )xd  takes its maximum value when 
2 3 ( 1)( ... ) 1x x x wd d d      and 1( )xw xd d  or 

1( 1)xw xd d   for standard DoPR.  As per Theorem 3.2.3, 

 

1 2 ( 1)

1 1

1 1

1

( ... )

( 1 ... 1 ( 1))

( ) ( 1)

( 1) / 2 .

x x x w xw

x x

x x

x

d d d d n

d d n

d d n w

d n w

    

     

   

    

                                        

Similarly 2( )xd  or one of first ( 1) / 2w    DoP elements ( ),(1 ( 1) / 2 ),xid i w     takes its 

maximum value when other DoP elements except ( )xwd
 

equal to one and ( )xw xid d  or 

( 1)xw xid d   so that ( 1) / 2xid n w      for standard DoPR.  

One of the next remaining ( 1) / 2w     DoP elements except last DoP element 

( ),( ( 1) / 2 ( 1)),xjd w j w       takes maximum value when other DoP elements except ( )xwd
 

equal to one and ( )xw xjd d  or ( )xw xjd d  for  standard DoPR. As per Theorem 3.2.3,
 

1 2 ( 1)( ... )

( ( 2) )

2 ( 2)

( 2) / 2 .

x x x w xw

xj xj

xj

xj

d d d d n

d w d n

d n w

d n w

    

   

  

    

                                    

If one of the first ( 1) / 2w  DoP elements is equal to the last DoP element and no 

element of the second half ( 1) / 2w    DoP elements is equal to the last DoP element, the code 

can be standardized by taking one of its circular shifted versions such that first ( 1) / 2w  DoP 

elements is equal to the last DoP element.  

 

Lemma 3.2.6:  

In the standard DoPR of the uni-polar code of length „n‟ and weight „w‟, the last 

DoP element is in the range /n w    to ( 1)n w  .  
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Proof:  

Suppose the standard DoPR of the uni-polar code is  1 2( , ,..., )x x xwd d d . The last DoP 

element ( )xwd  takes its maximum value when all other DoP elements are minimum or equal to 

one. Then maximum of ( )xwd  is equal to ( 1)n w   as per theorem 3.2.3. The ( )xwd  takes its 

minimum value when all other DoP elements are such that their DoP values are just less than or 

equal to last DoP element. Mathematically some of other DoP elements are equal to /n w   , 

some are /n w   . The minimum value of last DoP element ( )xwd  will be /n w    so that it is 

greater than other DoP values.   

The maximum non-zero shift auto-correlation and cross-correlation values of the 

codes can be calculated using the DoPR or standard DoPR. This calculation is easier than the 

conventional calculation of auto and cross-correlation values of the codes as given in definitions 

2.3.1, 2.3.2, 2.3.3, 2.3.6, 2.3.7 & 2.3.8. For the calculation of correlation values, the DoPR is 

converted into extended DoP matrix of the code. The extended DoP matrix ( ( 1))w w  of the 

code contains not only differences of consecutive weighted positions but also the differences of 

any two weighted positions of the code.  

 

3.2.7 Extended DoP (EDoP) Matrix of the Uni-polar Code:                
 There are „w‟ rows and (w-1) columns in extended DoP matrix of the code. 

 The first row of extended DoP matrix contains differences of first with all other weighted 

positions of the code. 

 The w
th

 row of extended DoP matrix contains the differences of w
th

 weighted position 

with all other weighted positions of the code in cyclic order.  

In j
th

 row, the difference of i
th

 element with (i+1)
st
 element can be placed in any column and 

remaining elements are placed in cyclic order. This mean for same code, we can have ( 1)ww   

EDoP matrices. One of which may be given as follows. 

 

Let us take the code X with DoPR 1 2( , ,..., )x x xwd d d with weight „w‟ and code length 

1 2 ...x x xwn d d d    , the EDoP matrix is formed as follows.     

            

 EDoP

01 02 0( 2) 0( 1)

11 12 1( 2) 1( 1)

( 2)1 ( 2)2 ( 2)( 2) ( 2)( 1)

( 1)1 ( 1)2 ( 1)( 2) ( 1)( 1)

...

...

... ... ... ... ...

...

...

x x x w x w

x x x w x w

x w x w x w w x w w

x w x w x w w x w w

e e e e

e e e e

e e e e

e e e e

 

 

     

     

 
 
 
 
 
 
 
 
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With 

01 1 11 2 ( 2)1 ( 1) ( 1)1

02 1 2 12 2 3

( 2)2 ( 1) ( 1)2 1

0( 2) 1 2 ( 2) 1( 2) 2 3 ( 1)

; ;...; ; .

; ;

...;

; ;

...;

... ; ... ;

...;

x x x x x w x w x w xw

x x x x x x

x w x w xw x w xw x

x w x x x w x w x x x w

e d e d e d e d

e d d e d d

e d d e d d

e d d d e d d d

  

  

   

   

   

   

       

( 2)( 2) ( 1) 1 2 ( 4)

( 1)( 2) 1 2 ( 3)

0( 1) 1 2 ( 1) 1( 1) 2 3

( 2)( 1) ( 1) 1 2 ( 3)

( 1)( 1)

... ;

... ;

... ; ... ;

...;

... ;

x w w x w xw x x x w

x w w xw x x x w

x w x x x w x w x x xw

x w w x w xw x x x w

x w w x

e d d d d d

e d d d d

e d d d e d d d

e d d d d d

e d

   

  

  

   

 

     

    

       

     

 1 2 ( 2)... .w x x x wd d d    

 

  

Example 3.2.7(a): 

Let the DoPR of the code with weight „w‟ equal to 5 is (a,b,c,d,e) and code length 

„n‟=a+b+c+d+e (as per theorem 3.2.3). The extended DoP matrix  (5x4) is given as 

a a b a b c a b c d

b b c b c d b c d e

c c d c d e c d e a

d d e d e a d e a b

e e a e a b e a b c

      
 

     
 
      
 

      
       

. 

 

Lemma 3.2.8: 

 If „a‟ is a DoP element of extended DoP matrix of the code, then the DoP element 

„n-a‟ also exist in the same extended DoP matrix of the code. 

Proof: 

 if „a‟ is a difference of any two weighted positions ( , )pi pjx x of the code such that 

( , ) (0 : 1)i j n  . i.e. ( )pj pia x x  , while the difference between ( , )pj pix x  in circular order is 

( ) ( )pi pjx x n a    in modulo „n‟ arithmetic. It means that two DoP elements „a‟ and „n-a‟ 

represents the difference of two same weighted positions.  

As well as in example 3.2.7(a), n-a=b+c+d+e, which is one element of extended DoP matrix of 

the code (a,b,c,d,e) in DoPR.  
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Lemma 3.2.9:  

 If first ( 1)w  consecutive differences of weighted positions or DoP element 

1 2 ( 1)( , ,..., )x x x wd d d  of DoPR 1 2 ( 1)( , ,..., , )x x x w xwd d d d of the code are known, the extended DoP 

matrix is given as follows.                                                                          

EDoP

01 02 0( 2) 0( 1)

11 12 1( 2) 1( 1)

( 2)1 ( 2)2 ( 2)( 2) ( 2)( 1)

( 1)1 ( 1)2 ( 1)( 2) ( 1)( 1)

...

...

... ... ... ... ...

...

...

x x x w x w

x x x w x w

x w x w x w w x w w

x w x w x w w x w w

e e e e

e e e e

e e e e

e e e e

 

 

     

     

 
 
 
 
 
 
 
 

 

With 

01 1 11 2

( 2)1 ( 1)

( 1)1 1 2 ( 1)

02 1 2 12 2 3

; ;

...;

;

( ( ... ));

; ;

...;

x x x x

x w x w

x w xw x x x w

x x x x x x

e d e d

e d

e d n d d d

e d d e d d

 

 

 



     

   

 

( 2)2 ( 1) 1 2 ( 2)

( 1)2 1 2 3 ( 1)

( ( ... ));

( ( ... ));

...;

x w x w xw x x x w

x w xw x x x x w

e d d n d d d

e d d n d d d

  

 

      

        

0( 2) 1 2 ( 2)

1( 2) 2 3 ( 1)

... ;

... ;

...;

x w x x x w

x w x x x w

e d d d

e d d d

 

 

   

     

( 2)( 2) ( 1) 1 2 ( 4) ( 3) ( 2)

( 1)( 2) 1 2 ( 3) ( 2) ( 1)

0( 1) 1 2 ( 1) 1( 1) 2 3 1

( 2)(

... ( ( ));

... ( ( ));

... ; ... ( );...;

x w w x w xw x x x w x w x w

x w w xw x x x w x w x w

x w x x x w x w x x xw x

x w

e d d d d d n d d

e d d d d n d d

e d d d e d d d n d

e

     

    

  



        

       

         

1) ( 1) 1 2 ( 3) ( 2)

( 1)( 1) 1 2 ( 2) ( 1)

... ( );

... ( ).

w x w xw x x x w x w

x w w xw x x x w x w

d d d d d n d

e d d d d n d

   

   

       

      
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Example 3.2.9(a): 

Let the DoPR of the code with weight „w‟ equal to 5 is (a,b,c,d,e) and code length 

„n‟=a+b+c+d+e. The extended DoP matrix (5x4) is given as  

( )

( ) ( )

( ) ( ) ( )

a a b a b c a b c d

b b c b c d n a

c c d n a b n b

d n a b c n b c n c

n a b c d n b c d n c d n d

      
 

   
 
    
 

      
           

 

 

 

Lemma 3.2.10:  

 If first u ( )u w  consecutive differences of weighted positions or DoP element 

1 2( , ,..., )x x xud d d of DoPR 1 2 ( 1)( , ,..., , )x x x w xwd d d d of the code are known, the extended DoP matrix 

for the incomplete code with u  DoP elements is given as follows. 

EDoP

01 02 0( 1) 0

11 12 1( 1) 1

( 1)1 ( 1)2 ( 1)( 1) ( 1)

( )1 ( )2 ( )( 1) ( )( )

...

...

... ... ... ... ...

...

...

x x x u x u

x x x u x u

x u x u x u u x u u

x u x u x u u x u u

e e e e

e e e e

e e e e

e e e e





    



 
 
 
 
 
 
 
   

   

 With 

01 1

11 1

02 1 2 12 2

21 1 2 22 2

;

;

( );

x x

x x

x x x x x

x x x x x

e d

e n d

e d d e d

e n d d e n d

 
 

  

   
 

     

 

03 1 2 3 13 2 3 23 3

31 1 2 3 32 2 3 33 3

0( ) 1 2 1( ) 2 3

2( ) 3 4 ( 1)( )

( ); ( ); ;
;...;

( ); ( );

( ... ); ( ... );

( ... );...; ( );

x x x x x x x x x

x x x x x x x x x

x u x x xu x u x x xu

x u x x xu x u u xu

x

e d d d e d d e d

e n d d d e n d d e n d

e d d d e d d d

e d d d e d

e



      
 

         

       

    

1 1 2 2 2 3

( )( 1) ( 1) ( )( )

( ... ); ( ... )

;...; ( ); ( );

u x x xu xu x x xu

x u u x u xu x u u xu

n d d d e n d d d

e n d d e n d 

 
 
 
          
 

      

  

Proof:  

It is obvious that there is no change in EDoP matrix if EDoP element in the same 

row moves to another position. The EDoP matrix of Lemma 3.9 is same as EDoP matrix of 

lemma 3.10 with cyclic shift within rows. It can be verified by examples 3.9(a) and 3.10(a) with 

i
th

 row being cyclically shifted left (i-1) times. The advantage of this kind of EDoP 

representation is that if last k entries of DoPR are deleted, EDoP can be determined by deleting 

lower k rows and rightmost k column in EDoP representation of complete code.   
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Example 3.2.10(a): 

Let the DoPR of the code with weight „w‟ equal to 5 is ( , , , , )a b c d e  and code length 

( ).n a b c d e      The extended DoP matrix  for 1, 2, 3, and 4 consecutive DoP elements of 

incomplete and complete code is given as following matrices respectively.  

,

,

( )

a

n a

a a b

n a b

n a b n b

 
 

 

 
 


 
    

,
( )

( ) ( )

a a b a b c

n a b b c

n a b n b c

n a b c n b c n c

   
 

 
 
   
 
      

( )

( ) ( )

( ) ( ) ( )

a a b a b c a b c d

n a b b c b c d

n a b n b c c d

n a b c n b c n c d

n a b c d n b c d n c d n d

      
 

   
 
    
 

      
            .     

3.3 THE CALCULATION OF CORRELATION CONSTRAINTS  

3.3.1 Auto-Correlation Constraint:  
In the conventional method for calculation of maximum non-zero shift auto-

correlation as given in definition 2.3.1, the weighted bits‟ positions of code X are compared with 

circular shifted versions of code X. There will be ( 1)n n comparisons of binary digits in the 

calculation of maximum non-zero shift auto-correlation of uni-polar code as given in definition 

2.3.1. The „n‟ bits of code X are compared with „n‟ bits of each of (n-1) circular shifted versions 

of code X. These comparisons of weighted bits positions can be reduced as described below. 

 

Lemma 3.3.1.1:  
In calculation of the maximum non-zero shift auto-correlation using weighted 

positions representation (WPR) of the code, there are 
2( 1)n w comparisons of weighted 

positions (Definition 2.3.3).  

Proof:  

In conventional method for the calculation of the maximum non-zero shift auto-

correlation of the uni-polar code, the „w‟ weighted positions of XP are compared with  „w‟ 

weighted positions of each of the (n-1) circular shifted versions (XP+a). Thus, there are 
2( 1)n w

comparisons of weighted positions in the calculation of the maximum non-zero shift auto-

correlation of the code X.   

 

Lemma 3.3.1.2: 

 For the uni-polar code of length „n‟ and weight „w‟, the total definite cases of 

overlapping of weighted bits of uni-polar code with its circular shifted versions in the calculation 
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of maximum non-zero shift auto-correlation (Definition 2.3.1) are 

( 1)

2

w w

. 

Proof: In the calculation of maximum non-zero shift auto-correlation, first weighted bit of the 

uni-polar code overlap with next (w-1) other weighted bits by circular shifting.  The second 

weighted bit overlap with next (w-2) weighted bits by circular shifting. Similarly the third and so 

on up to (w-1)
th

 weighted bit overlap with next (w-3) and so on up to last weighted bit by circular 

shifting. There are total (w-1) plus (w-2) plus (w-3) plus and so on up to plus one overlapping 

occurred in the pairs of codes with its maximum (n-1) circular shifted versions. These total 

overlapping of weighted bits are w(w-1)/2.   

 

Lemma 3.3.1.3: 

 The uni-polar code with code length „n‟ and code weight „w‟ has „w‟ circular 

shifted versions with first bit as weighted bit of the code. 

 

Example 3.3.1.3(a):  
Let us take the code X =[0 1 0 1 0 0 1 0 0 0 1 0 0] with weighted positions 

representation XP = (1,3,6,10). The w=4 circular shifted versions of the code with first bit as 

weighted bit are given as follows  

X1=   [1 0 1 0 0 1 0 0 0 1 0 0 0] , (Xp+12) = (0,2,5,9), 

X3=   [1 0 0 1 0 0 0 1 0 0 0 1 0] , (XP+10) = (0,3,7,11), 

X6=   [1 0 0 0 1 0 0 0 1 0 1 0 0] , (Xp+7) =  (0,4,8,10), 

X10=  [1 0 0 0 1 0 1 0 0 1 0 0 0] , (XP+3) = (0,4,6,9).  

 

Lemma 3.3.1.4: 

 There are  
( 1)

2 2

w wwC


  pairs of codes formed out of the „w‟ circular shifted 

versions of the code with first bit as weighted bit.  

 

Lemma 3.3.1.5: 

 The definite overlapping of weighted bits in the all pairs of codes having first bit as 

weighted bit are     
( 1)

2

w w
.  

Proof:  

As per lemma 3.3.1.4, there are 
( 1)

2

w w
pairs of codes having first bit as weighted 

bit. Each pair has one definite overlapping at first position. Then there are 
( 1)

2

w w
definite 

overlapping of weighted bits.   

 

Theorem 3.3.1.6:  

The overlapping of weighted bits of uni-polar code with its every circular shifted 

version equal to overlapping of weighted bits in all the pairs of the „w‟ circular shifted versions 

with first bit as weighted bit of the code. 
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Proof:  

As per lemma 3.3.1.2, the definite overlapping of weighted bits of uni-polar code 

with its every circular shifted version is ( 1)

2

w w . As per lemma 3.3.1.5, the same number of definite 

overlapping are found in all the pairs of the „w‟ circular shifted versions with first bit as weighted 

bit of the code. Hence all definite weighted overlapping are covered in both cases.  

 

Theorem 3.3.1.7:  

The weighted positions of the „w‟ circular shifted versions of the code with first bit 

as weighted bit are given by the rows of EDoP matrix along-with extra first column having zero 

elements.  

Proof:  

Let us take the code X with DoPR ( , , , , )a b c d e  with weight 5w  , and code length 

( )n a b c d e     . The weighted positions of the code with first bit as weighted bit are   

(0, , , , )a a b a b c a b c d      . The circular shifted versions of this code with first bit as 

weighted bit are (0, , , , )b b c b c d b c d e      (0, , , , )c c d c d e c d e a      , (

(0, , , , )d d a d a b d a b c       and (0, , , , )e e a e a b e a b c      . These circular shifted 

versions of the code with first bit as weighted bit are same as row element of the following EDoP 

matrix (example 3.2.7(a)) along-with extra first column having zero elements.

                              

0

0

0

0

0

a a b a b c a b c d

b b c b c d b c d e

c c d c d e c d e a

d d e d e a d e a b

e e a e a b e a b c

      
 

     
 
      
 

      
       

,  

Similarly for any weight 2w , the theorem can be verified easily.  

 

Theorem 3.3.1.8: 

 The maximum non-zero shift auto-correlation of the uni-polar code is equal to 

maximum number of overlapping bits among the pairs of „w‟ circular shifted versions with first 

bit as weighted bit of the code.    

 OR 

The maximum non-zero shift auto-correlation of the uni-polar code is equal to the  

maximum number of common DoP elements between two rows of EDoP matrix having zero 

elements in first column. 
1 1

0 0

(0 : 1), ( 1: 1)
w w

ax xij xkl

j l

e e for i w k i w
 

 

         

OR 

The maximum non-zero shift auto-correlation of the uni-polar code is equal to one 

plus maximum number of common DoP elements between two rows of EDoP matrix of the code.  
1 1

1 1

1 (0 : 1), ( 1: 1)
w w

ax xij xkl

j l

e e for i w k i w
 

 

         where 
1

0

xij xkl

xij xkl

xij xkl

if e e
e e

if e e

 
 



 

&xij xkle e are DoP elements of two rows of EDoP matrix.  
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Proof:  

Let us take the code X with DoPR 1 2( , ,..., )x x xwd d d with weight „w‟ and code length 

1 2 ...x x xwn d d d    , the EDoP matrix with zero elements in the first column is formed as 

follows.                           

EDoP

00 01 02 0( 1)

10 11 12 1( 1)

20 21 22 2( 1)

( 1)0 ( 1)1 ( 1)2 ( 1)( 1)

...

...

...

... ... ... ... ...

...

x x x x w

x x x x w

x x x x w

x w x w x w x w w

e e e e

e e e e

e e e e

e e e e







    

 
 
 
 
 
 
 
 

 

with 

00 10 20 ( 1)0

01 1 11 2 ( 1)1

02 1 2 12 2 3 ( 1)2 1

0( 1) 1 2 1 1( 1) 2 3

( 1)( 1) 1 2

... 0.

; ;...; .

; ;...;

...

... ; ... ;...;

...

x x x x w

x x x x x w xw

x x x x x x x w xw x

x w x x xw x w x x xw

x w w xw x x

e e e e

e d e d e d

e d d e d d e d d

e d d d e d d d

e d d d d







  

 

    

  

     

       

     ( 2).x w

 

As per definition 2.3.1 and theorem 3.3.1.6, the maximum non-zero shift auto- 

correlation ax of the uni-polar code is equal to maximum  number of overlapping of weighted 

bits among the pairs of circular shifted versions with first bit as weighted bit of the code. 

However As per theorem 3.3.1.7 and definition 2.3.3, the maximum non-zero shift auto-

correlation of the code is equal to the maximum number of common DoP elements between two 

rows of EdoP matrix along-with first column with zero elements. if 
1

0

xij xkl

xij xkl

xij xkl

if e e
e e

if e e

 
 



which represents common elements between two rows of EdoP matrix with first column having 

zero elements. 

1 1

0 0

(0 : 1), ( 1: 1)
w w

ax xij xkl

j l

e e for i w k i w
 

 

       Or the maximum non-zero 

shift auto-correlation of the uni-polar code is equal to one plus maximum common DoP elements 

between two rows of EDoP matrix of the code. As any two rows of EdoP matrix with first 

column having zero elements always has at least one common element which is zero. 
1 1

1 1

1 (0 : 1), ( 1: 1)
w w

ax xij xkl

j l

e e for i w k i w
 

 

          

 

 Lemma 3.3.1.9:  

There will be 
3( 1)

2

w w
 comparisons of DoP elements   in the calculation of 

maximum non-zero shift auto-correlation using extended DoP matrix with first column having 

zero elements.  

Proof: There are  
( 1)

2

w w
 pair of rows of extended DoP matrix which are compared in the 
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calculation of maximum non-zero shift auto-correlation of the code. In each pair of rows, there 

are 2w  comparisons of DoP elements. Thus there are total
3( 1)

2

w w
comparisons of DoP 

elements of EDoP matrix take place in the calculation of maximum non-zero shift auto-

correlation of the code.   

 

  Lemma 3.3.1.10:  

There are 
3( 1)

2

w w
 comparisons of DoP elements in the calculation of 

maximum non-zero shift auto-correlation using extended DoP matrix of the code. 

Proof: There are  ( 1)

2

w w  pair of rows of extended DoP matrix which are compared in the 

calculation of maximum non-zero shift auto-correlation of the code. In each pair of rows, there 

are 
2( 1)w  comparisons of DoP elements. Hence there are 

3( 1)

2

w w
 total comparisons of 

DoP elements of EDoP matrix in the calculation of maximum non-zero shift auto-correlation of 

the code.   

 

Lemma 3.3.1.11: [147] 

If there are no common DoP elements in the pair of rows of EDoP matrix of code, 

the maximum non-zero shift auto-correlation of the code is always equals to one.  

 

3.3.2 Cross-Correlation Constraint:  
In the conventional method for calculation of cross-correlation for the pair of uni-

polar codes as given in definition 2.3.6, the weighted bits‟ positions of code X are compared with 

code Y and circular shifted versions of code Y. Or the weighted bits‟ positions of code Y are 

compared with code X and circular shifted versions of code X. There are 2n comparisons of 

binary digits in the calculation of cross-correlation of uni-polar code in conventional method 

(definition 2.3.6). These comparisons of weighted bits positions can be further reduced as 

described below. 

 

Lemma 3.3.2.1: 

 In the calculation of cross-correlation using weighted positions representation 

(WPR) of the pair of codes, there are 
2( )nw  comparisons of weighted positions                          

(in definition 2.3.8).  

 

Proof:  

In the calculation of cross-correlation of the pair of uni-polar codes (definition 

2.3.8), the „w‟ weighted positions (WP) of XP are compared with  „w‟ weighted positions of YP 

and each of the (n-1) circular shifted versions (YP+a). There are 
2( )nw  total comparisons of 

weighted position in the calculation of cross-correlation of the pair of codes.  
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Lemma 3.3.2.2:  

For the uni-polar codes of length „n‟ and weight „w‟, the definite cases of 

overlapping of weighted bits of uni-polar code X with code Y and the (n-1) circular shifted 

versions of code Y are 2w . 

 

Proof:  

In the calculation of cross-correlation (definition 2.3.6), first weighted bit of code X 

overlap with w weighted bits of code Y in „w‟ shifts.  The second weighted bit of code X overlap 

with „w‟ weighted bit of code Y in „w‟ shifts. Similarly the third and so on upto w
th

 weighted bit 

of code X overlap with „w‟ weighted positions of code Y in „w‟ shifts. Thus there are (w
2
) total 

overlapping of weighted bits occurred in the pairs of code X with code Y and the maximum (n-1) 

circular shifted versions of code Y in the calculation of cross-correlation.  

 

Lemma 3.3.2.3:  

There are  total 2w  pairs of code X and code Y formed out of the „w‟ circular 

shifted versions of both the codes with first bit as weighted bit.  

 

Lemma 3.3.2.4:  

 The definite overlapping of weighted bits in all the pairs of circular shifted versions 

of codes X and Y having first bit as weighted bit are 2w .  

Proof: As per lemma 3.3.2.3, there are 2w pairs of codes having first bit as weighted bit. Each 

pair has one definite overlapping at first position. Subsequently, there is 2w definite overlapping 

of weighted bits.   

 

Theorem 3.3.2.5:  

The overlapping of weighted bits of uni-polar code X with uni-polar code Y and 

every circular shifted version of code Y equals to the overlapping of weighted bits in all the pairs 

of code X and code Y formed out of the „w‟ circular shifted versions of both the codes having 

first bit as weighted bit. 

 

Proof:  

As per lemma 3.3.2.2, the definite overlapping of weighted bits of uni-polar code X 

and code Y along-with every circular shifted version of code Y is 2w . As well as per lemma 

3.3.2.4, the same number of definite overlapping are covered in all the pairs of circular shifted 

versions of code X and code Y having first bit as weighted bit. Hence all definite weighted 

overlapping are covered in both cases.  

 

Theorem 3.3.2.6:  

The cross-correlation of the uni-polar codes X and Y is equal to maximum 

overlapping among the pairs of code X and code Y out of the „w‟ circular shifted versions with 

first bit as weighted bit of both the codes.  

OR 

The cross-correlation of the uni-polar codes X and Y is equal to maximum common DoP 

elements between any two rows of EdoP matrices along-with first column with zero elements of 
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code X and code Y respectively. 
1 1

0 0

, (0 : 1), (0 : 1)
w w

cxy xij ykl

j l

e e for i w k w
 

 

        

OR 

The cross-correlation of the uni-polar codes X and Y is equal to one plus maximum common 

DoP elements between any two rows of EDoP matrices of code X and code Y respectively.  
1 1

1 1

1 , (0 : 1), (0 : 1)
w w

cxy xij ykl

j l

e e for i w k w
 

 

        where 
1

0

xij ykl

xij ykl

xij ykl

if e e
e e

if e e

 
 



 

&xij ykle e are DoP elements of the rows of EDoP matrices along-with extra column with zero 

elements of code X and code Y respectively. 

Proof: Suppose the code X with DoPR 1 2( , ,..., )x x xwd d d  and code Y with DoPR 
1 2( , ,..., )y y ywd d d

with weight „w‟ and code length 
1 2 1 2... ...x x xw y y ywn d d d d d d        , the EDoP matrix 

along-with first column with zero elements of code X and code Y are formed as follows   

                                                                 

EDoP(X)

00 01 02 0( 1)

10 11 12 1( 1)

20 21 22 2( 1)

( 1)0 ( 1)1 ( 1)2 ( 1)( 1)

...

...

...

... ... ... ... ...

...

x x x x w

x x x x w

x x x x w

x w x w x w x w w

e e e e

e e e e

e e e e

e e e e







    

 
 
 
 
 
 
 
 

 

With  

00 10 20 ( 1)0

01 1 11 2

( 1)1

02 1 2 12 2 3

... 0.

; ;

...;

.

; ;

...;

x x x x w

x x x x

x w xw

x x x x x x

e e e e

e d e d

e d

e d d e d d





    

 



   

 

 

( 1)2 1

0( 1) 1 2 ( 1)

1( 1) 2 3

( 1)( 1) 1 2 ( 2)

...;

... ;

... ;

...;

... .

x w xw x

x w x x x w

x w x x xw

x w w xw x x x w

e d d

e d d d

e d d d

e d d d d



 



  

 

   

   

    

     



55 

UPTU/PhD/07/EC/539 

and EDoP(Y)

00 01 02 0( 1)

10 11 12 1( 1)

20 21 22 2( 1)

( 1)0 ( 1)1 ( 1)2 ( 1)( 1)

...

...

...

... ... ... ... ...

...

y y y y w

y y y y w

y y y y w

y w y w y w y w w

e e e e

e e e e

e e e e

e e e e







    

 
 
 
 
 
 
 
 

  

 with 

00 10 20 ( 1)0

01 1 11 2

( 1)1

02 1 2 12 2 3

( 1)2 1

0( 1) 1 2 ( 1)

1( 1) 2 3

( 1)( 1) 1 2

... 0.

; ;

...;

.

; ;

...;

...;

... ;

... ;

...;

..

y y y y w

y y y y

y w yw

y y y y y y

y w yw y

y w y y y w

y w y y yw

y w w yw y y

e e e e

e d e d

e d

e d d e d d

e d d

e d d d

e d d d

e d d d







 



 

    

 



   

 

   

   

    ( 2). .y wd 

 

As per definition 2.3.6 and theorem 3.3.2.5, the cross-correlation 
cxy of the uni-

polar codes X and Y is equal to the maximum number of overlapping among the pairs of code X 

and code Y of the circular shifted versions with first bit as weighted bit of both the codes. 

However As per definition 2.3.6 and theorem 3.3.1.7, the cross-correlation of the codes X and Y 

is the maximum number of common DoP elements between the rows of EDoP matrices along-

with first column having zero elements for both the codes X and Y. 

 if 
1

0

xij ykl

xij ykl

xij ykl

if e e
e e

if e e

 
 

                  
.
 

1 1

0 0

, (0 : 1), (0 : 1)
w w

cxy xij ykl

j l

e e for i w k w
 

 

      

where 
xij ykle and e are the DoP elements of the rows of EDoP matrices along-with 

first extra column having zero elements of code X and code Y respectively..  

Or the cross-correlation of the uni-polar codes X and Y is equal to one plus maximum common 

DoP elements between the rows of EDoP matrices of the code X and Y. Because any two rows 

of EdoP matrices along-with first column having zero elements for code X and Y always has at 

least one common element as zero. 
 

   
1 1

1 1

1 , (0 : 1), (0 : 1)
w w

cxy xij ykl

j l

e e for i w k w
 

 

        
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Lemma 3.3.2.7:  

There are 4w comparisons of DoP elements in the calculation of cross-correlation 

using extended DoP matrices along-with first column having zero elements for both the codes.  

Proof: As per lemma 3.3.2.3, there are  2w  pair of rows from extended DoP matrices along-with 

first column having zero elements for code X and Y.  In each pair of rows, there are 2w  

comparisons of DoP elements. Hence there are 4w comparisons of DoP elements of both EDoP 

matrices in the calculation of cross-correlation for the pair of codes X and Y.   

 

Lemma 3.3.2.8:  

In calculation of cross-correlation using extended DoP matrices of the codes X and 

Y, there are 
2 2( 1)w w  comparisons of DoP elements. 

Proof: As per lemma 3.3.2.3, there are  2w  pair of rows from extended DoP matrices of code X 

and Y. In each pair of rows, there are 
2( 1)w  comparisons of DoP elements. Hence there are 

2 2( 1)w w total comparisons of DoP elements of EDoP matrices in the calculation of cross-

correlation of the codes X with Y.   

 

Lemma 3.3.2.9:  

If there are no common DoP elements in the pair of rows of EDoP matrices of the 

two codes, the cross-correlation of the pair of codes is always equals to one [23].  

 

Theorem 3.3.2.10:  

The cross-correlation of the uni-polar code X with code parameters 1 1 1( , , )an w  and 

code Y with parameters 2 2 2( , , )an w   is equal to maximum common DoP elements between the 

any two rows of EdoP matrices along-with first column having zero elements of code X and code 

Y respectively.  
1 21 1

1 2

0 0

, (0 : 1), (0 : 1)
w w

cxy xij ykl

j l

e e for i w k w
 

 

        

OR 

The cross-correlation of the uni-polar codes X with code parameters 1 1 1( , , )an w  and 

code Y with parameters 2 2 2( , , )an w   is equal to one plus maximum common DoP elements 

between any two rows of EDoP matrices of code X and code Y.  
1 21 1

1 2

1 1

1 , (0 : 1), (0 : 1)
w w

cxy xij ykl

j l

e e for i w k w
 

 

        where 
1

0

xij ykl

xij ykl

xij ykl

if e e
e e

if e e

 
 



 

&xij ykle e are DoP elements of the rows of EDoP matrices along-with first column having zero 

elements of code X and code Y respectively. 

Proof: it is straight forward through theorem 3.3.2.6. 
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3.4 Design of the Maximal Sets of 1-DUOC:  

The maximal sets of 1-DUOC for fixed code parameters ( , , , )a cn w    can be 

designed using anyone of the two proposed algorithms. 

  

3.4.1 Algorithm One to design the maximum sets of 1-DUOC: 
The algorithm one can generate all possible multiple sets of one dimensional 

unipolar orthogonal codes for given code length „n‟, code weight „w‟ and correlation  constraints 

lying from 1 to w-1, such that w and n are co-prime (no common factors) and 
2w n . The 

codes are generated in difference of positions representation (DoPR). The steps of algorithm one 

are as follows.  

Step-1:  Input code length „n‟, code weight „w‟, auto-correlation constraint ' 'a  and cross-

correlation constraint ' 'c for the code sets to be generated.                                                      

Step-2: Initialize w variables 1 2 1( , ,..., )wa a a  equal to one and 

1 2 1( ( ... ))w wa n a a a      . 

Step-3: Generate all the codes of set ( , )n w in standardized DoPR in sequence starting from 

(1,1,...,1, 1)n w   to  1 2( , ,..., )wa a a  with enumeration. 

1 2 1( ) ( , ,..., ) 1w wi a a a a     ( ) ( 1).w

n
ii a n w

w

 
    

   

The variables 1 2 1( , ,..., , )w wa a a a in DoPR, represent the difference of weighted positions or 

position of bit 1‟s in serial and circular order in the code.                                                          

All the codes generated with condition 1 2 1( , ,..., )w wa a a a  will always be in standard DoP 

representation. While for the condition when wa is equal to any one or more than one of

1 2 1( , ,..., , )w wa a a a and greater than remaining DoP elements,  the code has more than one 

representations as 1 2 1( , ,..., )w wa a a a  out of their circular shifted versions.  In this 

condition, that representation is chosen for which  (i) 1a is minimum, and  (ii) If minimum 1a  is 

found in more than one DoP representations, then minimum 2a  is searched among DoPs with 

minimum 1a . The DoP representation with minimum 1a
 and minimum 2a  is considered as 

standard DoP representation. Similarly, search upto 1wa   to find standard DoP representation 

may be needed if 1 2 2( , ,..., )wa a a   are same in more than two members of candidate codes. The 

upper bound of the set ( , )n w of these generated unipolar orthogonal codes is equal to Johnson 

bound for the set of unipolar orthogonal codes with maximum correlation constraints 



58 

UPTU/PhD/07/EC/539 

( 1)a c w    . These generated unipolar codes in DoPR are numbered serially from 

Code#1 to Code #N for identification of codes. N is maximum number of codes generated.  

( 1)( 2)...( 1)

( 1)...2.1

n n n w
N

w w

    
  

 
         

here a    represent integer value just less than a, and a    represent integer value just greater 

than a. 

 

Alternative to step 3:  

As per lemma 3.2.5, the first 1
2

w    DoP elements are varied in the range 1 to 1
2

n w     while 

keeping next 1
2

w    DoP elements in the range 1 to 2
2

n w     while keeping last DoP element in 

the range /n w    to ( 1)n w   as per lemma 3.2.6. It generates all the code in standard DoPR 

automatically. 

Step 4: Calculation of auto-correlation constraints  

For the generated codes in DoPR in step 3, the auto-correlation constraint of each code 

can be calculated through the use of proposed method for calculation of correlation constraints 

described in theorem 3.3.1.8 earlier.  

 

Step 5: Calculation of cross-correlation constraints  

The cross-correlation constraint for each pair of unipolar orthogonal codes generated in step-3, is 

calculated through the use of proposed method described earlier in theorem 3.3.2.10. The cross-

correlation for each pair containing code#1 with code of code number greater than 1, secondly 

the code#2 with code of code number greater than 2, upto code#(N-1) with code#N. 

 

Step 6: Formation of correlation matrix 

In step 3, the number of generated codes are N. A N N matrix can be formed in such a way that 

it contains correlation of code# x with code# y, for 1 ( , )x y N  . 

When x y , it represent maximum auto-correlation for non zero shift or    

auto-correlation constraint of code# x or code# y, which form diagonal elements of N N  

correlation matrix. For x y , cross correlation constraint of code# x with code# y is found as a 

non-diagonal element in row x and column y as well as non-diagonal position with row y and 

column x in correlation matrix.     

                     

Step 7: Formation of sets of unipolar orthogonal codes for given values of a  

 and c such that 1 , 1a c w    . The upper bound  Z of the set of unipolar orthogonal 

codes with given values of auto-correlation and cross-correlation constraints can be calculated by 

Johnson bound A [25],[34],[78],[122]. 
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( 1)( 2)...( )

( 1)...( )

n n n
Z

w w w





   
  

   ,
 here max( , )a c    

Now, all those codes are selected for which diagonal entries are a . All the elements of rows 

and columns, which are not selected, are removed from the correlation matrix, giving a reduced 

correlation matrix. Within these codes, only those sets of codes with upper bound Z, are selected 

which has cross-correlation constraints c  by following method. 

(i) From the reduced correlation matrix only those rows and columns are selected whose 

numbers of cross-correlation entries with c  are greater than the upper bound Z of 

the sets of codes to be generated. 

(ii)  In this reduced correlation matrix, number of rows or columns are equal to M. Out of 

these M codes, all possible combinations of sets of non repeated Z codes are formed 

mentioning their code numbers. These possible combinations of sets are equal to 

( 1)...( 1)

( 1)...2.1

M

Z

M M M Z
G C

Z Z

  
 


   

(iii) Each such set of codes are checked for their maximum cross-correlation constraint 

c through the use of cross-correlation entries from reduced correlation matrix. It 

will achieve final sets of codes as required.  

3.4.2 Computational Complexity of Algorithm - one  

The computational complexity of the proposed algorithm - one for the formation of 

one dimensional unipolar (optical) orthogonal codes is summarized here in the following steps. 

I. Calculation for upper bound of the set of one dimensional unipolar (optical) orthogonal codes 

for code length n, code weight w with auto-correlation and cross-correlation constraint of the set 

equal to w-1. This upper bound is equal to Johnson bound A for the set given in lemma 2.3.15. 

The computational complexity of this step is ( )O nw . 

II. Formation of all one dimensional unipolar (optical) orthogonal codes of code length n, code 

weight w with auto-correlation and cross-correlation constraint less than or equal to w-1 in 

standard difference of positions representation (DoPR). The computational complexity of this 

step is 
1( )wO n 

. 

III. Conversion of every code formed in standard DoPR to extended DoP matrix representation.  

The computational complexity of this step is
2( )O rw . 

IV. Calculation of auto-correlation constraint of each code formed at step II form its EDOP 

matrix representation as in step III. These values of auto-correlation constraints are put at the 

position of diagonal elements in correlation matrix[ ]r r . 

The computational complexity of this step is 
3( )O rw . 
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V. Calculation of cross-correlation constraint of every pair of these codes in EDoP matrix 

representation and putting them in correlation matrix [ ]r r at non diagonal positions. The 

computational complexity of this step 
2 3( )O r w .  

VI. Calculation for upper bound or Johnson bound of the set of one dimensional unipolar 

(optical) orthogonal codes for code length n, code weight w with correlation constraint   which 

is maximum of given auto-correlation and cross-correlation constraint. The computational 

complexity of this step is ( )O n . 

VII. Formation of reduced correlation matrix whose diagonal elements are always less than or 

equal to given auto-correlation constraint a  and non-diagonal elements are either less than or 

greater than or equal to cross-correlation constraint c . The computational complexity of this 

step is
2( )O r . 

VIII. Formation of all sets of 1-D U(O)OC with maximum cardinality as calculated in step VI, 

and checking each set for cross-correlation constraint less than or equal to given cross-

correlation constraint value with help of reduced correlation matrix. 

The computational complexity of this step is 
3( )O r , where 

 ( 1)( 2)...( 1)

( 1)( 2)...2.1

wn n n w n
ww w w

r
   

 
  . 

The overall computational complexity of the proposed algorithm is of the higher order of 

3( )O r which is equivalent   3w
n

wO  which may be polynomial type for w n . 

 

3.4.3 Design of Sets of 1-DUOC (Algorithm – two)                          

The algorithm two is an extended version of algorithm one. In algorithm one the 

formation of correlation matrix (NxN) is much complex for higher N so that N can not take the 

values greater than 100. The formation of code sets from the given correlation matrix (NxN) is 

also much complex. It can be reduced by following algorithm two as given below. 

Step 1: same as algorithm one (input code parameters ( , , , )a cn w   ) 

Step 2: same as algorithm one (initializing parameters) 

Step 3: same as algorithm one (generation of all the N codes in sequence in DoPR)  

Step 4: same as algorithm one (calculation of auto-correlation constraint of each of N codes 

generated at step 3) 

Step 5: Take one code C1 out of all N codes such that maximum non-zero shift auto-correlation 

of code C1 is less than or equal to auto-correlation constraint a of desired sets as input in step 

one. Calculate cross-correlation of pair of codes formed with other N-1 codes such that in each 

pair one code is C1. Out of N-1 pair of codes only N1 codes pairing with C1 are selected which 

have cross correlation less than or equal to cross correlation constraint c .  

Step 6: Repeat step 5 for code C2 out of all N1 codes. Get N2 codes pairing with C2 out of (N1-1) 

pair of codes. The step 6 is repeated till the Cz-1. Where Z is defined and given as maximum 
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number of codes in the code set formed for given code parameters ( , , , )a cn w    such that 

1 2 1( , ,..., )zC C C  have cross-correlation constraint less than or equal to c . There are total Nz-1 

code which have their cross-correlation value with code Cz-1 less than or equal to c . Each of 

these Nz-1 codes may be treated as code Cz so that there are Nz-1 set of codes may be formed as 

1 2 1( , ,..., , )z zC C C C  

Step 7: The step 6 may be repeated for all possible other codes C1 to Cz-1 which are not 

employed in last steps to get different set of codes following correlation properties.  

 

3.4.4 : Computational Complexity of Algorithm – two  
The computational complexity of step 1 to step 7 is remain same as algorithm – one but the value 

of r is changed for given auto-correlation a and cross-correlation constraint c .   

 max ,a c    

   ( 1)( 2)...( )

( 1)( 2)...

n n n n
ww w w w

r




  

  
   

The overall computational complexity of the proposed algorithm - two is of the higher order of 

3( )O r which is equivalent   3
n

wO


 which may be polynomial type for w n  but less 

complex than algorithm - one. 

3.5 Comparison with Ideal Scheme           

Both the algorithms proposed here for generation of one dimensional unipolar 

(optical) orthogonal codes can be compared with an ideal scheme supposed already in chapter – 

2 for comparison purpose. The comparison with ideal scheme provides a level of closeness with 

ideal scheme for generation of one dimensional unipolar orthogonal codes. In following table 3.1 

these schemes are compared with an ideal scheme.   
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Table 3.1: Comparison of proposed algorithms with ideal scheme for generating 1-D U(O)OCs 

 

3.6 Conclusion                   

The proposed algorithms are able to generate some random sets of one dimensional 

unipolar orthogonal codes for given code length „n‟, code weight „w‟ and auto-correlation 

constraints lying from 1 to w-1. The ideal scheme should generate all possible sets but with very 

low computational complexity. These proposed schemes are very close to ideal scheme but lack 

only in the case of computational complexity which may be improved in future. 

 The drawback of one dimensional unipolar (optical) orthogonal codes are 

requirement of higher temporal length or code length for high cardinality of code set and 

increase in computational complexity of algorithm for unipolar (optical) orthogonal code of high 

code length and code weight. The temporal length of code may be decreased upto much extent 

with higher cardinality and lower computational complexity of algorithm for designing of matrix 

orthogonal codes in place of one dimensional unipolar (optical) orthogonal codes. Hence, the 

next chapter deals  mainly with matrix orthogonal codes or two dimensional optical orthogonal 

codes with their conventional representation, conventional methods to calculate correlation 

constraints and some already proposed schemes to design matrix orthogonal codes as well as 

their comparison with an assumed ideal scheme. 

 

 

 

 

OOC(1

D)  

Code 

length 

„n‟ 

Weight 

„w‟ 

Auto-

correlation 

constraint 

a  

Cross-

correlation 

constraint 

c  

Cardin

ality 

of 

code-

set 

No. of 

code sets 

Computati

onal 

complexit

y 

Other 

comments 

Algorit

hm - 

One 

n>0 0<w<n  1 to w-1 1 to w-1 Z Some 

random 

sets 

  3w
n

wO  
co-prime 

(w,n) 

Algorit

hm - 

Two 

n>0 0<w<n   1 to w-1 1 to w-1 Z Some 

random 

sets 

  3
n

wO


 
co-prime 

(w,n) 

Ideal 

Scheme 

n>0 0<w<n 1 to w-1 1 to w-1 Z All 

possible 
( )wO n  This 

scheme is 

not in 

existence 
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CHAPTER 4 

 

4. TWO DIMENSIONAL OPTICAL ORTHOGONAL CODES (2-D OOC)     

                     
4.1 Introduction 

The two dimensional optical orthogonal code or pseudo orthogonal codes play an 

important role in terms of better performance than one dimensional unipolar orthogonal code or 

pseudo orthogonal codes [90]. When one dimensional unipolar orthogonal codes [148-149] are 

used in Optical CDMA system, the one dimension can be temporal or spectral or spatially placed 

optical pulses at the position of bit „1‟s. When the two dimensional orthogonal codes are used 

any two dimensions can be considered e.g., temporal – spectral (wavelength), temporal – spatial, 

or spatial – spectral. The optical pulses are placed at the position of bit „1‟s of the orthogonal 

code in the two dimensional plane. Two dimensional pseudo orthogonal codes are also called 

matrix codes. The two dimensional or matrix orthogonal code can be defined with the help of 

array  L N  of the family of  0,1 of constant weight size w with the maximum 

autocorrelation side-lobe and cross-correlation function be no more than λa and λc respectively as 

defined in section 4.3.     

 

4.2 Conventional Representation of 2-D OOC or Matrix Orthogonal Codes  

It is known that matrix orthogonal codes is a matrix (LxN) of binary elements (0,1) 

in each row and column with weight w, i.e. total number of bit 1‟s are w in the matrix.  

Definition 4.2.1: [1] 

2-D Unipolar (optical) orthogonal code or matrix orthogonal code remain same for 

every column-wise circular shifting.          

 Proof:  

In matrix orthogonal code with matrix size (LxN), „L‟ is the spectral length and „N‟ 

is temporal length of the code. The unipolar (orthogonal) codes are used for multiple 

asynchronous access of channel. For asynchronous application, the matrix code are defined and 

remain same for every temporal unit or column-wise circular shifting.  

Lemma 4.2.2: [1, 106, 126, 127, 129] 

In weighted positions representation (WPR) of matrix orthogonal code, the position 

of weighted bit is represented by (a‟b), where „a‟ is row number and „b‟ is column number of 

weighted bit, 1 , 0 1.a L b N            
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Example 4.2.2 (a):  

For L=4, N=5, weight w = 4, suppose the code is 

1 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

 
 
 
 
 
 

                                          

Its weighted position representation WPR (1‟0, 3‟0, 4‟1, 2‟2)  

Lemma 4.2.3: [1, 106, 126, 127, 129] 

There are N representations for same matrix orthogonal code in weighted positions 

representation (WPR).        

Proof:  

There are „n‟ columns in the matrix orthogonal code. The code remain same on 

every column-wise circular shifting but not the positions of bit 1‟s. There are such N matrices 

representing same code. In weighted positions representation (WPR), a matrix code is 

represented by positions of bit 1‟s in the matrix.  

Example 4.2.3(a):   

The two dimensional code with L=4, N=5, w=4, WPR (1‟0, 3‟0, 4‟1, 2‟2) has 5 representations 

as given below with WPRs after every column wise circular shifting of the matrix code 

1 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

 
 
 
 
 
 

0 0 0 0 1

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

 
 
 
 
 
 

0 0 0 1 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 
 

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

 
 
 
 
 
 

 

(1‟0, 3‟0, 4‟1, 2‟2),  (4‟0, 2‟1, 1‟4,  3‟4), (2‟0, 1‟3, 3‟3, 4‟4), (1‟2, 3‟2, 4‟3, 2‟4)                     

0 1 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

 
 
 
 
 
 

                           

(1‟1, 3‟1, 4‟2, 2‟3)     
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4.3 Conventional Method for Calculation of Correlation Constraints of 2-D OOC 

or Matrix Orthogonal Codes and Upper bound of the Set of Codes. 

Suppose the Binary matrix codes X and Y belong to the same orthogonal code set  

 , , ,a cC L N w   .  

Definition 4.3.1: 

The auto-correlation constraint of the matrix orthogonal code is the maximum 

number of overlapping of weighted bits of matrix code with its non-zero column-wise circular 

shifted versions [1], [133]. 

Let us take the matrix codes X and Y from same set with code parameters  , , ,a cL N w   . The 

maximum non-zero shift auto-correlation or auto-correlation constraint a of the code X is 

defined and given as follows. 

 
1 1

, ,

0 0

, 0 1,
L N

i j i j a

i j

x x for N  
 



 

     

Definition 4.3.2: 

The cross-correlation constraint for the pair of matrix orthogonal code is the 

maximum number of overlapping of weighted bits of one matrix code with second matrix code 

or non-zero column-wise circular shifted versions of the second matrix code [1], [133]. 

The cross-correlation constraint c for the pair of codes X and Y is defined and given as follows. 

1 1

, ,

0 0

, 0 1.
L N

i j i j c

i j

x y for N  
 



 

     

 

Lemma 4.3.3:  

For a c      where 1 1,w    The maximum number of two dimensional 

unipolar (optical) orthogonal codes, Z, in one set is given by the following Johnson bounds 

[133].
 

Johnson‟s bound A is, 

    
1

, , , , ;
1

A

L LN LN
Z L N w J L N w

w w w


 



    
           

  

The Johnson bound B is given conditionally for 
2w LN  

  2

( )
, , , ( , , );B

L w
Z L N w Min L J L N w

w LN


 



  
       
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The  improved Johnson‟s Bound C is given for any integer k, 1 1k      such that 
2( ) ( )( ),w k LN k k     is given as  

  
1 ( 1)

, , ( , , );
1 ( 1)

C

L LN LN k
Z L N w h J L N w

w w w k
 

     
       

      
 

Where  
2

( )( )
, ;

( ) ( )( )

LN k w
h Min LN k

w k LN k k





   
   

     
  

λ is also called Maximum Collision Parameter (MCP) telling about  maximum collisions of array 

elements bit „1‟s between any two matrix code words. 

There are so many construction schemes for the generation of 2-D OOCs are 

proposed in different Literatures [80, 106, 111, 113, 120, 126, 129, 132, 133,]. These schemes 

are capable to design one and more than one set of matrix orthogonal codes with code size less 

than maximum cardinality given by Johnson bounds in lemma 4.3.3. Some of these described in 

following for purpose of comparison with ideal scheme and proposed one to design two 

dimensional unipolar (optical) orthogonal codes. 

 

4.4 2-D OOC Design Schemes Already Proposed in Literature                 

4.4.1 Temporal / Spatial Addition Modulo LT  (T/S AML) codes Multi-Wavelength 

OOCs  
In [80] the author has provided a very simple scheme for the design of 2-dimensional 

optical orthogonal codes.  The codes are generated on the basis of At Most – One Pulse Per Time  

(AM-OPPT). Suppose the code jC  is represented by a matrix with TL rows and non-zero 

columns with one weighted position for each row. The weighted position is given by ijR and the 

code jC as  

0

1

2

( 1)T

j

j

jj

L j

R

R

RC

R 

 
 
 
 
 
 
 
 



 

with  0 0jR    for 0: 1Tj L  ; and ij (i-1)jR   = (R  + j) mod(L )T for 11  TLi .  If TL  is a 

composite number, the weight , 0, 1T a cw L     , and the number of codes generated is equal 

to smallest prime factor of TL . While if TL  is a prime number, the weight , 0, 1T a cw L     , 

and the number of codes generated is equal to TL . For example let us suppose 5TL   and non-

zero columns is also 5 and the weight 5Tw L  , then 5 codes are constructed as follows 
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





















00001

00001

00001

00001

00001

 























10000

01000

00100

00010

00001

 























01000

00010

10000

00100

00001

 























00100

10000

00010

01000

00001

 























00010

00100

01000

10000

00001

         

4.4.2 Construction of  (mn, λ+2, λ) Multi-Wavelength OOCs   

As described in [106],  , 2,mn   represents the set of wavelength–time matrix codes with 

m rows, n column, weight 2w   and   is maximum of auto-correlation constraint a  and 

cross-correlation constraint c . These codes can be constructed by using one dimensional code 

set  , 2,m   and  , 2,n    as follows. 

The number of code words in the code set  , 2,m    is given as s, where 

)!2(

))....(3)(2)(1(








mmmm
s    

For which the set of blocks of positional weight obtained from the optical orthogonal codes, can 

be given as 

0 1 ( 1)( , ,......... )q q qa a a   for  10  sq  

Similarly the number of code words in the set  , 2,n   are given by t, where t is 

)!2(

))........(2)(1(








nnn
t  

For which the set of blocks of positional weight obtained from the optical orthogonal codes, can 

be given as 

0 1 ( 1)( , ,......... )r r rb b b  for 10  tr .      

 The positional block code set  0 1 ( 1)( , ,......... )q q qa a a   for  0 1q s    has (λ+2)! 
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distinct permutations represented by 
, , ,0 1 ( 1)( , ,......... )k q k q k qa a a   for  10  sq and 

1)!2(0  k  

 The MW- OOC sets can be constructed as follows 

         
       
       

0 , 0 0 , 1 1 , 1 1

1 , 0 , 1 , 1

2 0 1 1

, , , ,.........., ,

,0 , ,0 ,.........., ,0

, , , ,.........., ,

k q r k q r k q r

k q k q k q

r r r

C a l b a l b a l b

C a l a l a l

C l b l b l b

 





 





   

   



 

Where 1)!2(0  k ,  10  sq , 10  tr , and 10  ml ,   represents modulo m addition. 

The cardinality C or number of code generated from above set is given as 

 2 !C mst ms mt    . 

For example m=7, n= 13, λ=1, w= λ+2=3. The number of code words in code set (7,3,1) is s =1 

and the code word is (0,1,3) as positional weight. The number of code words in the code set 

(13,3,1) are t = 2 and code words are{ (0,1,4), (0,2,7)} as positional weight.   

0 1 2( , , )q q qa a a  = (0,1,3) for q=0 and 0 1 2( , , )r r rb b b  =  (0,1,4)  for r =0, 0 1 2( , , )r r rb b b  = (0,2,7)  for 

r=1.  (0,1,3) has 6 different permutations given as following 

{(0,1,3), (0,3,1), (1,0,3), (1,3,0), (3,0,1),(3,1,0)} for k=0 to 5 which is represented with

, , ,0 1 2( , , )k q k q k qa a a for q =0. 

For l =0 to 6 the code set 

      0 , 0 , 1 , 2,0 , ,1 , ,4k q k q k qC a l a l a l     for r = 0 , 

      '

0 , 0 , 1 , 2,0 , ,2 , ,7k q k q k qC a l a l a l     for r = 1,  

      1 0, 0 0, 1 0, 2,0 , ,0 , ,0q q qC a l a l a l      

      2 ,0 , ,1 , ,4C l l l  for r = 0,  

      '

2 ,0 , ,2 , ,7C l l l  for r = 1,  

Total possible code words in this example are 7x6 + 7x6 + 7x1 + 7x1 + 7x1 = 105. 
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4.4.3 2D- matrix codes from spanning ruler or optimum Golomb ruler 
A spanning ruler or optimum Golomb ruler [111], is a binary (0,1) sequence of length n 

such that the distance between  any two weighted bits ( i.e. bit „1‟) is non-repetitive.  The 

optimum Golomb ruler sequence can generate other sequences M1 to Mp  by introducing (p-1) 

zeros in the right and cyclically right shifting  0 to p-1 times making all the sequence of same 

length. The length of sequence „n‟ could be break into two integer factors x and y such that n 

=xy.  x and y may take different values of integers to generate different matrix codes of  x rows 

and y columns. 

It can be best understood by following example as in [111]. Suppose an optimum 

Golomb sequence g1 of length 26 and weight w=7 is given as                         

g1 = [11001000001000000010000101] linearly right shifting the sequence and making it of 

length 32, the following Mi sequences are generated 

 M1 = [11001000001000000010000101000000]                          

M2 = [01100100000100000001000010100000]                                                                           

M3 = [00110010000010000000100001010000]                                   

M4 = [00011001000001000000010000101000]                                      

M5 = [00001100100000100000001000010100]                                                          

M6 = [00000110010000010000000100001010]                                     

M7 = [00000011001000001000000010000101] 

In matrix form the sequences M1 to M7 can be written in column wise taking 4 - 4 elements in the 

columns as 





















00100000

00010100

01000001

00000011

1M

,     




















00010100

01000001

00000011

01000000

2M

,  

 





















01000001

00000011

01000000

00101000

3M

,    




















00000011

01000000

00101000

10000010

4M

,

 





















01000000

00101000

10000010

00000110

5M

,  




















00101000

10000010

00000110

10000000

6M

,
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



















10000010

00000110

10000000

01010000

7M  

Here by periodic shifting (column wise) we can conclude that M5 = M1 ; M6 = M2 ;   M7 = M3 ; 

Hence only 4 optical orthogonal codes M1, M2, M3, M4 can be constructed. 

4.4.4 2D-wavelength/time OOCs based on Balanced Codes for Differential 

Detection (BCDD) and antipodal signaling  

In antipodal signaling of binary signal, the bit „1‟ or bit „0‟ takes same amount of power 

for it‟s transmission. The spreading sequence of bit „1‟ and bit „0‟ are chosen as 1

us  and 0

us  

respectively such that inner product of   1

us  and 0

us  is zero while inner product of 1

us  or 0

us  with 

itself becomes equal to hamming weight w of the codes.  The 2D matrix code 1

us  and 0

us  of size 

mn, consists of equal number of „1‟s and „0‟s with weight w = ½ mn. The inner product of  a and 

b  is defined as 
 


m

i

n

j

ijijbaba
1 1

, ;        ija , ijb   (0,1) 

ija  denotes the binary element of the matrix code at i
th

 row and j
th

 column. The transmitted 

signal by user u is 1 0( , ) ( , )u u u u u u ut b s b s   , where ub  (0,1), 1 uu bb , 1 01u us s  and u is 

the asynchronous delay introduced by user u. The received multiplexed signal r is given as 

1 0

1

( , ) ( , )
N

k k k k k k

k

r b s b s   


    . Where τ is the channel delay whose effect can be eliminated 

by synchronizing the transmitted and received chip sequences. 

At the receiver for user u, the output obtained after matched filtering and differential detection is 
1 0

1 2( , ) ( , )u u ur r s r s          where 1  and 2 are the noises added during balanced 

differential detection. These noises can be assumed negligible in comparison to multiple access 

interference and  

 
1 0 1 0 1 0

1,

( ) ( , ) ( , ), ( )
N

u u u k k k k k k u u

k k u

r b b w b s b s s s   
 

       . Here the first term represents the 

detected output of user u and second term represents the MAI due to presence of unwanted 

signals of other users. 

The BER of user u can be calculated as 

(BER)u =Pr(bu=1).Pr(MAI < -w)+Pr(bu=0).Pr(MAI > w) 

The codes can be designed with mentioned constraints as 
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1) The hamming weight of the code is half of matrix code size m into n.   
1 1 0 0

2, , mn
u u u us s s s w    . 

2) The spreading sequence 1

us  for bit „1‟ is  just complement of spreading sequence 0

us  for bit „0‟ 

such that 0 11u us s  . 

3) The auto-correlation of 1

us  or 0

us  with it‟s column wise cyclically shifted sequence is  at most 

λa  

auuuuuuuu ssbssb   0110 ),,(),,(  

  4) The cross-correlation of 1

us  and 0

us  with the spreading sequence 1

vs  and 0

vs  of other user is  at 

most λc 

cuuvvvvvv sssbsb   )()),,(),(( 0101


 

Here in designing of codes λa is considered equal to λc     

 i.e. λa = λc  by using greedy algorithm the codes are constructed with above conditions such that 

next generated code is found under mentioned conditions until no new codes are found [113]. 

4.4.5 2D-wavelength/time OOCs based on Carrier Hopping Prime Code 

The Carrier Hopping Prime Code (CHPC) set is particular type of 2D OOCs (LxN, 

w, λa, λc) with L=w, N= p1p2...pk, λa=0 and λc=1. Here  p1, p2, p3,. .  ., pk are prime numbers such 

that 1 2 1..........k kp p p p    and w=p1. The codes are constructed with ordered pair as follows 

1 2 3

1 2 3

1 2 1 3 1 2 1 2

1 2 1 3 1 2 1 2 1

1 1 1 1 2 1 1 3 1 2

1 1 2 1

{[(0,0), (1, ....... ...... ),

(2,2 (2 ) (2 ) ... (2 ) ... ),....

...., ( 1, ( 1) (( 1) ) (( 1) ) ...

.. (( 1) ) ....

k

k

k k

p p p p k k

p p p

p k k

i i p i p p i p p p

i i p i p p i p p p

p p i p i p p i p p

p i p p p





  

       

         

  

1 1 2 2

)] :

[0, 1], [0, 1],......, [0, 1]}k ki p i p i p     

            

Where 
j

p  denotes a modulo- pj multiplication for j = {1, 2, 3, … , k, resulting in p1p2...pk or 

equal to n number of  orthogonal matrices. While for the case L= w.p‟p1, where p‟ is a prime 

number, N= p1p2...pk, w=p1, resulting in Np‟ number of orthogonal matrices for λa=0 and λc=1, 

the Extended Carrier Hopping Prime Code (ECHPC) can be constructed by replacing the first 

element (0,0) in each ordered pair in above equation by 
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{[l1, (l1 w l2)+w, (l1 w w (2
'p l2))+2w,…,                 

(l1 w  ((w-)
'p l2))+(w-1)w]: l1[0,w-1], l2[0,w-1]}             

and  {[l2w, l2w+1,…,l2w+w-1]: l2[0,p‟-1]} respectively.                               

Where w  denotes a modulo- w addition. It results in (Lx N,w, 0, 1) set of matrix orthogonal 

codes with (w
2
 + p‟)N number of matrices [126, 127, 129]. 

4.4.6 Multiple wavelength OOCs under prime sequence permutations 

Suppose a Galios Field GF(p) = (0,1,2,….p-1), p is a prime, can be used to construct the 

prime sequence 
P

XS  ={ )0(p

xs , )1(p

xs , )2(p

xs …… )1( ps p

x }, )( js p

x  =x.j (mod(P))   for x,j 

GF(p); For GF(7) = (0,1,2,3,4,5,6), the prime sequences                                                     

)0(p

xs  = (0,0,0,0,0,0,0);              

)1(p

xs  =  (0,1,2,3,4,5,6);           

)2(p

xs = (0,2,4,6,1,3,5);            

)3(p

xs = (0,3,6,2,5,1,4);            

)4(p

xs =(0,4,1,5,2,6,3);                        

)5(p

xs = (0,5,3,1,6,4,2);            

)6(p

xs = (0,6,5,4,3,2,1);                                                                                                           

The one dimensional optical orthogonal code can be converted into two dimensional OOCs as, 

suppose the code for (7,3,1,1) is given as  (1101000). Using the prime sequence )0(p

xs , )1(p

xs

……. )6(p

xs with only their first three (w=3) weighing positions, the following group G0, G1, . . . . 

. . . .  G6 of codes can be constructed for wavelength λ0, λ1, λ2, λ3, λ4, λ5, λ6 as 

G0 = {[λ0 λ0 0 λ0 0 0 0], [ λ1 λ1 0 λ1 0 0 0],[ λ2 λ2 0 λ2 0 0 0],  [ λ3 λ3 0 λ3 0 0 0],             

[ λ4 λ4 0 λ4 0 0 0],[ λ5 λ5 0 λ5 0 0 0],  [λ6 λ6 0 λ6 0 0 0] }  

G1 = {[λ0 λ1 0 λ2 0 0 0], [ λ1 λ2 0 λ3 0 0 0],[ λ2 λ3 0 λ4 0 0 0],  [ λ3 λ4 0 λ5 0 0 0],              

[ λ4 λ5 0 λ6 0 0 0],[ λ5 λ6 0 λ0 0 0 0],  [λ6 λ0 0 λ1 0 0 0] }  

G2 = {[λ0 λ2 0 λ4 0 0 0], [ λ1 λ3 0 λ5 0 0 0],[ λ2 λ4 0 λ6 0 0 0],  [ λ3 λ5 0 λ0 0 0 0],              

[ λ4 λ6 0 λ1 0 0 0],[ λ5 λ0 0 λ2 0 0 0],  [λ6 λ1 0 λ3 0 0 0] }  

G3 = {[λ0 λ3 0 λ6 0 0 0], [ λ1 λ4 0 λ0 0 0 0],[ λ2 λ5 0 λ1 0 0 0],  [ λ3 λ6 0 λ2 0 0 0],              

[ λ4 λ0 0 λ3 0 0 0],[ λ5 λ1 0 λ4 0 0 0],  [λ6 λ2 0 λ5 0 0 0] }  

G4 = {[λ0 λ4 0 λ1 0 0 0], [ λ1 λ5 0 λ2 0 0 0],[ λ2 λ6 0 λ3 0 0 0],  [ λ3 λ0 0 λ4 0 0 0],              

[ λ4 λ1 0 λ5 0 0 0],[ λ5 λ2 0 λ6 0 0 0],  [λ6 λ3 0 λ0 0 0 0] }  

G5 = {[λ0 λ5 0 λ3 0 0 0], [ λ1 λ6 0 λ4 0 0 0],[ λ2 λ0 0 λ5 0 0 0],  [ λ3 λ1 0 λ6 0 0 0],             

[ λ4 λ2 0 λ0 0 0 0],[ λ5 λ3 0 λ1 0 0 0],  [λ6 λ4 0 λ2 0 0 0] }  
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G6 = {[λ0 λ6 0 λ5 0 0 0], [ λ1 λ0 0 λ6 0 0 0],[ λ2 λ1 0 λ0 0 0 0],  [ λ3 λ2 0 λ1 0 0 0],             

[ λ4 λ3 0 λ2 0 0 0],[ λ5 λ4 0 λ3 0 0 0],  [λ6 λ5 0 λ4 0 0 0] }  

Here for the code (1101000) of (7, 3, 1, 1), there are maximum 7 x 7 or  (p x p ) code cans be 

constructed.  If one dimensional code size is Z1, then maximum Z1p
2
 two dimensional codes can 

be constructed [120]. The other code groups of different weight ( 1 to 7) can be generated in the 

same manner as described above.  

4.5 The Comparison with Ideal Scheme     

It can be assumed, an ideal scheme generating all possible sets of two dimensional 

or matrix unipolar (optical) orthogonal codes with maximum cardinality. If the proposed 

schemes in literature generating two-dimensional optical orthogonal codes are being compared 

with the assumed ideal scheme, it can be explored that till how much extent the proposed scheme 

is getting closed to ideal. The comparison table of the proposed scheme in literature with ideal 

one is given in following Table 4.1. 

4.6 Conclusion                     

In this chapter, it can be summarized that there is need to develop an scheme generating 

two dimensional optical orthogonal codes closed to assumed ideal scheme. The generated 

two dimensional optical orthogonal codes can be utilized for assignment of orthogonal codes 

to distinct users of wavelength-hopping time spreading optical CDMA system. The result of 

ideal scheme may provide flexibility for selection of two dimensional optical orthogonal 

codes and even selection of one set out of designed multiple sets of two dimensional optical 

orthogonal codes to increase the inherent security and spectral efficiency. 
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Table 4.1:  Comparison of proposed 2-D OOCs design schemes with ideal one. 
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CHAPTER 5 

 

5. DESIGN OF TWO DIMENSIONAL UNIPOLAR (OPTICAL) 

ORTHOGONAL CODES (2-D U(O)OC) AND THEIR MAXIMAL CLIQUE 

SETS 

    
5.1 Introduction 

The need of two dimensional unipolar (optical) orthogonal codes over one 

dimensional unipolar (optical) orthogonal is obvious for lower temporal length, higher 

cardinality of the set of codes. Within two dimensional unipoar (optical) orthogonal codes, there 

is a need to represent these codes in unique manner. Conventionally these codes are represented 

by weighted positions representation giving N representation to same code. There is a need to 

provide simple method to calculate auto-correlation and cross-correlation constraint in 

comparison to conventional complex methods for calculation of correlation constraints. There is 

also a need to develop an algorithm to design multiple sets of two dimensional unipolar (optical) 

codes with maximum cardinality for known auto-correlation and cross-correlation constraints of 

the set of codes. In the next section, a unique representation of two dimensional unipolar 

orthogonal codes named be difference of positions representation (DoPR , is proposed  with its 

characteristics. A new lower complex method for calculation of auto-correlation as well as cross-

correlation constraints of one dimensional unipolar (optical) orthogonal codes are also proposed 

in this chapter. These generated codes provide flexibility for selection of one dimensional 

unipolar (optical) orthogonal codes from same set to multiple users of wavelength hopping time 

spreading optical code division multiple access (CDMA) systems. The generated multiple sets 

provide flexibility for selection of set of one dimensional unipolar orthogonal codes to be 

assigned to a set of users of wavelength hopping time spreading optical CDMA systems. Two 

search algorithms are proposed which find multiple sets of unipolar (optical) orthogonal codes 

through one dimensional unipolar (optical) orthogonal codes and finding their multiple sets have 

been discussed. The cardinality of each code-set approach the Johnson‟s bound for different 

correlation constraints. This newly proposed scheme has also been compared with ideal one 

which is assumed in chapter four. The first algorithm finds all possible sets of unipolar (optical) 

orthogonal codes with maximum cardinality for matrix code dimension  L N , code weight 

„w‟ such that w and LN  are co-prime, auto-correlation constraint and cross-correlation constraint 

from the range 1 to w-1 using direct search method. This algorithm works well upto LN = 46 and 

w=4 for auto-correlation and cross-correlation constraints lying from 1 to 3. The second 

algorithm uses clique search method to find all sets of codes not only for the same length and the 

same weight but also for the multi-length and multi-weight one dimensional unipolar orthogonal 
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codes. This algorithm work well upto LN= 256 and w=5 for auto-correlation and cross-

correlation constraints lying from 1 to 2. 

5.2 Difference of Positions Representation (DoPR) of 2-D U(O)OC or Matrix 

Orthogonal Codes  

It is known that matrix orthogonal codes is a matrix (LxN) of binary elements (0,1) 

in each row and column with weight w, i.e. total number of bit 1‟s are w in the matrix.  

Lemma 5.2.1:  

In the matrix orthogonal code, the difference of positions of consecutive weighted 

columns remain same on every column-wise circular shifting of the code.   

Proof:  

The weighted column means the column having at least one weighted bit or bit „1‟. 

On every column-wise circular shifting, there is no change in consecutive difference of positions 

of weighted columns similar to difference of positions of consecutive weighted bits in one 

dimensional unipolar (optical) orthogonal codes. 

Lemma 5.2.2:  

The row positions of the weighted bit/bits or the differences of consecutive 

positions of bit 1‟s in every column remain same on every column-wise circular shifting of the 

code. 

Proof: straightforward 

Lemma 5.2.3:  

In DoPR of matrix orthogonal code, the position of weighted bit is represented by 

(a‟d), where „a‟ is row number of weighted bit and „d‟ is consecutive difference of column 

position of next weighted bit with position of column of the current weighted bit. 

1 , 0 1.a L d N      It is a unique representation of code. 

Example 5.2.3(a): 

Suppose the matrix orthogonal code X with L=4, N=5, weight w= 7,  
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Code X = 

1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

 ;  

X (WPR) = (1‟0, 3‟0, 2‟1, 4‟1, 1‟4, 3‟4, 4‟4);  

X(DoPR) = (1‟0, 3‟1, 2‟0, 4‟3, 1‟0, 3‟0, 4‟1).           

There are N=5 columns. As per lemma 4.2.3, there are 5 WPR of this code are possible which 

are given as follows with the DoPR of the code.  

        

1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

,                                   

0 0 0 1 1

1 0 0 0 0

0 0 0 1 1

1 0 0 1 0

 
 
 
 
 
 

      

WPR(1‟0, 3‟0, 2‟1, 4‟1, 1‟4, 3‟4, 4‟4),       WPR(2‟0, 4‟0, 1‟3, 3‟3, 4‟3, 1‟4, 3‟4),                   

DoPR (1‟0, 3‟1, 2‟0, 4‟3, 1‟0, 3‟0, 4‟1),                        DoPR (2‟0, 4‟3, 1‟0, 3‟0, 4‟1, 1‟0, 3‟1),   

  

0 0 1 1 0

0 0 0 0 1

0 0 1 1 0

0 0 1 0 1

 
 
 
 
 
 

 ,      

0 1 1 0 0

0 0 0 1 0

0 1 1 0 0

0 1 0 1 0

 
 
 
 
 
 

, 

WPR(1‟2, 3‟2, 4‟2, 1‟3, 3‟3, 2‟4, 4‟4),       WPR(1‟1, 3‟1, 4‟1, 1‟2, 3‟2, 2‟3, 4‟3),                 

DoPR (1‟0, 3‟0, 4‟1, 1‟0, 3‟1, 2‟0, 4‟3),          DoPR (1‟0, 3‟0, 4‟1, 1‟0, 3‟1, 2‟0, 4‟3),   

1 1 0 0 0

0 0 1 0 0

1 1 0 0 0

1 0 1 0 0

 
 
 
 
 
 

 

WPR(1‟0, 3‟0, 4‟0, 1‟1, 3‟1, 2‟2, 4‟2),                         

DoPR (1‟0, 3‟0, 4‟1, 1‟0, 3‟1, 2‟0, 4‟3). 

It can be observed in this example that in every column wise circular shifting of the 

code, WPR of code changed but DoPR remain same, it is only circular shifted versions of DoPR 

(1‟0, 3‟0, 4‟1, 1‟0, 3‟1, 2‟0, 4‟3) without changing the numerical values. Hence it can be claimed 

that DOPR is a unique representation of two dimensional unipolar (optical) orthogonal codes. 
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Lemma 5.2.4:  

In DoPR of matrix orthogonal code  1 1 2 2' , ' ,..., 'w wa d a d a d , 

1 2 ... wd d d N    , where N is number of columns in binary matrix orthogonal code. 

Lemma 5.2.5:  

The DoPR of matrix orthogonal code  1 1 2 2' , ' ,..., 'w wa d a d a d may be converted 

to WPR  1 1 2 2' , ' ,..., 'w wa b a b a b  and vice versa with 0
th

 column to be weighted necessarily as 

follows under modulo N arithmetic, 

  

1

2 1 1

3 2 2

1 1

0;

;

;

...;

;w w w

b

b b d

b b d

b b d 



 

 

 

 

5.3 Calculation of Correlation Constraints 

Lemma 5.3.1:  

The auto-correlation constraint of a matrix orthogonal code is equal to maximum 

overlapping of weighted positions of any two out of „N‟ representations of the code in WPR 

(lemma 4.2.3).  

( ) ( ), (0 1)a P PX p X p N        

Where PX  represent to WPR of matrix code X and  Pp X represent to WPR of p times 

column wise right circular shifted version of code X.  

 

Example 5.3.1(a): 

Suppose matrix code X, with its WPR Xp as  

X= 

1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

,    XP = WPR(1‟0, 3‟0, 2‟1, 4‟1, 1‟4, 3‟4, 4‟4),      

1+ XP = WPR (1‟0, 3‟0, 4‟0, 1‟1, 3‟1, 2‟2, 4‟2),   

2+ XP = WPR (1‟1, 3‟1, 4‟1, 1‟2, 3‟2, 2‟3, 4‟3),   

3+ XP = WPR (1‟2, 3‟2, 4‟2, 1‟3, 3‟3, 2‟4, 4‟4), 

4+ XP = WPR(2‟0, 4‟0, 1‟3, 3‟3, 4‟3, 1‟4, 3‟4),          

( ) (1 ) 2P PX X    
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( ) (2 ) 1P PX X    

( ) (3 ) 1P PX X    

( ) (4 ) 2P PX X    

Hence as per lemma 5.3.1 auto-correlation constraint 2a  . 

Lemma 5.3.2:  

The cross-correlation constraint for the pair of matrix orthogonal codes (X,Y)  is the 

maximum overlapping of weighted positions of one matrix code with „N‟ representations of 

other matrix code in WPR. 

( ) ( ), (0 1)

( ) ( ), (0 1)

c P P

c P P

X p Y p N

Alternatively

Y p X p N





     

     

 

Where PX  represent to WPR of matrix code X and  Pp Y represent to WPR of p times 

column wise circular shifted version of code Y and vice versa. 

 

Example 5.3.2(a): 

Suppose matrix codes X and Y, with their WPR Xp and YP respectively as  

X= 

1 0 0 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

 
 
 
 
 
 

,    XP = WPR(1‟0, 3‟0, 2‟1, 4‟1, 1‟4, 3‟4, 4‟4),  2a   

And    

Y=

1 0 0 0 1

1 0 1 0 0

0 0 1 0 0

0 1 0 0 1

 
 
 
 
 
 

,    YP = WPR (1‟0, 2‟0, 4‟1, 2‟2, 3‟2, 1‟4, 4‟4), 2a   

1+ YP = WPR (1‟0, 4‟0, 1‟1, 2‟1, 4‟2, 2‟3, 3‟3),   

2+ YP = WPR (1‟1, 4‟1, 1‟2, 2‟2, 4‟3, 2‟4, 3‟4),   

3+ YP = WPR (2‟0, 3‟0, 1‟2, 4‟2, 1‟3, 2‟3, 4‟4),   

4+ YP = WPR (4‟0, 2‟1, 3‟1, 1‟3, 4‟3, 1‟4, 2‟4),            

( ) (1 ) 2P PX Y    

( ) (2 ) 2P PX Y    

( ) (3 ) 2P PX X    

( ) (4 ) 2P PX X    

Hence as per lemma 5.3.2 cross-correlation constraint for pair of codes X and Y be 2c  . 
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5.4 Formation of the Maximal Sets of 2-DU(O)OC:  

The maximal sets of 2-DUOC for fixed code parameters ( , , , )a cL N w   are formed through 

following two proposed algorithms. 

 

5.4.1 Algorithm one to design the maximum sets of 2-DUOC 
This algorithm  can generate multiple sets of two dimensional unipolar orthogonal 

codes for given matrix code dimensions (LxN), code weight „w‟ and correlation  constraints 

lying from 1 to w-1, such that 
2w LN . The codes are generated in difference of positions 

representation (DoPR). The steps of algorithm are as following. 

Step-1:  Input matrix code dimensions L, the number of rows, N, the number of columns, code 

weight „w‟, auto-correlation constraint ' 'a  and cross-correlation constraint ' 'c for the code 

sets to be generated.                     

Step-2:  Initialize w variables 1 2 1(m ,m ,...,m )w equal to one and 

1 2 1( (m ... ))w wm LN m m      . 

Step-3:  Generate all the one dimensional codes of set ( , )n w with code length n LN , 

in standardized DoPR in sequence starting from (1,1,..., 1)n w   to  1 2(m ,m ,...,m )w  

with enumeration. 

1 2 1( ) (m ,m ,...,m ) 1w wi m     ( ) ( 1).w

n
ii m n w

w

 
    

   

The variables 1 2 1(m ,m ,...,m ,m )w w in DoPR, represent to difference of weighted positions 

or position of bit 1‟s in serial and circular order in the codes which are generated very similar to 

3.4.1, algorithm one to design the maximal sets of 1-DUOC.   

Step 4: Conversion of one dimensional unipolar orthogonal codes to two dimensional unipolar 

orthogonal codes 

 (i) Conversion of one dimensional code (DoPR) 1 2(m ,m ,...,m )w  into corresponding one 

dimensional code (WPR) 1 1 2 1 2 1(1,m 1,m 1,...,1 ... )wm m m m         [156]. 

(ii) Conversion of one dimensional code (WPR) into two dimensional code (WPR) by dividing 

each weighted position by „L‟ to get quotient „b‟ and remainder „a‟ for each weighted position. 

Here each a‟b represent to each weighted position in matrix orthogonal code. „a‟ stands for row 

position and „b‟ stands for column position as in lemma  4.2.2.  

 

Lemma 5.4.1.1:  
The matrix orthogonal code with a‟b weighted positions can be converted into 
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corresponding binary matrix orthogonal code by putting binary digit „1‟ at weighted positions 

and „0‟ otherwise. This binary matrix orthogonal code can be converted into „L‟ binary matrix 

orthogonal codes by every row wise circular shifting of the code.  

(iii) Conversion of two dimensional code (WPR) into two dimensional code (DoPR) by getting 

difference „d‟ of two columns of consecutive weighted positions as obtained in (ii) in circular 

order so that each weighted position is represented by (a‟d) as in Lemma 5.2.5. It will be 

standard DoPR of two dimensional codes if it is obtained from one dimensional code in standard 

DoPR. 

 

Lemma 5.4.1.2:  

The two dimensional unipolar (optical) orthogonal code (in DoPR) can be 

converted into binary matrix orthogonal code through intermediate two dimensional unipolar 

(optical) orthogonal code (in WPR).  

 

Step 5: Calculation of auto-correlation constraints  

For the generated 2 dimensional codes in step 4, the auto-correlation constraint of 

each code can be calculated through the use of proposed method for calculation of correlation 

constraints given in lemma 5.3.1.  

Step 6: Calculation of cross-correlation constraints  

The cross-correlation constraint for each pair of two dimensional unipolar 

orthogonal codes generated in step-4 is calculated through the use of proposed method described 

earlier in lemma 5.3.2. The cross-correlation for each pair containing code#1 with code of code 

number greater than 1, secondly the code#2 with code of code number greater than 2, upto 

code#(M-1) with code#M. 

 

Step 7: Formation of correlation matrix 

In step 4, the number of generated codes are M. A M M matrix can be formed in 

such a way that it contains correlation of code# x with code# y, for 1 ( , )x y M  . 

When x y , it represent to maximum auto-correlation for non zero shift or    

auto-correlation constraint of code# x or code# y, which form diagonal elements of M M  

correlation matrix. For x y , cross correlation constraint of code# x with code# y is found as a 

non-diagonal element in row x and column y as well as non-diagonal position with row y and 

column x in correlation matrix.                         

Step 8: Formation of sets of unipolar orthogonal codes for given values of a  and c such that 

1 , 1a c w    . For given values of auto-correlation and cross-correlation constraints for 

the set of unipolar orthogonal codes, the upper bound  Z of such set of codes can be calculated by 

Johnson bound A [122]. 

( 1)( 2)...( )

( 1)...( )

LN LN LN
Z L

w w w





   
  

  
,
 here max( , )a c    

Now, all those codes are selected for which diagonal entries are a . All the rows and column 

for the codes which not selected are removed from the correlation matrix, giving a reduced 
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correlation matrix. Within these codes, only those sets of codes with upper bound Z, are selected 

which has cross-correlation constraints c  by following method. 

(iv) From the reduced correlation matrix only those rows and columns are selected whose 

number of cross-correlation entries with c  are greater than the upper bound Z of 

the sets of codes to be generated. 

(v)  In this reduced correlation matrix, number of rows or columns are equal to P. Out of 

these P codes, all possible combinations of sets of non repeated Z codes are formed 

mentioning their code numbers. These possible combinations of sets are equal to 

( 1)...( 1)

( 1)...2.1

P

Z

P P P Z
G C

Z Z

  
 


   

(vi) Each such set of codes are checked for their maximum cross-correlation constraint 

c through the use of cross-correlation entries from reduced correlation matrix. It 

will achieve final sets of codes as required.  

5.4.2 Computational Complexity of Algorithm - one  

The computational complexity of the proposed algorithm  for the formation of two 

dimensional unipolar (optical) orthogonal codes is summarized here in the following steps. 

I. Calculation for upper bound of the set of one dimensional unipolar (optical) orthogonal codes 

for code length n, code weight w with auto-correlation and cross-correlation constraint of the set 

equal to w-1. This upper bound is equal to Johnson bound A for the set given in lemma 2.3.15. 

The computational complexity of this step is ( )O LNw . 

II. Formation of all two dimensional unipolar (optical) orthogonal codes of code dimensions 

(LxN), code weight w with auto-correlation and cross-correlation constraint less than or equal to 

w-1 in standard difference of positions representation (DoPR). The computational complexity of 

this step is   1w
O LN



. 

III. Conversion of one dimensional codes to two dimensional or matrix orthogonal codes.  The 

computational complexity of this step is
2( )O rw . 

IV. Calculation of auto-correlation constraint of each code formed at step 4 form. These values 

of auto-correlation constraints are put at the position of diagonal elements in correlation matrix

[ ]r r . 

The computational complexity of this step is 
3( )O rw . 

V. Calculation of cross-correlation constraint of every pair of these codes and putting them in 

correlation matrix [ ]r r at non diagonal positions. The computational complexity of this step 
2 3( )O r w .  

VI. Calculation for upper bound or Johnson bound of the set of two dimensional unipolar 

(optical) orthogonal codes for code dimension (LxN), code weight „w‟ with correlation constraint 
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 which is maximum of given auto-correlation and cross-correlation constraint. The 

computational complexity of this step is  ( )O LN . 

VII. Formation of reduced correlation matrix whose diagonal elements are always less than or 

equal to given auto-correlation constraint a  and non-diagonal elements are either less than or 

greater than or equal to cross-correlation constraint c . The computational complexity of this 

step is
2( )O r . 

VIII. Formation of all sets of 2-D U(O)OC with maximum cardinality as calculated in step VI, 

and checking each set for cross-correlation constraint less than or equal to given cross-

correlation constraint value with help of reduced correlation matrix. 

The computational complexity of this step is 
3( )O r , where 

 ( 1)( 2)...( 1)

( 1)( 2)...2.1

wLN LN LN w LN
ww w w

r
   

 
  . 

The overall computational complexity of the proposed algorithm is of the higher order of 
3( )O r

which is equivalent   3w
LN

wO  which may be polynomial type for w LN . 

 

5.4.3 Design of Sets of 2-DUOC (Algorithm – two)                          

The algorithm two is an extended version of algorithm one. In algorithm one the formation of 

correlation matrix (MxM) is much complex for higher M. The formation of code sets from the 

given correlation matrix (MxM) is also much complex. It can be reduced by following algorithm 

two as given below. 

Step 1: same as algorithm one (input code parameters ( , , , )a cL N w    

Step 2: same as algorithm one (initializing parameters) 

Step 3: same as algorithm one (generation of all the M codes in sequence in DoPR)  

Step 4: same as algorithm one (calculation of auto-correlation constraint of each of M codes 

generated at step 3) 

Step 5: Take one code C1 out of all M codes such that maximum non-zero shift auto-correlation 

of code C1 is less than or equal to auto-correlation constraint a of desired sets as input in step 

one. Calculate cross-correlation of pair of codes formed with other M-1 codes such that in each 

pair one code is C1. Out of M-1 pair of codes only M1 codes pairing with C1 are selected which 

have cross correlation less than or equal to cross correlation constraint c .  

Step 6: Repeat step 5 for code C2 out of all M1 codes. Get M2 codes pairing with C2 out of (M1-

1) pair of codes. The step 6 is repeated till the Cz-1. Where Z is defined and given as maximum 

number of codes in the code set formed for given code parameters ( , , , )a cL N w    such that 

1 2 1( , ,..., )zC C C  have cross-correlation constraint less than or equal to c . There are total Mz-1 

code which have their cross-correlation value with code Cz-1 less than or equal to c . Each of 

these Mz-1 codes may be treated as code Cz so that there are Mz-1 set of codes may be formed as 
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1 2 1( , ,..., , )z zC C C C  

Step 7: The step 6 may be repeated for all possible other codes C1 to Cz-1 which are not 

employed in last steps to get different set of codes following correlation properties.  

5.4.4 Computational Complexity of Algorithm – two  
The computational complexity of step 1 to step 7 is remain same as algorithm – one 

but the value of r is changed for given auto-correlation a and cross-correlation constraint c .   

 max ,a c    

   ( 1)( 2)...( )

( 1)( 2)...

LN LN LN LN
ww w w w

r




  

  
 

 

The overall computational complexity of the proposed algorithm - two is of the 

higher order of 
3( )O r which is equivalent   3

LN
wO


 which may be polynomial type for

w LN  but less complex than algorithm - one. 

5.5 Comparison with Ideal Scheme        

Both the algorithms proposed here for generation of two dimensional unipolar 

(optical) orthogonal codes can be compared with an ideal scheme supposed already in chapter – 

4 for comparison purpose. The comparison with ideal scheme provide a level of closeness with 

ideal scheme for generation of two dimensional unipolar orthogonal codes. In following table 

these schemes are compared with an ideal scheme.   

 

Table 5.1: Comparison of proposed algorithms with ideal scheme for generating 2-D U(O)OCs 

OOC(2

D)  

Matrix 

dimensio

ns (LxN) 

 

Weight 

„w‟ 

Auto-

correlation 

constraint 

a  

Cross-

correlation 

constraint 

c  

Cardin

ality 

of 

code-

set 

No. of 

code sets 

Computati

onal 

complexit

y 

Other 

comments 

Algorit

hm - 

One 

L>0, 

N>0 

0<w<L

N  

1 to w-1 1 to w-1 Z Some 

random 

sets 

  3w
LN

wO

 

 

Algorit

hm - 

Two 

L>0, 

N>0 

0<w<L

N   

1 to w-1 1 to w-1 Z Some 

random 

sets 

  3
LN

wO


 

 

Ideal 

Scheme 

L>0, 

N>0 

0<w<L

N 

1 to w-1 1 to w-1 Z All 

possible 
  w

O LN  This 

scheme is 

not in 

existence 
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5.6 Conclusion                   

The proposed algorithms are able to generate some random sets of two dimensional 

unipolar orthogonal codes for given code matrix dimensions L N , code weight „w‟ and auto-

correlation constraints lying from 1 to w-1. The ideal scheme should generate all possible sets 

but with very low computational complexity. These proposed schemes are very close to ideal 

scheme but lack only in the case of computational complexity which may be improved in future. 

 These two dimensional or matrix orthogonal codes have lower temporal length 

than one dimensional orthogonal codes with same cardinality. So that the two dimensional codes 

require wider optical pulse width in comparison to one dimensional codes. Some more 

comparisons of two dimensional with one dimensional orthogonal codes are given in next 

chapter along-with future scope.   
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CHAPTER 6 

 

6. CONCLUSION 

In the conclusion of the thesis, the designed one dimensional and then two 

dimensional orthogonal codes are compared for code parameters, cardinality of the code sets, 

and computational complexity of the proposed algorithms. The advantages and disadvantages of 

these generated codes are described as compare to already proposed schemes generating one 

dimensional and two dimensional optical orthogonal codes and code sets. The future scope of the 

work proposed is described as follows. 

6.1 Advantages and disadvantages of U(O)OCs (1-D & 2-D)   

 Basically either one dimensional or two dimensional unipolar (optical) orthogonal 

codes are employed for the purpose of signature sequences to incoherent optical CDMA systems. 

The one dimensional unipolar (optical) orthogonal codes have been designed here in multiple 

sets for general values of code parameters. The multiple sets of these codes provide flexibility in 

selection of code set which ultimately increases the inherent security of the system [152, 154]. 

These multiple sets may also be utilized for increasing spectral efficiency of the system [137, 

143]. The general value of code parameters give us freedom to design the codes as per system‟s 

requirement not to design the system as per codes. These codes are generated in sets with 

maximum cardinality with real upper bounds due to clique search algorithms. The disadvantage 

of the methods proposed here to design one dimensional unipolar orthogonal codes is mainly 

computational complexity of the search algorithms. The computational complexity of the 

algorithms make the upper limits on code parameters so that these algorithms are unable to 

design the codes for higher values of code parameters (n, w).  

The two dimensional unipolar orthogonal codes in their multiple sets are also 

designed here for general code parameters. The general values of code parameters again provide 

freedom to design the codes as per system‟s requirement as well as the multiple sets of codes 

provide flexibility for selection of codes to increase inherent security and spectral efficiency 

[133]. These two dimensional codes are designed in sets with maximum cardinality because of 

search algorithms to find the codes. Again here the high computational complexity of search 

algorithms is main drawback to be reduced in future works.    

These one dimensional as well as two dimensional unipolar orthogonal codes are 

represented uniquely named difference of positions representation which remain same on every 

temporal shift of the code. The proposed simple method of calculations of auto-correlation and 

cross-correlation constraints unig DoPR of the codes reduces computational complexity of 

orthogonal codes designed in  multiple sets.  

The multiple access interference or probability of error is directly proportional to 

correlation constraints ( a ,
 c ). The multiple access interference can be minimized by setting 
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the value of ( a =1,
 c =1) but compromise with lower cardinality or maximum number of codes 

generated in the set. While with increasing values of correlation constraints (1< a <w,1<
 c <w), 

the cardinality of the system can be increased but with the cost of orthogonality which increases 

the MAI or probability of error or BER. 

6.2 Comparisons of U(O)OCs (1-D & 2-D)   

 The temporal length of codes directly related to required bandwidth of optical 

channel or spectral efficiency of channel. The temporal length of two dimensional codes is 

always less than one dimensional codes for same other code parameters and same cardinality of 

code sets. Hence spectral efficiency for two dimensional codes is much better than one 

dimensional codes [133]. The two dimensional unipolar orthogonal codes also provide better 

inherent security in comparison to one dimensional orthogonal codes because of multi-

wavelengths used in a two dimensional or matrix code. Here the two dimensional orthogonal 

codes with matrix dimension  L N are designed through one dimensional orthogonal codes 

with code length n LN and same weight w. It generate the two dimensional codes with lower 

temporal length than one dimensional orthogonal codes and almost equal computational 

complexity of the algorithms as given below. The search methods used in algorithm one and two 

to find one dimensional unipolar orthogonal codes remain same as in algorithm one and two 

respectively to find two dimensional unipolar orthogonal codes. The conversion of one 

dimensional to two dimensional is with lower computational complexity so that two dimensional 

orthogonal codes designing is not more complex than one dimensional codes. 

In Appendix I, the result of algorithm one for design of one dimensional unipolar 

orthogonal code for given code parameters ( 31, 3, 1, 1)a cn w      . It gives 13 sets of one 

dimensional unipolar orthogonal codes. Each code set contains 5 codes which is upper bound of 

the set as per Johnson bounds. In Appendix II, the result of algorithm two for design of one 

dimensional unipolar orthogonal code for given code parameters ( 131, 3, 1, 1)a cn w      . 

The algorithm two uses clique search method than algorithm one which uses direct sarch method 

to fine multiple sets of one dimensional unipolar orthogonal codes. 

  In Appendix III, the results of algorithm one for design of two dimensional 

orthogonal codes for given codes parameters ( 4, 3, 3, 2, 2)a cL N w        while   

Appendix IV have result of algorithm two for design of two dimensional unipolar orthogonal 

codes for given code parameters ( 4, 10, 3, 2, 2)a cL N w        using clique search method.  

6.3 Future Scope of the Work 

In thesis the author has developed some search algorithms to design one 

dimensional as well as two dimensional unipolar (optical) orthogonal codes and their 

comparisons. These codes are generally employed in incoherent optical CDMA systems. During 

developing the algorithms the author has found many advantages of these codes over already 

proposed codes in literature and single disadvantage which is high computational complexity of 
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the search algorithms. In future this drawback may be considered as challenges to take 

advantages of codes already mentioned.  These codes may be utilized in optical LAN and other 

system where unipolar orthogonal codes are required. One may develop three or multi 

dimensional unipolar orthogonal codes to increase inherent security and spectral efficiency of the 

system. One may also develop multi-length and multi-weight one dimensional codes as well as 

multi matrix dimensions and muti weight two dimensional or mult-dimensional unipolar 

orthogonal codes to fully access optical bandwidth by multiple users.  

 

 

Table 6.1: Comparison of proposed algorithms for generating 1-D and 2-D U(O)OCs 
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APPENDIX I 

 

Results of Algorithm one designing one dimensional unipolar (optical) 

orthogonal codes  for desired code parameters  

Code length („n‟),  code weight  („w‟), total number of codes generated in difference of positions 

representation with auto-correlation constraint equal to one („dops‟), total number of codes 

possible as per Johnson‟s bound („jb‟) , auto-correlation constraint for the desired set of codes 

(„la‟), cross-correlation constraint for the desired set of codes („lc‟), as per Johnson bound 

maximum size of set of codes = (n-1)/w(w-1) = („gsused‟), the designed set of codes with 

maximum size („groups‟). 

n= 31 31 

w= 3 3 

dops= 65 65 

jb= 145 145 

la= 1 1 

lc= 1 1 

gsused= 5 5 

groups= 13 13 

    

Code               

S.No.  Difference of Positions of codes with „la‟=  1  

1 1 2 28 

2 1 3 27 

3 1 4 26 

4 1 5 25 

5 1 6 24 

6 1 7 23 

7 1 8 22 

8 1 9 21 

9 1 10 20 

10 1 11 19 
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11 1 12 18 

12 1 13 17 

13 1 14 16 

14 2 3 26 

15 2 4 25 

16 2 5 24 

17 2 6 23 

18 2 7 22 

19 2 8 21 

20 2 9 20 

21 2 10 19 

22 2 11 18 

23 2 12 17 

24 2 13 16 

25 2 14 15 

26 3 4 24 

27 3 5 23 

28 3 6 22 

29 3 7 21 

30 3 8 20 

31 3 9 19 

32 3 10 18 

33 3 11 17 

34 3 12 16 

35 3 13 15 

36 4 5 22 
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37 4 6 21 

38 4 7 20 

39 4 8 19 

40 4 9 18 

41 4 10 17 

42 4 11 16 

43 4 12 15 

44 4 13 14 

45 5 6 20 

46 5 7 19 

47 5 8 18 

48 5 9 17 

49 5 10 16 

50 5 11 15 

51 5 12 14 

52 6 7 18 

53 6 8 17 

54 6 9 16 

55 6 10 15 

56 6 11 14 

57 6 12 13 

58 7 8 16 

59 7 9 15 

60 7 10 14 

61 7 11 13 

62 8 9 14 
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63 8 10 13 

64 8 11 12 

65 9 10 12 

    
 

     

  

     Generated set of codes with their code serial numbers for given code parameters 

 (n=31, w=3, la=1, lc=1) 

 1 38 49 57 62     

1 38 51 54 63 

1 39 48 55 61 

1 44 45 58 65 

2 19 51 54 61 

2 21 47 56 59 

2 21 50 52 62 

2 22 46 55 62 

2 23 45 59 63 

3 18 34 56 63 

3 19 33 57 59 

3 24 28 60 64 

3 25 30 52 65 
  

    

     Any one of these groups can be selected for code assignment to users of optical cdma system. 

For example set one is selected with code number [ 1, 38, 49, 57, 62] 

Code No. 1    =   DoPR (1, 2, 28) = WPR (0,1,3) = BS [1101000000000000000000000000000] 

Code No. 38  =   DoPR (4,7,20) = WPR (0,4,11) = BS [1000100000010000000000000000000] 

Code No. 49  =  DoPR (5,10,16) = WPR (0,5,15)= BS [1000010000000001000000000000000] 

Code No. 57 =  DoPR (6,12,13) = WPR (0,6,18) = BS [1000001000000000001000000000000] 

Code No. 62 =  DoPR (8,9,14)  = WPR (0,8,17)  = BS [1000000010000000010000000000000] 
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                                                  APPENDIX II 

    

     

     

     Results of Algorithm two designing one dimensional unipolar (optical)  

orthogonal codes  for desired code parameters  

code length („n‟),  code weight  („w‟), total number of codes generated in difference of positions representation  

with auto-correlation constraint equal to one („dops‟), total numberof codes possible as per Johnson‟s bound („jb‟), 

 auto-correlation constraint for the desired set of codes („la‟), cross-correlation constraint for the desired set of 

 codes („lc‟), as per Johnson bound maximum size of set of codes = (n-1)/w(w-1) = („gsused‟), the designed set  

of codes with maximum size („groups‟). 

n= 131 31 

w= 3 3 

dops= 1365 65 

jb= 2795 145 

la= 1 1 

lc= 1 1 

gsused= 19 5 

groups= 10 013 

    

Code               

S.No.  Difference of Positions of codes with „la‟=  1  

1 1 2 128 

2 1 3 127 

3 1 4 126 

4 1 5 125 

5 1 6 124 

--- 

   --- 
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--- 

   1362 41 43 47 

1363 41 44 46 

1364 42 43 46 

1365 42 44 45 

    
 

     Generated set of codes with their code serial numbers for given code parameters            

(n=131, w=3, la=1, lc=1) 

 1 186 302 413 566 706 792 910 981 1076 

1132 1183 1255 1275 1306 1320 1332 1335 1345 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1255 1276 1308 1318 1325 1341 1345 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1255 1278 1303 1320 1329 1335 1348 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1255 1278 1307 1316 1325 1339 1348 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1255 1279 1303 1318 1330 1335 1349 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1255 1279 1306 1316 1325 1339 1349 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1258 1273 1308 1319 1325 1341 1344 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1258 1278 1301 1315 1330 1341 1345 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1258 1278 1303 1319 1323 1341 1356 
 

          1 186 302 413 566 706 792 910 981 1076 

1132 1183 1258 1279 1301 1315 1330 1337 1349 
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Any one of these groups can be selected for code assignment to users of optical cdma system. 

For example set one is selected with code number 

 [ 1, 186, 302, 413, 566, 706, 792, 910, 981, 1076, 1132, 1183, 1255, 1275, 1306, 1320, 1332,1335, 1345] 

Code No. 1    =   DoPR (1, 2, 128) = WPR (0,1,3)=BS[11010000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000 

00000] 

Similarly  

Code No. 186  =   DoPR (4,5,122) = WPR (0,4,9) = BS [can be generated similar to code no. 1] 

Code No. 302  =  DoPR (6,7,118) = WPR (0,6,13)= BS [can be generated similar to code no. 1] 

Code No. 413 =  DoPR (8,10,113) = WPR (0,8,18) = BS [can be generated similar to code no. 1] 

Code No. 566 =  DoPR(11,12,108) =WPR (0,11,23)= BS [can be generated similar to code no. 1] 

Code No. 706  =  DoPR (14,15,102) = WPR (0,14,29)= BS [can be generated similar to code no. 1] 

Code No. 792  =  DoPR (16,17,98) = WPR (0,16,33)= BS [can be generated similar to code no. 1] 

Code No. 910  =  DoPR (19,20,92) = WPR (0,19,39)= BS [can be generated similar to code no. 1] 

Code No. 981  =  DoPR (21,22,88) = WPR (0,21,43)= BS [can be generated similar to code no. 1] 

Code No. 1076  =  DoPR (24,25,82) = WPR (0,24,49)= BS [can be generated similar to code no. 1] 

Code No. 1132  =  DoPR (26,27,78) = WPR (0,26,53)= BS [can be generated similar to code no. 1] 

Code No. 1183  =  DoPR (28,30,73) = WPR (0,28,58)= BS [can be generated similar to code no. 1] 

Code No. 1255  =  DoPR (31,41,59) = WPR (0,31,72)= BS [can be generated similar to code no. 1] 

Code No. 1275  =  DoPR (32,44,55) = WPR (0,32,76)= BS [can be generated similar to code no. 1] 

Code No. 1306  =  DoPR (34,45,52) = WPR (0,34,79)= BS [can be generated similar to code no. 1] 

Code No. 1320  =  DoPR (35,46,50) = WPR (0,35,81)= BS [can be generated similar to code no. 1] 

Code No. 1332  =  DoPR (36,37,48) = WPR (0,36,73)= BS [can be generated similar to code no. 1] 

Code No. 1335  =  DoPR (37,40,54) = WPR (0,37,77)= BS [can be generated similar to code no. 1] 

Code No. 1345  =  DoPR (38,42,51) = WPR (0,38,80)= BS [can be generated similar to code no. 1] 

 

    
 



109 

UPTU/PhD/07/EC/539 

     APPENDIX III 

 

Results of algorithm one for designing of two dimensional unipolar orthogonal 

codes for code parameters ( 4, 3, 3, 2, 2)a cL N w       through one 

dimensional orthogonal codes ( 12, 3)n LN w    

    

Code               

S.No.  Difference of Positions of 1D UOC  

1 1 1 10 

2 1 2 9 

3 1 3 8 

4 1 4 7 

5 1 5 6 

6 2 1 9 

7 2 2 8 

8 2 3 7 

9 2 4 6 

10 2 5 5 

11 3 1 8 

12 3 2 7 

13 3 3 6 

14 3 4 5 

15 4 1 7 

16 4 2 6 

17 4 3 5 

18 5 1 6 
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Serial no 1 

one_dimensional_orthogonal_code  =  DoPR [1   1   10]  = WPR [0,1,2] 

one_dimensional_binary_code =     1     1     1     0     0     0     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 2‟0, 3‟0] = DoPR[1‟0, 2‟0, 3‟0] 

two_dimensional_binary_code = 

     1     0     0 

     1     0     0 

     1     0     0 

     0     0     0 

Serial no 2 

one_dimensional_orthogonal_code  =  DoPR [1   2   9]  = WPR [0,1,3] 

one_dimensional_binary_code =     1     1     0     1     0     0     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 2‟0, 4‟0] = DoPR[1‟0, 2‟0, 4‟0] 

two_dimensional_binary_code = 

     1     0     0 

     1     0     0 

     0     0     0 

     1     0     0 

Serial no 3 

one_dimensional_orthogonal_code  =  DoPR [1   3   8]  = WPR [0,1,4] 

one_dimensional_binary_code =     1     1     0     0     1     0     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 2‟0, 1‟1] = DoPR[1‟0, 2‟1, 1‟2] 

two_dimensional_binary_code = 

     1     1     0 
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     1     0     0 

     0     0     0 

     0     0     0 

Serial no 4 

one_dimensional_orthogonal_code  =  DoPR [1   4   7]  = WPR [0,1,5] 

one_dimensional_binary_code =     1     1     0     0     0     1     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 2‟0, 2‟1] = DoPR[1‟0, 2‟1, 2‟2] 

two_dimensional_binary_code = 

     1     0     0 

     1     1     0 

     0     0     0 

     0     0     0 

Serial no 5 

one_dimensional_orthogonal_code  =  DoPR [1   5   6]  = WPR [0,1,6] 

one_dimensional_binary_code =     1     1     0     0     0     0     1     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 2‟0, 3‟1] = DoPR[1‟0, 2‟1, 3‟2] 

two_dimensional_binary_code = 

     1     0     0 

     1     0     0 

     0     1     0 

     0     0     0 

Serial no 6 

one_dimensional_orthogonal_code  =  DoPR [2   1   9]  = WPR [0,2,3] 

one_dimensional_binary_code =     1     0     1     1     0     0     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 3‟0, 4‟0] = DoPR[1‟0, 3‟0, 4‟0] 

two_dimensional_binary_code = 
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     1     0     0 

     0     0     0 

     1     0     0 

     1     0     0 

Serial no 7 

one_dimensional_orthogonal_code  =  DoPR [2   2   8]  = WPR [0,2,4] 

one_dimensional_binary_code =     1     0     1     0     1     0     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 3‟0, 1‟1] = DoPR[1‟0, 3‟1, 1‟2] 

two_dimensional_binary_code = 

     1     1     0 

     0     0     0 

     1     0     0 

     0     0     0 

Serial no 8 

one_dimensional_orthogonal_code  =  DoPR [2   3   7]  = WPR [0,2,5] 

one_dimensional_binary_code =     1     0     1     0     0     1     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 3‟0, 2‟1] = DoPR[1‟0, 3‟1, 2‟2] 

two_dimensional_binary_code = 

     1     0     0 

     0     1     0 

     1     0     0 

     0     0     0 

Serial no 9 

one_dimensional_orthogonal_code  =  DoPR [2   4   6]  = WPR [0,2,6] 

one_dimensional_binary_code =     1     0     1     0     0     0     1     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 3‟0, 3‟1] = DoPR[1‟0, 3‟1, 3‟2] 
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two_dimensional_binary_code = 

     1     0     0 

     0     0     0 

     1     1     0 

     0     0     0 

Serial no 10 

one_dimensional_orthogonal_code  =  DoPR [2   5   5]  = WPR [0,2,7] 

one_dimensional_binary_code =     1     0     1     0     0     0     0     1     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 3‟0, 4‟1] = DoPR[1‟0, 3‟1, 4‟2] 

two_dimensional_binary_code = 

     1     0     0 

     0     0     0 

     1     0     0 

     0     1     0 

Serial no 11 

one_dimensional_orthogonal_code  =  DoPR [3   1   8]  = WPR [0,3,4] 

one_dimensional_binary_code =     1     0     0     1     1     0     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 4‟0, 1‟1] = DoPR[1‟0, 4‟1, 1‟2] 

two_dimensional_binary_code = 

     1     1     0 

     0     0     0 

     0     0     0 

     1     0     0 

Serial no 12 

one_dimensional_orthogonal_code  =  DoPR [3   2   7]  = WPR [0,3,5] 

one_dimensional_binary_code =     1     0     0     1     0     1     0     0     0     0     0     0 
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two_dimensional_orthogonal_code = WPR [ 1‟0, 4‟0, 2‟1] = DoPR[1‟0, 4‟1, 2‟2] 

two_dimensional_binary_code = 

     1     0     0 

     0     1     0 

     0     0     0 

     1     0     0 

Serial no 13 

one_dimensional_orthogonal_code  =  DoPR [3   3   6]  = WPR [0,3,6] 

one_dimensional_binary_code =     1     0     0     1     0     0     1     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 4‟0, 3‟1] = DoPR[1‟0, 4‟1, 3‟2] 

two_dimensional_binary_code = 

     1     0     0 

     0     0     0 

     0     1     0 

     1     0     0 

Serial no 14 

one_dimensional_orthogonal_code  =  DoPR [3   4   5]  = WPR [0,3,7] 

one_dimensional_binary_code =     1     0     0     1     0     0     0     1     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 4‟0, 4‟1] = DoPR[1‟0, 4‟1, 4‟2] 

two_dimensional_binary_code = 

     1     0     0 

     0     0     0 

     0     0     0 

     1     1     0 

Serial no 15 

one_dimensional_orthogonal_code  =  DoPR [4   1   7]  = WPR [0,4,5] 
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one_dimensional_binary_code =     1     0     0     0     1     1     0     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 1‟1, 2‟1] = DoPR[1‟1, 1‟0, 2‟2] 

two_dimensional_binary_code = 

     1     1     0 

     0     1     0 

     0     0     0 

     0     0     0 

Serial no 16 

one_dimensional_orthogonal_code  =  DoPR [4   2   6]  = WPR [0,4,6] 

one_dimensional_binary_code =     1     0     0     0     1     0     1     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 1‟1, 3‟1] = DoPR[1‟1, 1‟0, 3‟2] 

two_dimensional_binary_code = 

     1     1     0 

     0     0     0 

     0     1     0 

     0     0     0 

Serial no 17 

one_dimensional_orthogonal_code  =  DoPR [4   3   5]  = WPR [0,4,7] 

one_dimensional_binary_code =     1     0     0     0     1     0     0     1     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 1‟1, 4‟1] = DoPR[1‟1, 1‟0, 4‟2] 

two_dimensional_binary_code = 

     1     1     0 

     0     0     0 

     0     0     0 

     0     1     0 
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Serial no 18 

one_dimensional_orthogonal_code  =  DoPR [5   1   6]  = WPR [0,5,6] 

one_dimensional_binary_code =     1     0     0     0     0     1     1     0     0     0     0     0 

two_dimensional_orthogonal_code = WPR [ 1‟0, 2‟1, 3‟1] = DoPR[1‟1, 2‟0, 3‟2] 

two_dimensional_binary_code = 

     1     0     0 

     0     1     0 

     0     1     0 

     0     0     0 
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APPENDIX IV 

 

Results of algorithm two for designing of two dimensional unipolar 

orthogonal codes for code parameters ( 10, 4, 5, 4, 4)a cL N w      

through one dimensional orthogonal codes ( 40, 5)n LN w    

    

Code               

S.No.  Difference of Positions of 1D UOC  

1     1 1 1 1 36 

2  1 1 1 2 35 

3  1 1 1 3 34 

4  1 1 1 4 33 

5  1 1 1 5 32 

--- 

--- 

--- 

16447  17 2 1 1 19 

16448  17 2 1 2 18 

16449  17 2 2 1 18 

16450  17 3 1 1 18 

16451  18 1 1 1 19   

Serial no 1 

one_dimensional_orthogonal_code  =  DoPR [1   1   1   1   36]  = WPR [0,1,2,3,4] 

one_dimensional_binary_code =      

Columns 1 through 17 

     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 18 through 34 
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     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 35 through 40 

     0     0     0     0     0     0 

2_dimensional_orthogonal_code =WPR[ 1‟0, 2‟0, 3‟0, 4‟0, 1‟1] = DoPR[1‟0, 2‟0, 3‟0, 4‟1, 1‟9] 

two_dimensional_binary_code = 

     1     1     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 

Serial no 2 

one_dimensional_orthogonal_code  =  DoPR [1   1   1   2   35]  = WPR [0,1,2,3,5] 

one_dimensional_binary_code =      

Columns 1 through 17 

     1     1     1     1     0     1     0     0     0     0     0     0     0     0     0     0     0 

  Columns 18 through 34 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 35 through 40 

     0     0     0     0     0     0 

2_dimensional_orthogonal_code =WPR[ 1‟0, 2‟0, 3‟0, 4‟0, 2‟1] = DoPR[1‟0, 2‟0, 3‟0, 4‟1, 2‟9] 

two_dimensional_binary_code = 

     1     0     0     0     0     0     0     0     0     0 

     1     1     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 
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Serial no 3 

one_dimensional_orthogonal_code  =  DoPR [1   1   1   3   34]  = WPR [0,1,2,3,6] 

one_dimensional_binary_code =      

Columns 1 through 17 

     1     1     1     1     0     0     1     0     0     0     0     0     0     0     0     0     0 

  Columns 18 through 34 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 35 through 40 

     0     0     0     0     0     0 

2_dimensional_orthogonal_code =WPR[ 1‟0, 2‟0, 3‟0, 4‟0, 3‟1] = DoPR[1‟0, 2‟0, 3‟0, 4‟1, 3‟9] 

two_dimensional_binary_code = 

     1     0     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 

     1     1     0     0     0     0     0     0     0     0 

     1     0     0     0     0     0     0     0     0     0 

--- 

--- 

--- 

Serial no 16449 

one_dimensional_orthogonal_code  =  DoPR [17   2   2   1   18]  = WPR [0,17,19,21,22] 

one_dimensional_binary_code=      

Columns 1 through 17 

     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 18 through 34 

     1     0     1     0     1     1     0     0     0     0     0     0     0     0     0     0     0 

  Columns 35 through 40 
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     0     0     0     0     0     0 

2_dimensional_orthogonal_code =WPR[ 1‟0, 2‟0, 4‟0, 2‟0, 3‟1] = DoPR[1‟4, 2‟0, 4‟1, 2‟0, 3‟5] 

two_dimensional_binary_code = 

     1     0     0     0     0     0     0     0     0     0 

     0     0     0     0     1     1     0     0     0     0 

     0     0     0     0     0     1     0     0     0     0 

     0     0     0     0     1     0     0     0     0     0 

Serial no 16450 

one_dimensional_orthogonal_code  =  DoPR [17   3   1   1   18]  = WPR [0,17,20,21,22] 

one_dimensional_binary_code=      

Columns 1 through 17 

     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 18 through 34 

     1     0     0     1     1     1     0     0     0     0     0     0     0     0     0     0     0 

  Columns 35 through 40 

     0     0     0     0     0     0 

2_dimensional_orthogonal_code =WPR[ 1‟0, 2‟4, 1‟5, 2‟5, 3‟5] = DoPR[1‟4, 2‟1, 1‟0, 2‟0, 3‟5] 

two_dimensional_binary_code = 

     1     0     0     0     0     1     0     0     0     0 

     0     0     0     0     1     1     0     0     0     0 

     0     0     0     0     0     1     0     0     0     0 

     0     0     0     0     0     0     0     0     0     0 

Serial no 16451 

one_dimensional_orthogonal_code  =  DoPR [18   1   1   1   19]  = WPR [0,18,19,20,21] 

one_dimensional_binary_code=      

Columns 1 through 17 
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     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 18 through 34 

     0     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 35 through 40 

     0     0     0     0     0     0 

2_dimensional_orthogonal_code =WPR[ 1‟0, 3‟4, 4‟4, 1‟5, 2‟5] = DoPR[1‟4, 3‟0, 4‟1, 1‟0, 2‟5] 

two_dimensional_binary_code = 

     1     0     0     0     0     1     0     0     0     0 

     0     0     0     0     0     1     0     0     0     0 

     0     0     0     0     1     0     0     0     0     0 

     0     0     0     0     1     0     0     0     0     0 

Total codes formed = 16451 

 

These generated codes can be assigned to different multiple users accessing the common optical 

channel using CDMA scheme in asynchronous manner. 
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