
Algorithms for Reliability in Large

Scale Structured and

Unstructured Peer-to-Peer

Overlay Multicast Networks for

Live Streaming

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Ashutosh Singh

to the

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

JULY 2016

Let not Ambition mock their useful toil,

Their homely joys, and destiny obscure;

Nor Grandeur hear with a disdainful smile

The short and simple annals of the poor.

Thomas Gray in “Elegy Written in a Country Churchyard”

Dedicated

to

those lesser knowns,

who devote their life working

honestly in their area, with a passion

to make our world a better place

to live, without any ambition

for fame, awards

or accolades.

Acknowledgements

I would like to express my sincere gratitude toward my thesis supervisor,

Dr. Yatindra Nath Singh, Professor, Electrical Engineering Department, IIT

Kanpur, Kanpur. His vision and suggestions throughout the thesis work

from choosing the problem, solving and presenting has been fundamental in

the completion of the thesis. He always encouraged me to apply my own

thinking and come up with my own ideas. This helped me a lot in improving

my research abilities. His dynamic approach to the research problem and

guiding the students is remarkable. His cooperation, understanding and pa-

tience are incredible. His ideologies and ethics has molded my attitude too.

The confidence he has shown in me, has had a immeasurable effect on me

and on my work. He taught me what research is, how it is performed, and

how it is communicated. He also provided me with lots of hints to improve

my professional behaviour. He taught me to see the silver lining in every

dark cloud, helping me to develop analytical thinking and making me firmly

believe that research is an attitude, a philosophy of life. He is like a guiding

lighthouse for me, where I can see upon whenever I am uncertain.

My colleagues at HBTI Kanpur and lab mates at IIT Kanpur deserve more

than a mention here. I acknowledge my colleagues Dr. Rachna Asthana, Dr.

A.K. Shankhwar, and Mrs. Rajani Bisht for their for their companionship,

camaraderie and support. I acknowledge my labmates Anurag, Prashant,

Rameshwar, Anupam, Sateesh, Basavraj and Upkar for their help. My fam-

ily members have always been a constant source of encouragement. I am

grateful to them for bestowing unconditional love throughout my life and for

their unflagging support. I sincerely acknowledge my parents, wife, daughter

Shatakshi and son Shashwat for their affection, understanding and patience.

(Ashutosh Singh)

SYNOPSIS

Name of the student: Ashutosh Singh

Roll number: Y7104093

Degree for which applied: Doctor of Philosophy

Department: Electrical Engineering

Thesis Title: Algorithms for reliability in large scale structured

and unstructured peer-to-peer overlay multicast

networks for live streaming

Name of the thesis supervisor: Professor Yatindra Nath Singh

Month and year of submission: July 2016
———————————————————————————–

The advances in Information and Communication Technology (ICT) min-

gled with the explosion in growth of internet users in 21st century has com-

pletely changed the teaching and learning scenario and complemented the

traditional classroom teaching. We can expect a Live Lecture Delivery Sys-

tems (LLDS) to be used for instruction, where a large heterogeneous popu-

lation across the different corners of the world get a multicast delivery from

a source simultaneously with provisions for two-way communication, thus

creating a virtual classroom environment.

Initial multicast solutions were based on IP (Internet Protocol) or network

layer multicast technology. IP multicast systems though works efficiently but

have many limitations too. Since networks were primarily designed for uni-

cast communication, IP multicast requires changes at infrastructure level in

the Internet and hence is not easily deployable. In fact, multicast exists only

in fragmented islands here and there in the internet. Further IP multicast

is based on best-effort data delivery, and hence cannot support QoS. More-

over it requires routers to maintain per-group state which leads to scaling

constraints.

With the growth of peer-to-Peer (P2P) network research, many protocols

have been written for multicast over application layer, where a self orga-

nized overlay of participating hosts is formed and multicast-related func-

tionalities are moved to the end-hosts. Application Layer Multicast (ALM)

achieves multicast via piece-wise unicast connections. Though not as effi-

cient as IP multicast, the overlay multicast has alleviated the problems due

to fragmented IP multicast islands and QoS constraints in IP multicast. Two

important mechanisms, one for resource discovery and another for data dis-

tribution are required to run a P2P multicasting network (ALM) for any

application.

In this paragraph, a brief background of P2P networks is given. Their

discovery mechanisms are described in the next one. In a Client/Server (C/S)

model, the server is a central registering unit and the only provider of content

and services. A client only requests content or the execution of services,

without sharing any of its own resources. In contrast to C/S model, in P2P

model, processing load and network bandwidth use is distributed among all

the nodes due to decentralization. Participants in P2P network can act as a

server and as well as a client at the same time. They are accessible to other

nodes directly without needing any intervention of a central controller. P2P

systems constitute highly dynamic networks of peers with complex topologies

that create a self organizing overlay network. P2P applications however

need sophisticated discovery mechanisms to enable peers to find, identify

and communicate with other peers which hold the content or services of

interest.

On the basis of discovery mechanism used, P2P networks fall into two

vii

categories, viz. unstructured and structured networks. In unstructured ap-

proach, the placement of the data is completely unrelated to the overlay

topology and searching is mostly based on the flooding or random walk. An-

other alternative for query search in unstructured networks is based on Gos-

sip protocol. In structured approach, the query network topology is tightly

controlled and the indexes are placed at specific locations. The lookup ser-

vice is implemented by organizing the peers in a structured overlay network.

A mapping between the keyword identifier and location is provided in the

form of a distributed routing table called Distributed Hash Table (DHT).

Examples of such networks are Freenet, Chord, CAN, Pastry and Tapestry.

Initial ALM proposals used P2P infrastucture as substrate and targeted

small group sizes. First phase ALM protocols were divided into two cate-

gories on the basis of whether peers were directly involved in the process of

overlay construction (pure P2P, e.g. Yoid) or on their behalf, service nodes

form the overlay and peers connect to these service nodes (proxy based, e.g.

Scattercast). As far as live video streaming application is concerned, the

challenege in both these architectures was how to form an overlay that is

efficient in both bandwidth as well as latency. Based on the sequence of

construction of data topology and control topology, protocols were classified

as Direct Tree (e.g. Yoid) and Mesh-first protocols (e.g. Narada).

In the second phase, scalable protocols will have members being assigned

addresses based on some abstract coordinate space (e.g. Delaunay Triangula-

tion (DT) based and Content Addressable Networks (CAN) based overlays,

or being organised in hierarchies of clusters (e.g. NICE and Kudos) that

made the requirement of a formal message routing protocol redundant. In

the third phase, protocols made use of DHT based lookup protocols for re-

source mapping with increased scalability and efficiency. Pastry based Scribe

viii

protocol which is used as large scale event notification system, is a represen-

tative protocol of this phase.

For streaming ALM protocols, research efforts are towards higher reliabil-

ity, fair load distribution, free riding (uncontrolled noncooperative users’ be-

havior) prevention and flash crowd handling. The characteristics and thereby

the issues that needs to be investigated in an ALM, specifically designed for

large scale Live Lecture Delivery System (LLDS) application, are the follow-

ing.

(i) The live streaming applications are a delay as well as bandwidth sen-

sitive and demand high QoS. The quality degrades with every byte

of data loss and it becomes intolerable if interruption happens due to

some node or link failure. Thus reliability is a major issue

(ii) A low overhead mechanism is required in unstructured approach to

help efficient query of resource

(iii) Since achieving reliability is the primary goal in a live streaming appli-

cation, more than one spare paths need to be maintained. Even after

failure, reorganisation of network is needed to reestablish more than

one transmission paths. Thus both proactive and reactive components

are needed

(iv) Since we target a large scale ALM protocol, an efficient mechanism

for Resource mapping (for resource address storage and retrieval) is

required in the structured approach so that every query is satisfied

without bothering one single root node. It is done by caching responses

to the queries

(v) With the changes in the network dynamics, the distribution tree may

ix

become inefficient with time and hence continuous tree optimization is

required

(vi) In case of homogeneous environment, we need to ensure uniform load

sharing among nodes and in heterogeneous environment, high capacity

nodes should be brought near the source node and low capacity nodes

should be moved toward the periphery as leaf nodes through continuous

topology reorganisation

(vii) In the beginning of a session, a large number of subscribers join the

session in a very small duration. This phenomenon is known as flash

crowd that results in increased joining latency and refusal rate. To

handle a large crowd in the beginning of a session, a single root node

may not be enough. Also, we can not maintain many root nodes spe-

cially after flash crowd. Thus a mechanism is required that increases

and decreases the number of root nodes in proportion to the amount

of flash crowd arriving in the network.

(viii) a subscriber may be a member of many different streams launched si-

multaneously, and groups may have large number of members. An

efficient mechanism to cater large population and large number of si-

multaneous live streams is required.

The work done has been organized in seven chapters in the present thesis.

We start with an introduction to the Peer-to-Peer (P2P) network in Chapter

1. The advantages of P2P model and its discovery mechanism are described.

The possible approaches for multicast and use of overlay multicast for Live

Lecture Delivery is also discussed in this chapter.

In chapter 2, a survey of Application Layer Multicast (ALM) protocols

is given. The chapter begins with the definition of performance metrics of

x

ALM. Classification of ALM protocols from different perspectives, and then

description of some popular ALM protocols is given. Open issues in ALM

are dicussed finally.

Reliability approaches in Overlay Multicast Networks are discussed in

Chapter 3. A survey of Reliability approaches is given. Classification of reli-

ability approaches, brief description of major reliability protocols for stream-

ing and the performance metrics for a reliability protocols are discussed in

this chapter.

The approaches for the maintenance of biconnectivity for reliability in un-

structured overlay network are proposed, analyzed and compared in Chapter

4. Algorithms for data distribution with duplicate paths are also discussed

in this chapter.

In chapter 5, the dual path approach for reliability in query network

based (structured) overlaid multicasting is discussed. The three approaches

for feed managemant are given. PeerSim based simulation results verify that

the differential delay in two paths and startup delay are well within tolerable

limits and with moderate to high failure rates, only a small fraction of nodes

get deprived of feed only for a small duration.

The issue of flash crowd is taken up in chapter 6. The distributed and

scalable query handling algorithm with cache updation and feed forwarders

list maintenance algorithm are given and simulation results verify the effec-

tiveness of the algorithms.

Finally, conclusions, scope for future work and summary of contributions

of the present thesis have been presented in chapter 7.

xi

List of Abbreviations and Acronyms

ALM Application Layer Multicast

CAN Content Addressable Network

CDN Content Distribution Network

DHT Distributed Hash Table

DT Delaunay Triangulation

DVMRP Distance Vector Multicast Routing Protocol

FEC Forward Error Correction

HMTP Host Multicast Tree Protocol

LLDS Live Lecture Delivery System

MDC Multiple Description Coding

MST Minimum Spanning Tree

NICE Nice is the Internet Cooperative Environment

OMNI Overlay Multicast Network Infrastructure

OMTP Overlay Multicast Tree Protocol

PRM Probabilistic Resilient Multicast

RTT Round Trip Time

SPT Shortest Path Tree

TFRC TCP Friendly Rate Control

TTL Time To Live

URI Universal Resource Identifier

Contents

List of Figures xix

List of Tables xxiv

1 Introduction 1

1.1 Computer Networks . 3

1.1.1 Client-Server model or Peer-to-Peer model 3

1.1.1.1 Pure P2P and Hybrid P2P 4

1.2 P2P Discovery Mechanisms 5

1.2.1 Unstructured Approach 5

1.2.1.1 Flooding based 6

1.2.2 Structured approach 7

1.3 Unicast, Broadcast and Multicast in Networks 9

1.4 Approaches for Multicast . 10

1.4.1 Network Layer Multicast 10

1.4.2 Application Layer Multicast (ALM) 11

1.4.2.1 Multiple Unicast 12

1.4.2.2 Overlay Multicast 12

1.4.3 Network Layer Multicast Vs Overlay Multicast 13

1.5 Overlay Multicast for Live Lecture Delivery and challenges . . 14

xiii

1.6 Thesis Organization . 17

2 A Review of ALM (Application Layer Multicast) Protocols 19

2.1 Introduction . 20

2.2 Application Layer Multicast 22

2.2.1 Performance Metrics 22

2.3 Classification of ALM proposals 26

2.3.1 Architecture: Peer-to-peer or Proxy-based 26

2.3.2 Control: Centralized or Distributed 27

2.3.3 Tree Construction: Mesh First, Tree First or Implicit . 27

2.3.4 Design Objective: Efficiency or Scalability 29

2.3.4.1 Source Based Trees 29

2.3.4.2 Single Shared Tree 29

2.3.4.3 Multiple Shared Trees 29

2.4 Example Application Layer Multicast Protocols 30

2.4.1 Narada . 30

2.4.1.1 Group Management Component 31

2.4.1.2 Overlay Optimization Component 33

2.4.1.3 Performance Evaluation 35

2.4.2 NICE . 36

2.4.2.1 Protocol Description 38

2.4.3 Application-Level Multicast Infrastructure (ALMI) . . 40

2.4.4 HMTP and OMTP . 41

2.4.4.1 HMTP (Host Multicast Tree Protocol) 41

2.4.4.2 OMTP (Overlay Multicast Tree Protocol) . . 42

2.5 Open Issues . 44

2.5.1 Two Conflicting Design Goals 44

xiv

2.5.1.1 Adapted Routing Algorithm in the Overlay

Multicast . 45

2.5.2 Tree Refinement . 47

2.5.3 Reliability . 49

2.5.4 Scalability . 51

3 Reliability Approaches in Overlay Muticast Networks 53

3.1 Introduction . 54

3.2 Classification of Reliability Approaches in ALM Streaming

Protocols . 55

3.2.1 Path diversity based approaches 55

3.2.1.1 Single tree topology 55

3.2.1.2 Multiple-tree topology 56

3.2.2 Data Redundancy Based Approaches 57

3.2.3 Combined Approaches 57

3.3 Example Reliability Approaches 58

3.3.1 PRM over NICE . 58

3.3.1.1 Randomized Forwarding 58

3.3.1.2 Triggered NAKs 61

3.3.2 SplitStream over Scribe 62

3.3.2.1 Pastry . 63

3.3.2.2 Scribe . 64

3.3.2.3 SplitStream 66

3.3.3 Resilient Coopnet (Cooperative Networking) 68

3.3.3.1 Coopnet . 70

3.3.3.2 Resilient Coopnet Protocol 71

3.3.4 Kunichika’s Approach for Reliability 73

3.3.4.1 Host Joining 73

xv

3.3.4.2 Backup Route Calculation 74

3.3.4.3 Limitations 75

3.4 Performance Metrics for Reliability 76

3.5 Conclusion . 76

4 Maintaining Biconnectivity in Unstructured Overlay Net-

work 77

4.1 Introduction . 78

4.2 Related Work . 80

4.3 Our Approaches toward Biconnectivity for Resilience 82

4.3.1 Construction and maintenance of bi-connected mesh . . 82

4.3.1.1 Adding newly arriving Node in the Network . 82

4.3.1.2 Analysis of the Mesh so formed 83

4.3.1.3 Deleting redundant Links from the Network . 84

4.3.1.4 Steps taken in case of node failure 84

4.3.1.5 Advantages and limitations to the Approach . 87

4.3.2 Approach for biconnectivity in the tree overlays 87

4.3.2.1 Connect-to-grandparent approach 88

4.3.2.2 Connected adjacent-leaf-nodes approach . . . 88

4.3.2.3 Connected least-correlated-leaf-nodes approach 89

4.4 Algorithm for data distribution tree overlay in biconnected

topology . 91

4.4.1 Data Forwarding . 92

4.4.2 Topology Maintenance 92

4.4.2.1 Obtaining two best paths 92

4.4.2.2 Failure handling 97

4.4.2.3 New node joining 97

4.4.2.4 Adaptive beacon broadcast rate 97

xvi

4.5 Evaluation . 98

4.6 Conclusion and future work 99

5 Dualpath Approach for Reliability in Overlay Multicast 100

5.1 Introduction . 101

5.1.1 Chord Look-Up Mechanism 102

5.2 Related Work . 105

5.2.1 Scalable overlaid multicast topology creation 105

5.2.2 ALM loss recovery approaches 107

5.3 Our Approach Toward resilience 108

5.3.1 Location and search for the feed 109

5.3.2 How a search query progresses and replied 110

5.3.3 Node Design . 111

5.3.4 Join Process . 111

5.3.5 Departure of node from multicast tree 113

5.3.6 Handling Loop Formation in the Event of Failure of a

Node . 114

5.3.7 Data Feed Management example 116

5.3.8 Delay optimization in data distribution tree 117

5.4 The three approaches for dual feed 119

5.4.1 First Approach (Approach-1) 119

5.4.2 Second Approach (Approach-2) 124

5.4.3 Third Approach (Approach-3) 127

5.5 Performance Evaluation . 127

5.5.1 Startup booster . 131

5.5.2 Simulation results . 132

5.5.2.1 Tree Structure 133

5.5.2.2 Distribution of hop difference in the two feeds 133

xvii

5.5.2.3 System scale and startup delay 134

5.5.2.4 Network behavior in face of failure of nodes . 136

5.6 Conclusion and future work 138

6 Faster Overlay Creation under High Growth Rate 141

6.1 Introduction . 142

6.2 Related Work . 145

6.3 Proposed Algorithm . 146

6.3.1 Distributed and scalable query handling algorithm . . . 147

6.3.1.1 Push based Cache information updating . . . 147

6.3.1.2 Purge message based stale information removal148

6.3.2 Feed forwarders list maintenance algorithm 148

6.3.2.1 Multiple sets of feed forwarders 151

6.3.2.2 Increase and decrease of number of sets . . . 151

6.3.2.3 Removal of entries from a set 153

6.3.3 Algorithms applied for an example application 154

6.4 Simulation Results . 155

6.4.1 Estimation of optimum system parameters 157

6.4.2 Flash crowd handling at different rates 160

6.4.3 System scale and peer start-up delay 161

6.4.4 Steady state behaviour 162

6.4.4.1 Analysis for the steady state behaviour 164

6.5 Conclusion . 169

7 Conclusions and Future Scope 173

7.1 Conclusions . 173

7.2 Summary of Important Findings 175

7.3 Directions for Future Research 176

xviii

List of Figures

1.1 Example network . 11

1.2 IP multicasting . 12

1.3 Naive unicasting (multiple unicast way) 13

1.4 Application layer multicasting 14

2.1 Example underlying network with one source and multiple re-

ceivers and overlay multicast tree thereof 23

2.2 An example mesh topology . 33

2.3 Mesh partitions as node E fails 35

2.4 New node joining in example mesh topology of figure 2.2 35

2.5 Topology optimization through add/drop of links 36

2.6 Final mesh topology after add/drop of links 36

2.7 Join procedure in HMTP [1] . 42

2.8 Join procedure in OMTP [2] . 43

2.9 An Example Multicast Network 46

2.10 Shotrest Path Tree (SPT) resulted from the mesh shown in figure

2.9 . 47

2.11 Minimum Spanning Tree (MST) resulted from the mesh shown in

figure 2.9 . 48

2.12 Tree obtained from the mesh as shown in figure 2.9 as Adapted

Routing Algorithm is applied . 49

xix

3.1 An overlay multicast network. The circles represents overlay nodes

and crosses indicate the failures at links and nodes. The arrows

indicate the data flow . 59

3.2 Randomized forwarding in PRM scheme. The curved edges show

the randomized forwarding . 60

3.3 Triggerred NAKs in PRM with bit-mask length equal to 4 62

3.4 The Splitstream approach. The stream is divided into two stripes

and each stripe is sent over independent multicast trees. Any peer

is an interior node in one tree and is a leafnode in the other 68

3.5 Forest construction in Splitstream. Trees have disjoint set of inte-

rior nodes. The content is splitted and each stripe is multicast in

its designated tree. Each stripe’s stripID starts with a different digit 69

3.6 New node joining in Kunichika’s approach 74

3.7 Rearrangement of chilldren nodes as a node fails. Node 1 of exam-

ple overlay tree (shown left) fails and its children nodes, i.e. node

4, 5 and 8 are rearranged in sequence (shown right) 75

4.1 A bi-connected mesh with 12 nodes 84

4.2 Average node degree versus network size 85

4.3 Average number of hops; averaged over all source destination pairs 86

4.4 Failure of node 6. Addition of new links; one between node 4 and

node 7, other between node 5 and node 8 reestablish bi-connectivity 87

4.5 Failure of node 7. Addition of new links; one between node 4 and

node 8, other between node 5 and node 9 reestablish bi-connectivity 88

4.6 Failure of node 8. Addition of new links; one between node 4 and

node 9, other between node 5 and node 10 reestablish bi-connectivity 89

xx

4.7 Final form of topology after successive failures of three adjacent

nodes, i. e. node 6, 7 and 8. Biconnectivity pattern remains

maintained. 90

4.8 An example 4-level binary tree 91

4.9 Connect-to-grandparent approach. All nodes are connected to

their grandparent and if grandparent is absent then connected to

their siblings . 92

4.10 Connected adjacent-leaf-nodes approach. Adjacent leaf nodes are

paired to achieve bi-connectivity 93

4.11 Connected least-correlated-leaf-nodes approach. Leaf nodes from

two different halves of the tree get paired to achieve bi-connectivity 94

4.12 Number of additional links required to achieve biconnectivity by

different approaches . 95

5.1 The basic Chord ring: Identifier circle having 8 nodes and 5 keys

with their unique identifiers . 103

5.2 Finding successor node of given identifier ID: Slow routing with

Basic look-up mechanism where every node keeps information only

about its immediate neighbor 104

5.3 In Chord Protocol, each node maintains a finger table. Finger

Table entries for node 9 are shown 105

5.4 Finding successor node of given identifier ID: Fast routing with

Chord look-up mechanism applied 106

5.5 Single buffer created for two feeds from which media player plays

the stream . 112

5.6 Original f1 tree for approach-1 for example double feed distribution

with 14 nodes before any failure occurs 120

xxi

5.7 Original f2 tree for approach-1 for example double feed distribution

with 14 nodes before any failure occurs 121

5.8 Original f1 tree and f2 tree put together for approach-1 for example

double feed distribution with 14 nodes before any failure occurs . . 122

5.9 f1 tree in approach-2 for example double feed distribution with 14

nodes . 125

5.10 f2 tree in approach-2 for example double feed distribution with 14

nodes . 126

5.11 f1 tree in approach-3 for example double feed distribution with 14

nodes . 128

5.12 f2 tree in approach-3 for example double feed distribution with 14

nodes . 129

5.13 Distribution of differential delay 134

5.14 System scale with time . 135

5.15 Cumulative distribution of startup delay 136

5.16 Percentage of nodes receiving at least one feed 138

5.17 Percentage of nodes receiving at least one feed with continued fail-

ure and reduced arrival rate, rate = 10 nodes/second. The upper

(green coloured) plot in the figure calculates the percentage with

respect to total connected nodes excluding newly joined nodes in

the network . 139

5.18 Percentage of nodes receiving at least one feed with continued fail-

ure and reduced arrival rate, rate = 20 nodes/second 139

5.19 Percentage of nodes receiving at least one feed with continued fail-

ure and reduced arrival rate, rate = 50 nodes/second 140

6.1 Effect of increasing arrival rate on the stabilization time for various

out degree values for set size = 5 160

xxii

6.2 Effect of increasing arrival rate on the stabilization time for various

out degree values for set size = 20 161

6.3 Effect of increasing arrival rate on the stabilization time for various

set size values for out degree = 2 162

6.4 Effect of increasing arrival rate on the stabilization time for various

set size values for out degree = 4 163

6.5 Effect of increasing arrival rate on the startup delay for variation

in out degree; setsize remains constant at 20 164

6.6 Effect of increasing arrival rate on the startup delay for variation

in set size as out degree remains constant at 4 165

6.7 System scales with time when nodes are arriving with a rate =

40000 nodes/second for 5 seconds 166

6.8 Distribution of startup delay for rate = 32000 nodes/second 167

6.9 Variation of N against time for continued arrival rate for out degree

values as d = 4 and 8; set size (= 50) and etime (= 10 seconds)

remain constant, Rate = 8000 nodes/second 168

6.10 Variation of N against time for continued arrival rate for different

set size values; peer’s feed forwarding capacity d (= 8) and etime

(= 10 seconds) remain constant, Rate = 2000 nodes/second 169

6.11 Variation of N against time for continued arrival rate for different

set size values; peer’s feed forwarding capacity d (= 8) and etime

(= 10 seconds) remain constant, Rate = 4000 nodes/second 170

6.12 Variation of N against time for continued arrival rate for different

set size values; peer’s feed forwarding capacity d (= 8) and etime

(= 10 seconds) remain constant, Rate = 8000 nodes/second 171

xxiii

List of Tables

2.1 Refresh table maintained at member i 32

3.1 Pastry peer’s routing table, leaf set, and neighbour set. An exam-

ple of routing path for a pastry peer [3] 65

4.1 Format of signaling packet . 95

4.2 Format of ’next hop to source’ table at each node 96

5.1 An example to show the working of buffer at a node 111

5.2 Record of peers at an indexing server 113

5.3 Comparison of the three different approaches used for data feed

management . 130

5.4 Comparison of feed tree (approach-2) with perfectly balanced tree 133

6.1 Stabilization Time (ST) and average Startup Delay (SD) in seconds

at different arrival rates (nodes/second) for different out degree

values and for different set size values 157

Chapter 1

Introduction

Due to special biological characteristics, humans can produce innumerable

vocal signals to communicate their need and experience. Human communi-

cation was revolutionized with speech approximately 100,000 years ago [4].

Communication via speech is a unique blessing to humans that differentiates

them from other living beings. Survival of any human society depends on

communication. With time a symbolic system called language got developed

that helped to communicate not only by utterance but also by writing and

also allowed context free communication. No languageless community has

ever been found [5]. Language has alphabets that help to convey the message

beyond the boundary of time and space to some extent. The communication

process comprises a sender, a message and the intended recipients. The most

basic communication system consists of two human beings with the start

of message from one’s mouth and ending on another one’s ear (Mouth-to-

Ear communication). Even in most complex communication system, the end

points remain the same.

With advancement in technology, the restriction of geographical and tem-

poral boundaries got relaxed further. The information generated at one in-

Introduction 2

stant of time can be sent to a number of places simultaneously at the same

instant or it can be preserved and reproduced again and again.

Electronic communication is what expanded the horizons of communica-

tion and really boosted the communication industry. Sending information at

almost the speed of light was possible by converting it in the form of elec-

trical signals in Telegraph which started in 1837. Four decades later after

the invention of Telegraph, the invention of Telephone by Alexender Graham

Bell in 1876 was the first major leap towards all the modern methods of

communication. The telephone system though still existing and supporting

voice signals, the transmission however has evolved from circuit switched to

packet switched and from using copper cables to optical fibers.

During the twentieth century, the key developments has been for informa-

tion storage, processing and its distribution that includes invention of Tele-

vision (John Logie Baird, 1926), satellite broadcasting, Computer (1945),

Internet (1973) and World Wide Web (1990). Optical fiber technology has

created almost limitless opportunities for digital networks with greatly en-

hanced capabilities. Public broadband integrated service networks that pro-

vide integrated data, voice and video on a global level became technologically

feasible.

Now-a-days internet has become the most important source of informa-

tion and communication throughout the world. Through Internet the live

telecast of an event is possible to millions of people situated all around the

globe. The internet is linked to almost every major organization, business

and government. In the era of high-definition and 4G one can see a foot-

ball game as if he is sitting in the stands. With 4G wireless technology, the

transmission of crystal clear sounds and pictures is possible. Now, we can

download information at the speed of light, practically, can dial up a long-

Introduction 3

distance telephone number in a matter of seconds, and can get new programs

on our computer through our phone lines.

1.1 Computer Networks

The merging of computers and communications has changed the way of com-

putation. The old model of a single computer serving all of the organization’s

computational need has been replaced by the one in which a large number

of separate but interconnected computers do the job. These systems are

called computer networks. Computation in these networks could be cen-

tralized or distributed. In centralized computation, one node processes the

entire application locally while in distributed computation; processing steps

of application are divided among the participating nodes.

1.1.1 Client-Server model or Peer-to-Peer model

In Client-Server (c-s) model, the server is central registering unit and the

only provider of content and services. A client only requests content or

the execution of services, without sharing any of its own services. The c-s

model could be a flat system with single server or it could be a hierarchical

system for improved scalability. In c-s model, in order to provide access with

acceptable response time; sophisticated load balancing and fault tolerance

algorithms have to be applied. Also limitation on network bandwidth adds

the bottleneck problem.

Peer-to-Peer (P2P) model distributes processing loads and network band-

width among all nodes and solves bottleneck problem. P2P systems consti-

tute highly dynamic networks of peers with complex topologies that create

an overlay network. P2P applications need sophisticated discovery mecha-

Introduction 4

nisms to enable peers to find, identify and communicate with each other.

Participants can act as a server as well as a client at the same time. They

are accessible by other nodes directly. The drawback with P2P model is that

it needs complex algorithms.

1.1.1.1 Pure P2P and Hybrid P2P

The pure P2P networks [6] are purely decentralized. All nodes are equivalent

in functionality. Any single, arbitrary chosen terminal entity can be removed

from the network without loss of any of the network service. Pure P2P

networks are inherently scalable and fault tolerant as there is no central

point of failure. The examples are CAN, Chord, Gnutella and Freenet. The

limitations with pure P2P model is that there is slow information discovery,

no guarantee about quality of services and it is difficult to predict the system

behavior because of the lack of a global view.

In Hybrid P2P networks, there is a central server that maintains direc-

tories of information about registered users in the network, in form of meta-

data. Thus it reduces discovery time as well as traffic between nodes.The

hybrid P2P networks may have centralized indexing server or a cluster of

decentralized indexing servers.

In Centralized approach, peers connect to a centralized directory servers

that maintains an index with metadata (file name, time of creation etc.) of all

files in the network and a table of connection information of registered users

(IP addresses, connection speeds etc.). Upon receiving a request from a peer,

the central index will match the request with the best peer in its directory and

responds with the URI (Universal Resource Identifier) of the resource.The

data exchange will occur directly between the two peers. Examples of such

networks are Napster and DC++.

Introduction 5

In Decentralized Indexing, Peers with sufficient bandwidth and processing

power are elected as Superpeers which connect with the other superpeers

forming a flat unstructured network of superpeers. Superpeers maintain the

central indexes for the information shared by local peers connected to them

and proxy search requests on behalf of these peers.

If a superpeer receives at least the required number of connections from

client nodes within a specified time, it remains a superpeer, otherwise it turns

into a regular client node. A central server provides new peers with a list of

one or more superpeers with which they can connect. Thus in decentralized

indexing there is reduced load on central server but there is slower informa-

tion discovery. Example of Hybrid P2P network with decentralized indexing

are Kazaa, and Gnutella.

1.2 P2P Discovery Mechanisms

On the basis of discovery mechanism, P2P networks can be classified as

Unstructured and Structured P2P networks.

1.2.1 Unstructured Approach

In Unstructured approach, the placement of the data is completely unrelated

to the overlay topology and searching amounts to (query matching or flooding

based) random search. The unstructured approach is easy to implement

and require little maintenance but lacks scalability. Number of messages

exchanged for a search grows with number of peers. The limitation with the

unstructured approach is that the search protocol is very sensitive to the

number of edges in the network graph. With small number of links, all nodes

will not be reachable in reasonable time, and with too many links, numerous

Introduction 6

identical copies of the query message will arrive at many nodes from different

directions, resulting in wasted bandwidth.

The discovery Mechanism in unstructured P2P, could be Flooding based

(used in pure P2P) e.g. in Gnutella [7] , Random Walk based or Gossip

based.

1.2.1.1 Flooding based

In Flooding based approach, each peer publishes information about the

shared content in the network. Any request from a peer is flooded to the

directly connected peers, which flood it further until the request is answered

or the query traverses the maximum number of hops. Gnutella uses this

mechanism. It uses four types of messages to implement this mechanism:

1. Ping: a request from certain host to announce itself

2. Pong: reply to Ping contains the IP/port of the responding host and

number and size of files shared

3. Query: search request contains a search string and the minimum speed

requirements of the responding host

4. Query hits: reply to Query contains the IP/port, speed of the respond-

ing host, the number of matching files and their indexed result set

In flooding based approach, accurate discovery of peers is not guaranteed.

It gives optimal results in a network with a small to average number of peers

and is not scalable to very large numbers. TTL (Time-to-live) effectively

segments the network into subsets, imposing on each user a virtual horizon

beyond which their messages cannot reach.

Introduction 7

1.2.2 Structured approach

In structured approach, the topology is tightly controlled and the indexes are

placed at specific locations.The lookup service is implemented by organizing

the peers in a structured overlay network. A mapping between the keyword

identifier and location is provided in the form of a distributed routing table.

The discovery Mechanism here is DHT based. The advantage with this

approach is that it reduces the number of P2P hops that must be taken to

locate a resource. Peers also need to maintain information about resources,

with neighboring peers to enable the index to be accessible when a node quits.

This increases the maintenance efforts during situations in which nodes join

and leave at a high rate. Examples of such networks are Freenet, Chord,

CAN, Pastry and Tapestry.

1. Freenet: Freenet is an efficient decentralized file sharing protocol that

supports dynamic storage and routing. It uses location independent key

based routing for storage and retrieval of files. Requests are routed to

the most likely physical location of data. The protocol keeps anonymity

for both uploading and downloading peers.

In Freenet each peer is assigned a random ID and Hash based ID is

assigned to the documents to be shared. Each peer routes the document

towards the peer with the ID that is most similar to the document

ID. Freenet provides a mechanism to map the queried keyword to the

document ID.

Each request has a pseudo unique random identifier and starts with

a hops-to-live (HTL) limit, which is decremented at each intermediate

peer. With Identifier a request reaching to the same peer again can be

detected thus avoiding loops. Request is routed to the node whose ID is

Introduction 8

closest to the requested document ID. If the data is found, it is cached

on each node along the path. Therefore popular object will be cached

more widely. Thus protocol is adaptive to usage pattern and hence

efficient. Files are dynamically replicated in regions where it is more

in demand and and deleted from regions where there is no interest.

2. Chord: Chord is a lookup protocol that stores key/value pairs for dis-

tributed data items. Given a key, it maps key to a node responsible

for storing the key’s value. Each node maintains routing information

of about O (log N) other nodes, and resolves all lookups via O (log N)

messages to the other nodes. Nodes’ leaving/joining requires O(log2N)

messages to update the routing information.

3. CAN: CAN is a mesh of N nodes in virtual d-dimensional dynamically

partitioned coordinate space. Each peer keeps track of its neighbours

in each dimension. New peer randomly chooses a point in the space,

the peer currently responsible for that point splits the space indexed by

it into two and the new peer becomes responsible for one of the halves.

New peer then contacts its neighbours to update their routing entries.

Discovery mechanism comprises two operations: local hash-based look-

up of a pointer to a resource and routing the lookup request to the

pointer. Deterministic discovery in O(N1/d) steps is guaranteed in this

mechanism.

4. Tapestry: Plaxton et.al. [8] introduced the first algorithm known as

Key Based Routing, for locating P2P objects and query routing based

on mapping the object identifiers to the address space of peers. Local

routing maps at each peer gradually route a message to the destination

ID, digit by digit. This routing method guarantees the search com-

Introduction 9

pletion within logBN hops where N is the total number of peers in

the system and B is the configuration parameter. Peer’s local routing

map has a size of B(logBN). The PRR design is based on static set of

nodes and does not cover the issues related to overlay formation and

maintenance.

Tapestry [9] uses distributed search structure of [8], with additional al-

gorithms for peer join, peer leave and overlay maintenance. In PRR’s

mesh, data objects are connected to one root peer, while in Tapestry

there are multiple roots for each data object to avoid single point of

failure. Tapestry uses surrogate routing to select root peers incremen-

tally during both publishing and search of key-value pairs. It reduces

routing overhead. The OceanStore large scale storage utility is based

on Tapestry.

5. Pastry: In pastry[3], the routing table size complexity is O(logN), and

the complexity of routing steps required are O(log N). Splitstream ap-

plication layer multicast implementation is based on Pastry. The Pastry

and Tapestry differ in the way of handling network locality and data

object replication.

1.3 Unicast, Broadcast and Multicast in Net-

works

The transmission of information packets from a source node to a single

uniquely identifiable destination node in networks is called Unicasting. The

computer network was primarily developed for unicast applications such as

http, e-mail, ftp, telnet etc.. All LANs (e.g. Ethernet) and IP networks sup-

Introduction 10

port the unicast transfer mode. Even today Unicast is responsible for most

of the traffic on internet.

In Broadcast, a source node sends packets and which are delivered to all

the nodes in the whole subnet e.g. a LAN. Common methods to achieve

broadcast are uncontrolled flooding, controlled flooding and spanning tree

broadcast. Broadcast protocols are used at both the application and network

layers [10]. Gnutella broadcasts queries for content among peers through

application layer broadcast where it uses a form of sequence number based

controlled flooding.

In multicast, a subset of network nodes form a group to exchange infor-

mation among themseleves. There may be one or more sources that transmit

packets to all the other nodes in the subset. Internet routers, unless specially

provisioned, do not pass multicast traffic by default. The example applica-

tions include Live lecture delivery to a set of subscribers, video conferencing,

video gaming etc..

1.4 Approaches for Multicast

Both network layer and application layer provide support for multicasting.

To describe the different approaches for multicast, we take an example net-

work as shown in figure 1.1 and we show different approaches applied on this

network in subsequent figures.

1.4.1 Network Layer Multicast

Initially multicast service was implemented at network layer known as IP

multicast. In network layer multicast, the duplication efforts and group

membership management is done by routers (at network layer), thus spe-

Introduction 11

S

D

A

B C

5

5

5

1

5

55

1

1

1

5

1

5

1

Figure 1.1: Example network

cial multicast enabled routers are required. The multicast enabled routers

can decide which sub-networks have members for any multicast group and

attempt to minimise the transmission of packets to the parts of the network

where there are no active group members. The format of IP multicast pack-

ets is identical to that of unicast packets and is distinguished only by the use

of a special class of destination address (class D IPv4 address) which denotes

a specific multicast group.

1.4.2 Application Layer Multicast (ALM)

In Application layer multicast the duplication of packets and group member-

ship management is done at end hosts participating in the multicast without

any support from the network routers. This effort can be done at the source

alone or it could be a joint effort of all the hosts participating.

Introduction 12

S

D

A

B C

5

5

5

1

5

55

1

1

1

5

1

5

1

Figure 1.2: IP multicasting

1.4.2.1 Multiple Unicast

The multicast at application layer can be done in multiple unicast way with-

out requiring routers or other participating hosts to make any packet dupli-

cation efforts and group management. The source itself explicitly does trans-

mission of the same packet to N targeted members independently. Thus N

unicasts are done to give an effect of multicast. This is the most inefficient

way of multicasting.

1.4.2.2 Overlay Multicast

In overlay multicast, an overlay of group members is formed and group man-

agement and duplication efforts are done jointly by members in order to

deliver the data efficiently by utilizing unicast among different pairs of hosts.

Introduction 13

S

D

A

B C

5

5

5

1

5

55

1

1

1

5

1

5

1

Figure 1.3: Naive unicasting (multiple unicast way)

1.4.3 Network Layer Multicast Vs Overlay Multicast

The network layer multicasting is the most efficient way of multicasting as

there is no wastage of network bandwidth. In IP multicasting, decision of for-

warding is taken at multicast enabled router, and the packets are forwarded

only in the directions where one or more active members are there. A packet

never traverses the same link more than once. The major limitation with the

IP multicasting is that it requires infrastructural changes and hence can not

be deployed at large scale without updating the routers.

The overlay multicast though not as inefficient as multicast by way of

multiple unicast, but it is also not as efficient as IP multicasting. However, it

is easily deployable in the network as all the multicast related efforts are done

by the endhosts and it does not require specialized routers with multicast

capability. The participating hosts in the session form an overlay and only

Introduction 14

S

D

A

B C

5

5

5

1

5

55

1

1

1

5

1

5

1

Figure 1.4: Application layer multicasting

using unicast among pairs of hosts data distribution is done among them.

1.5 Overlay Multicast for Live Lecture Deliv-

ery and challenges

The advancement in technology has completely changed the teaching and

learning scenario. People have found the way to complement the traditional

classroom teaching where the delivery resembles to one-size-fits-all, where

an advanced learner feels like wasting his time whereas the for the novice it

could be too fast. With the explosion in Information and Communication

Technology (ICT), it is possible for different universities to increase their

reach to any user across the world and to fill the voids of traditional class

room teaching. The universities now can put their archived lectures on their

Introduction 15

website, and any user can see them at his convenience. He can navigate at his

own pace (on-demand viewing). These are sometimes supplemented with the

discussion groups and bulletin boards where the learners can communicate

among themselves. The limitation with these archived lectures put on website

is that it is still a one-way communication where a learner can not interact

with the instructor.

According to World Internet Usage and Statistics, the internet users have

grown from 361 million to 2.8 billion in the first 13 years of this century [11].

With the growing number of internet users along with the popularity of world

wide web, we can expect a Live Lecture Delivery Systems (LLDS) to be used

for instruction, where a large heterogenous population can be served across

the different corners of the world creating a virtual classroom environment.

In live lecture delivery, where two-way communication is possible, the learner

can immediately seek clarifications by interacting with the instructor. We

can also have other live interactive media like shared white board. This

LLDS differs from a videoconferencing system in many aspects. While video

conferencing is limited to have a much smaller number normally limited to

few tens of participants, in LLDS, the participants could be as large as few

millions. While video conferencing is done usually among users of a single or-

ganisation or within an autonomous system, in LLDS, we do not expect such

restriction, and the participants in LLDS may be connected with different

(heterogenuous) bandwidth and processing capabilities. Since IP multicast

demands infrastructural changes, peer-to-peer overlay multicast is the only

hope at such a large scale.

Though there have been many attempts to write an efficient and scal-

able overlay multicast protocols, and many protocols are available which are

designed for specific applications, to the best of our knowledge no protocol

Introduction 16

is available to cater the needs of a large scale LLDS. Some issues which are

specifically important for LLDS are as follows:

1. Delay as well as Bandwidth sensitive: The live streaming multicast

application is sensitive to both delay as well as bandwidth. The de-

lay as well as jitter should be within a limit for timely and continuous

delivery. Excessive delay imposes the requirement of large buffers at

each host and jitter creates glitches in video. Also video transmission

requires higher bandwidth starting from few hundreds of kbps to few

Mbps. Thus Reliable Routing is needed to maintain delay and band-

width within bounds.

2. Heterogeneous and dynamic environment: The application is expected

to deal with a large scale participation where the users may have differ-

ent capacity. Also the hosts can join and leave at their will thus giving

rise to the problem of Churn.

3. Flash crowd in the beginning: Since in our application, the information

about transmission of live video is preannounced, most of the hosts

would like to connect to the stream just before the beginning of session.

This creates a problem of handling larger number of nodes joining the

session almost at the same time. It is termed as Flash Crowd problem.

4. Uncontrolled Users’ Behavior: In the live multicast application, it is

tacitly assumed that the users always cooperate honestly and never

cheat others during the transmission, during the formation of overlay,

in passing the signaling information and in data streaming to others.

The users’ behavior, if found adverse to what is assumed, generates

new issues collectively known as Free Riding.

Introduction 17

The present thesis is an attempt to address above mentioned problems.

The efforts have been made to find remedial algorithms to combat these

issues which are at the very core of LLDS. The focus in the thesis is towards

the Design of a Query Network based Overlay Multicast Network for Live

Lecture Delivery to Millions of Users.

1.6 Thesis Organization

Chapter 1 gives an introduction to the Peer-to-Peer (P2P) networks. The

advantages of P2P model and its discovery mechanism are described. The

possible approaches for multicast and use of overlay multicast for Live Lecture

Delivery is also discussed in this chapter.

Chapter 2 gives a survey of existing application layer multicast (ALM)

protocols with their classification. The chapter begins with the definition of

performance metrics of ALM. Classification of ALM protocols from different

perspectives, and then description of some popular ALM protocols is given.

Open issues in ALM are dicussed finally. A comparative chart for some

popular ALM protocols is given at the end for the quick reference.

Chapter 3 gives a survey of existing application layer multicast (ALM)

protocols with their classification. An analytical discussion of reliability ap-

proaches is also presented. Classification of reliability approaches, brief de-

scription of major reliability protocols for streaming and the performance

metrics for a reliability protocols are discussed in this chapter. A compara-

tive chart for the protocols and reliability approaches is given at the end for

the quick reference.

Chapter 4 presents a biconnctivity based approaches for resilience in

unstructured overlay multicast. These approaches are then analyzed and

Introduction 18

compared. Algorithms for data distribution with duplicate paths are also

discussed in this chapter.

Chapter 5 gives schemes to address the reliability issues in structured

(lookup protocol based) overlay multicast. Dualpath based approaches are

presented for streaming to enhance reliability. The three schemes for main-

taining dualpaths in data distribution overlay are discussed and compared.

The tree optimization algorithm is also included in this chapter as a remedy

for excessive latency. The PeerSim based simulation for the best dualpath

approach is done and then it is compared with other available reliability

schemes. Simulation results verify that the differential delay in two paths

and startup delay are well within tolerable limits and with moderate to high

failure rates, only a small fraction of nodes get deprived of feed only for a

small duration.

Chapter 6 considers the problem of Flash Crowd. Algorithms for faster

overlay creation in the situation of flash crowd are presented and analysed.

The results prove the efficiency of the algorithm. The distributed and scal-

able query handling algorithm with cache updation and feed forwarders list

maintenance algorithm are at the core of this chapter. Simulation based

evaluation is done to verify the effectiveness of the algorithms.

Chapter 7 finally concludes the thesis work. The summary of specific

contributions of the thesis and future scope is also presented in this chapter.

Chapter 2

A Review of ALM (Application

Layer Multicast) Protocols

Applications such as Internet-TV, e-learning system for large groups, live

transmission of sports events often require live multicast for their delivery.

There have been many efforts in supporting live media streaming multicast

in last two decades. The long surviving traditional method for implementing

multicast related functionality has been IP layer based multicasting. How-

ever, more than 15 years after the initial proposal, IP multicast has con-

cerns related to scalability, network management, deployment and support

for higher layer functionality such as error, flow and congestion control. Most

of the networks have not enabled multicasting or it is being provided as a

value added service. Application layer multicast (also called Overlay Multi-

cast) emerged as an attractive alternative solution, where multicast-related

functionalities are moved to end-hosts. This peer-to-peer technology does not

require support from internet routers and network infrastructure and thus is

cost effective and easily deployable along with its capability to deal with the

problems of scalability, group dynamics and heterogeneity.

A Review of ALM (Application Layer Multicast) Protocols 20

Application layer multicast (ALM) builds an overlay topology consisting

of end-to-end unicast connections between participating hosts. This overlay

performs topology construction and data relaying at the application layer.

The shifting of multicast support from routers to end systems has the poten-

tial to address most problems associated with non availability of IP multicast.

In past few years, numerous algorithms and protocols have been proposed for

Application Layer Multicasting. Application layer overlays, however, incur

a performance penalty over router level solutions. In ALM, multiple overlay

edges may traverse the same physical link and thus create redundant traf-

fic and reduces the efficiency of the network. Also communication between

two end systems requires traversing other end systems and thus increases la-

tency. Therefore the major concern is how to route data along the topology

efficiently.

The deployment issues in IP multicast, characterization of overlay mul-

ticast tree structure, overlay tree construction and maintenance algorithms,

example overlay multicast networks, their basic mechanism and relative mer-

its have been surveyed in this chapter. Current trends and direction for the

future research have also been given.

2.1 Introduction

The native design of Internet was developed and optimized for one-to-one

applications such as reliable file transfer and electronic mail. Its growth

however has given birth to the new applications that are inherently one-to-

many, such as video-on-demand and live media streaming; or many-to-many,

such as video conferencing and multiplayer games. These applications put

strain on the available resources and make inefficient use of one-to-one or

A Review of ALM (Application Layer Multicast) Protocols 21

unicast-only infrastructure. The need for efficient support of one-to-many

and many-to-many applications led to the proposal for the implementation

of multicasting. A unicast packet has a single source IP address and a single

destination IP address. A multicast packet has a single source IP, but it

has a multicast destination IP address, also called the group address. The

multicast packet is delivered to all those receivers which are members of the

group identified by the group address.

Thus an IP Multicast network allows one or more sources to efficiently

send data to a group of recipients whereby the source transmits only one

copy of the data and the appropriate network nodes efficiently make dupli-

cate copies along the way to each receiver. Since the infrastructural support

is essential for IP Multicast, its deployment at large scale has remained an

elusive goal. Many issues such as group management, address allocation,

authorization and security, Quality of Service (QoS) and scalability, are un-

addressed. Internet connections to homes provided by local Internet Service

Providers (ISPs) rarely have the ability to be a part of an IP Multicast ses-

sion.

In response to the serious scalability and deployment concerns with IP

multicast, in recent years, application layer multicast (overlay multicast) net-

works have become an effective alternative to IP multicast for efficient point

to multipoint communication across the Internet. Here, end systems imple-

ment all multicast related functionality including membership management

and packet replication. This shifting of multicast support from routers to

end systems has the potential to address most of the problems associated

with the IP multicast. However, it introduces duplicate packets on physical

links and incurs large end-to-end delays than IP multicast. An overlay can

be formed directly among participating end systems or among Multicast Ser-

A Review of ALM (Application Layer Multicast) Protocols 22

vice Nodes (MSNs) distributed in the network, providing multicast services

to a set of end-hosts. This later type is called two-tier proxy based infras-

tructure. Overlay multicast tree construction and maintenance is a major

challenge in designing application layer multicast (ALM) protocols. Depend-

ing on methods of building data delivery tree, the existing ALM protocols

may be classified as mesh-based or tree-based (Mesh and tree protocols, and

Direct tree protocols).

In this chapter, we start with a brief discussion of issues related to IP

Multicasting that led to the development of ALM. A survey of ALM proto-

cols is then given. Our approach here is to identify properties that are sig-

nificant specially for live media streaming application, and characterize the

protocols architectures accordingly. These properties include application do-

main, group configuration, routing protocols, and other characteristics that

typically lead to trade-offs in design decisions such as mesh-first approach

versus tree-first approach (group management), minimum spanning tree or

clustering structure (routing), multi-source versus single source (application

domain), and many other characteristics. A comparison table highlighting

merits and demerits of different ALM protocols against characteristic pa-

rameters is given at the end. At the end of the chapter, current trends and

direction for future research are presented.

2.2 Application Layer Multicast

2.2.1 Performance Metrics

An overlay network among a set of end hosts can be defined over an under-

lying physical network where each overlay link between end hosts consists of

multiple physical hops including, source end host to its access router, one or

A Review of ALM (Application Layer Multicast) Protocols 23

more router-to-router hops in the backbone and the last hop between destina-

tion end host and its access router. Thus an overlay link may traverse many

routers in the underlying physical network. An example overlay network

shown in figure 2.1 describes the building of overlay tree over the underlying

physical network containing a source and four receivers. An overlay tree edge

comprises many physical links and routers in the underlying network.

S

C

D

A

B

R3

R1

R2

R5

R4
1

5

5
5

5

1

1

1

1

5

5

Source Receivers

Overlay tree

Routers and

 underlaying links

Figure 2.1: Example underlying network with one source and multiple receivers

and overlay multicast tree thereof

Some of the parameters that characterize quality of the data path in ALM

A Review of ALM (Application Layer Multicast) Protocols 24

are following [12].

1. Link Stress: The stress of a physical link is defined as the total number

of identical copies of a packet it carries. For IP Multicast, where there

is no redundancy of such type, the value of link stress is found to be

unity.Thus link stress measures how much inefficient an ALM scheme

is as compared to IP multicast.

2. Overlay Cost: The Overlay cost of an overlay network is defined as the

total number of underlying hops traversed by all the overlay links.

3. Resource Usage: This metric is defined as the sum of the (delay ∗

stress) over all the links that participate in the data transmissions.

This metric gives an idea of network resources consumed in the process

of data delivery to all the receivers. Here we have assumption that

links with high delays are more costly. Resource usage metric becomes

equal to the overlay cost when the delay for each link is unity.

4. Relative Delay Penalty (RDP): Assume a source host hs delivers data

to a destination host hd alongwith many other hosts hd1
, hd2

,, hdn

on the way, the Relative Delay Penalty (RDP) is defined as

RDP (hs to hd) =
latency (hs to hd)

delay (hs to hd)
(2.1)

where delay(hs to hd) is the direct unicast delay between the source

and destination hosts, and

latency (hs to hd) = delay (hs to hd1
) +

n−2∑

i=1

delay (hdi
, hdi+1

) + delay (hdn−1
to hd)

(2.2)

A Review of ALM (Application Layer Multicast) Protocols 25

Considering a single source transmitting data to many receivers, the

RDP for different receivers may be different, therefore the average of

RDPs of all receivers in a particular overlay is calculated to characterize

the overlay with better significance.

5. Stretch for a member: Like RDP, Stretch also compares an ALM

scheme with IP multicast.The only difference is that stretch denotes

the relative number of hops instead of the relative latency used in RDP.

stretch =
hops (hs to hd) on the overlay

rrh(hs, hd) in the backbone network + 2

=
(rrh (hs to hd) + 2) +

∑n−2

i=1 (rrh (hdi
, hdn−2

) + 2) + (rrh (hdn−1
to hd) + 2)

rrh (hs, hd) in the backbone network + 2

(2.3)

Here, rrh (hs, hd) denotes the total number of router-to-router hops

betwen the two hosts hs and hd.

There exists a tradeoff between the latency and the stress (bandwidth)

metrics.

6. Losses after Failures: This metric counts the average number of packet

losses after an ungraceful failure of a single node and measures the

robustness of ALM protocol. It highlights robustness in the occurrence

of unpredicted events.

7. Time to First Packet: It defines the time required for a new member

to start receiving a data flow when joining an on-going session.

8. Control Overhead: To maintain the overlay topology, the participating

overlay nodes exchange control information (e.g. refresh messages in

A Review of ALM (Application Layer Multicast) Protocols 26

NARADA) among themselves which constitute the control overhead

at routers, links and participating members. While some overhead is

necessary to keep the topology intact, the amount of control overhead

decides the scalability of a protocol.

2.3 Classification of ALM proposals

2.3.1 Architecture: Peer-to-peer or Proxy-based

In pure P2P (also called single tier) distributed architecture, the overlay is

built across end-users with all functionalities of group management and data

replication implemented at end hosts. ALM networks with P2P architecture

are easily deployable and inherently scalable. Despite being heterogeneous

with regard to their physical connectivity, computing power, they can be

individually harnessed according to their capabilities. P2P systems are re-

dundant in the sense that a single failure does not affect the network substan-

tially. Narada, NICE and Yoid are representative protocols under distributed

architecture.

In proxy based (two-tier) architecture; the overlay is created between ded-

icated proxies to improve the performance. Being dedicated, homogeneous

and better provisioned than individual hosts, the proxies based parchitecture

is more reliable and robust to failure. Usually Proxies are deployed by ISPs

and are stable than an individual host. They are more intelligent than end-

hosts as they can provide value-added services such as being pre-configured

with application specific components to make them application aware. Prox-

ies can be positioned at strategic positions such as co-locating with IP routers

or at hotspots to provide more efficient services. The problems with proxy

based architecture are with regard to their acceptance and deployment. Prox-

A Review of ALM (Application Layer Multicast) Protocols 27

ies are static and not responsive with changing network conditions. OMNI,

Overcast and Scattercast are some examples of proxy-based ALM protocols.

2.3.2 Control: Centralized or Distributed

A centralized approach to the overlay tree creation problem maintains a cen-

tral controlling entity responsible for the group management, overlay com-

putation and topology optimization. The controller maintains group infor-

mation, handles group membership, collects the measurements from all the

members, computes optimal distribution tree and disseminates the routing

tables to all the members. Routing becomes an easy task with such an ap-

proach and the problems of tree partitioning and routing loops are alleviated.

For small groups, the centralized approach is a good choice, however such

protocols are not scalable and susceptible to a central point of failure. In the

distributed approach, the responsibilities of group membership and overlay

topology computation is distributed among peers. The distributed approach

is more scalable and robust, however, it has more overhead and may not con-

verge to optimal and efficient solution as fast as in a centralized approach.

2.3.3 Tree Construction: Mesh First, Tree First or Im-

plicit

Any ALM protocol, requires efficient data distribution among peers while en-

suring robustness of the overlay topology. This leads to tree like data topol-

ogy alongwith a highly connected mesh-like control topology. Depending on

sequence of construction of these topologies, ALM protocols are classified as

Mesh-first, Tree-first or Implicit type [13].

In Mesh-first approach, a mesh control topology is first built among peers

A Review of ALM (Application Layer Multicast) Protocols 28

with multiple paths among them. A source specific tree rooted at any mem-

ber can then be created using Reverse Path Forwarding (RPF) construction

of data topology. Example protocol is Narada. Mesh based approaches have

improved delay performance but needs a dynamic routing mechanism in order

to achieve loop free data delivery which limits the scalability.

In Tree-first approach, a shared data distribution tree is built first, fol-

lowed by the control connections between nodes in the tree. Example proto-

cols are Yoid and HMTP.Each arriving member searches for its parent on its

own with the help of a bootstrapping node called Rendezvous Point (RP).

RP either gives a list of already connected members (as in Yoid) or indicates

the root of the tree (as in HMTP). In the first case, one of the members

in the supplied list becomes parent and in the later case; the parent search

starts from the rootcoming gradually downward in the tree till an appropriate

parent is found. An already connected member can become parent if it has

available degree for new nodes. Once placed in the tree, each member in the

tree discovers a few other members of the group that are not the neighbours

on the overlay tree and maintains additional control links to these members.

In Implicit approach, the control and data paths are defined simultane-

ously. A control topology with some specific properties is created, and data

delivery paths are implicitly defined on this control topology by some packet

forwarding rule. The protocols under this approach have been designed to

scale for large groups. Example protocols are NICE, CAN based multicast

and Scribe. NICE creates a hierarchy of clusters, i.e. sets of nodes “close”

to each other. An arriving node recursively cross this hierarchy to find the

appropriate cluster. Tree based solutions are simple and scalable but more

fragile than mesh based solutions. Also there is longer end-to-end delay as

all data must pass through the tree’s root.

A Review of ALM (Application Layer Multicast) Protocols 29

2.3.4 Design Objective: Efficiency or Scalability

Another way of classifying ALM protocols could be based on data delivery

mechanisms used in the protocol [14]. The data delivery can be based on a

single shared tree, source rooted trees or multiple shared trees. It has been

observed that as we increase the number of trees in data distribution overlay,

the delay decreases and robustness increases, but the overhead increases and

hence the efficiency decreases.

2.3.4.1 Source Based Trees

Narada protocol uses source based trees. This approach incurs lower delay

and is suitable and efficient for a small group. However as the group size

increases, control overheads increase very rapidly with the number of trees

hence not efficient for large groups due to high protocol overhead.

2.3.4.2 Single Shared Tree

YOID protocol uses single shared tree. It can support a fairly large group.

But since all the members are in one single tree and each node has bounded

out degree, due to limited bandwidth and processing ability of end user

terminals, the depth of the tree will be high and hence the latency will be

high. Such approach is suitable and scalable for non-interactive applications

e.g. Video-on-Demand but is not efficient.

2.3.4.3 Multiple Shared Trees

Tan et. al. [14] proposed an approach in which more than one multicast

trees are there but far less than the total number of sources. This approach

is extremely useful when both the number of senders and the group sizes

are very large. With this approach, on the one hand, total number of trees

A Review of ALM (Application Layer Multicast) Protocols 30

is small and hence overhead is not too large; also, tree depth is not large

resulting in not so large latency. For n nodes and s sources, m trees can

be formed, where 1 < m ≪ s. Thus the protocol cost is only m times

higher while the delay is within control. This approach is useful for multi-

sender applications such as live lecture delivery, video conferencing and multi-

party network gaming. Through simulations, it has been shown [14] that the

proposed multiple shared trees approach offers a well balanced solutions to

multi-source applications.

2.4 Example Application Layer Multicast Pro-

tocols

Under this section we describe the representative protocols from each class

as discussed above.

2.4.1 Narada

Narada [15] is a representative protocol for mesh first approach in which

source based trees are formed. The Narada protocol was one of the first

application layer multicast protocols that demonstrated the feasibility of im-

plementing multicast functionality at the application-layer. The protocol

proposed a peer-to-peer, self organizing, fully distributed, mesh based topol-

ogy with source based trees for data distribution. The target application for

this protocol is audio and video conferencing with sessions that lasts for tens

of minutes. It can support small groups (tens of participants), where any

member can be the source (single source at any point in time) transmitting

data at a fixed rate.

A Review of ALM (Application Layer Multicast) Protocols 31

Meshes allow optimized tree construction for an individual source. Group

management functions can be implemented at the mesh level rather than in

each individual tree.The protocol constructs a well connected mesh first and

then runs a DVMRP-like protocol to construct shortest path spanning tree for

the data delivery. The overlay is optimized for both latency and bandwidth,

but bandwidth is given priority over latency. If there are multiple paths with

the same bandwidth, shortest one is chosen. Network path characteristic

information (i.e. bandwidth and latency) is obtained by passive monitoring

as well as active measurements. The estimates of bandwidth and latency are

further improved by exponential smoothing algorithm.

2.4.1.1 Group Management Component

To ensure that overlay remains connected even with dynamic joins and fail-

ures, every member maintains a list of all other members in the group. Each

member periodically generates a monotonically increasing sequence number

which is disseminated in the refresh packets from source to neighbors and

then via routing table exchanges over the mesh.

Table 2.1 describes the database at member i. Each member i maintains

the following information for every other member (say) k in the group: mem-

ber address k, last sequence number ski, that i knows k has issued , and the

local time at the node i when it first received information that k has issued

ski. Each member periodically exchanges its knowledge of group membership

with its neighbors in the mesh with increasing sequence numbers. A message

from member i to member j contains first two columns of the table 2.1 along

with the last generated sequence number. On receiving a message from a

neighbor j, member i updates its table. If no update is received about the

member k for certain threshold time Tm ; the node i assumes that k is either

A Review of ALM (Application Layer Multicast) Protocols 32

dead or has partitioned away from i.

Member

Address

last sequence num-

ber that i knows that

member has issued

local time at i when i first re-

ceived the information that mem-

ber issued this sequence number

k ski ti at the arrival of ski

l sli ti at the arrival of sli

m smi ti at the arrival of smi

– —– —————

Table 2.1: Table maintained at member i to keep track of every other member in

the group which are known to it. All known members are listed in the table

Member Join: It is assumed that a member will be able to get a list of

group members (with at least one active member in the list) after arriving

in the network through bootstrap mechanism from special designated hosts,

also called the Rendezvous Points (RPs). The request is sent to all the listed

members, and the responses are received from some of them. After joining,

new member starts exchanging refresh message with the neighbors.

Leave/Failure: The protocol assumes fail-stop failure model. In case of a

node leaves, it notifies its neighbors, and this information is propagated along

the mesh. In case of abrupt failure, failure is detected locally (neighbors send

probe messages, if no response is received, the node is assumed to be dead),

and propagated to others. Dead members’ information can be flushed after

sufficient amount of time.

A Review of ALM (Application Layer Multicast) Protocols 33

Repairing Mesh Partition: When the network get partitioned, members

on each side of the partition stop receiving refresh messages from members

on other side. Each member maintains a queue of such members. It runs a

scheduling algorithm that periodically and probabilistically deletes a member

from the head of the queue. The deleted member is probed and it is either

determined to be dead, or a link is added to it if it is found to be reachable.

Scheduling algorithm is adjusted so that no entry remains for more than a

bounded period of time. Probability value is chosen so that in spite of several

members simultaneously attempting to repair partition, only a small number

of links are added at a time. Figure 2.2 considers an example mesh topology

of 7 nodes named as A, B, C, D, E, F, and G. The data distribution overlay

tree over this topology, that covers all the nodes without any loop is shown

with dark lines. Figure 2.3 considers the mesh partitioning due to failure of

node E. Two new links (D-F and D-G) are added to repair this partition as

per algorithm explained above.

A

B

C

D E

G

F

Figure 2.2: An example mesh topology

2.4.1.2 Overlay Optimization Component

This component ensures that the overlay quality remains good for all the

time. An active measurements and passive monitoring of performance is

A Review of ALM (Application Layer Multicast) Protocols 34

done and links are added/dropped accordingly.

Addition of links: A member i computes the utility gain if a link is added

connecting it to member j based on the number of members to which, link

to j improves the performance for i and the amount of improvement. This

way, periodically, members evaluate the utility of adding a link to a random

member which is not a neighbor and evaluates the utility of adding a link to

this member. A link is added to this random member if utility gain exceeds

a given threshold.

Dropping of links: The cost Costij of a link between i and j in i ’s per-

ception is the number of group members for which i uses j as next hop.

Periodically, a member computes the consensus cost of its links to every

neighbor.Consensus cost of a link is defined as the max (Costij ,Costji). Ev-

ery member periodically computes the consensus cost of its links to every

neighbor. Link with lowest consensus cost is dropped if its consensus cost

falls below a certain threshold. Dropping will not partition the network be-

cause as long as the drop threshold is lower than half of the group size, at

least one edge will always be maintained from the node. .

Figure 2.4 shows an instance of new node joining in the mesh. A new

member H joins the mesh and sets up links with two randomly chosen neigh-

bors in the mesh. Figure 2.5 shows how the mesh topology optimizes itself

after new node joining by dropping an existing link of low utility and adding

some new links of high utility and thus transforming the mesh in to a new

final form (figure 2.6).

Data delivery: Each member maintains the routing cost and the path to

A Review of ALM (Application Layer Multicast) Protocols 35

every other member. Routing updates between neighbors contain both the

cost to the destination and the path that leads to such a cost. Per source

trees are constructed from the reverse shortest path between each recipient

and the source as done in DVMRP (Distance vector Multicast Routing Pro-

tocol). TFRC (TCP friendly rate control) is used as the underlying transport

protocol on each overlay link.

A

B

C

D E

G

F

Figure 2.3: Mesh partitions as node E fails

A

B

C

D

G

F
H

Figure 2.4: New node joining in example mesh topology of figure 2.2

2.4.1.3 Performance Evaluation

Each member in the group keeps state of all other members that are part

of the group. This information is also periodically refreshed. Distribution

A Review of ALM (Application Layer Multicast) Protocols 36

A

B

C

D

G

F
H

Figure 2.5: Topology optimization through add/drop of links

A

B

C

D

G

F
H

Figure 2.6: Final mesh topology after add/drop of links

of such state information about each member to all other members leads to

relatively high with order (O(N2)) aggregate control overhead, where N is

the group size. The Narada protocol was designed for a small group size and

traded off high control overheads for greater robustness where every member

maintains a list of all other members in the group. Bandwidth performance

is comparable to IP multicast. Mean receiver latencies are 1.3 to 1.5 times

than that in IP multicast.

2.4.2 NICE

NICE (recursive acronym for NICE is the Internet Cooperative Environment)

protocol [16] is an efficient, scalable and distributed tree building protocol

A Review of ALM (Application Layer Multicast) Protocols 37

which does not require any underlying topology information. It targets low

bandwidth, loss tolerant realtime data stream applications with large re-

ceivers sets e.g. News and sports ticker services. It arranges group members

into sets, forming a hierarchical control topology. As new members join and

existing members leave the group, the protocol creates and maintains the

hierarchy as its basic operation. The hierarchy implicitly defines the multi-

cast overlay data paths and is crucial for scalability of this protocol to large

groups. The members at the bottom of the hierarchy maintain state of con-

stant number of other members at the same level, while the members at the

top maintain such state for about O(logN) other members.

Members are assigned to different layers of the hierarchy. Hosts in each

layer are partitioned into a set of clusters. Members that are close are mapped

to the same clusters. Each cluster is of size between k and (3k-1), where k

is a constant. These bounds can be justified as following. Since members

in the group keep joining and leaving, there is a provision of merge and

split operaion among clusters in the protocol. With, split/merge opeartions

permitted the most elememntary choice for the upper and lower bound is

k and 2k-1. The problem with this choice is that a series of leaving and

joining processes by members causes split and merge operation in the same

sequence resulting in oscillations. For example a cluster with an initial size

2k-1 splits into two when a new member joins, resulting in to two clusters of

size k each. Further if a member leaves in any of these newly formed cluster

makes that cluster size less than lower bound and invokes again a merging

of two clusters. The next better choice for the size range is [k, 3k-1].

All hosts together form layer L0. The cluster leader is the graph theoretic

centre of the cluster. The cluster leaders of all the clusters in layer Li join

layer Li+1. There are at most logkN layers and the highest layer has only

A Review of ALM (Application Layer Multicast) Protocols 38

a single member. This hierarchical overlay structure is used to distribute

control messages and to form data delivery paths.

2.4.2.1 Protocol Description

The protocol assumes the existence of a bootstrapping node called as RP

(Rendezvous Point). It is a special host which acts as the leader of the single

cluster in the highest layer of hierarchy. All the members will know about it

a-priori. RP interacts with other members on control path but is bypassed

while forming data delivery path.

Host Joining: A Joining host (JH) contacts the RP which responds with

the list of hosts that are present in the highest layer. The JH contacts all

the members in the highest layer to find the closest member. This closest

member informs JH about its other members in the lower layer. Then the

closest member is identified in the lower layer. This is done until JH finds its

L0 cluster. Joining Latency happens to be O(log N) RTTs, and the message

overhead complexity is O(k log N) query response pairs.

The joining delay is defined as the duration from the instant when joining

request was sent to the instant when the JH receives its first data packet. To

reduce the joining delay to single RTT, JH on data path temporarily peers

with the leader of the cluster of the current layer it is querying.

Cluster Maintenance/Refinement: Each member host (H) of a cluster

periodically sends a message, called Heart Beat Message (HBM) to each of its

cluster peers. Cluster leader includes complete updated cluster membership

in HBM to all other members. This allows other Cluster Members to know

about new joining hosts.

Split/Merge: Each cluster leader periodically checks the size of its cluster

and does appropriate split or merge. If size exceeds the upperbound (3k-1),

A Review of ALM (Application Layer Multicast) Protocols 39

the leader of the cluster splits them into two equal sized clusters, such that

maximum of the radii among the two clusters is minimized and then the

leadership is transferred to the new leaders (centres of the two partitions)

through LeaderTransfer message. In case size of a cluster in layer Li falls

below the lower bound (k), its cluster leader selects its closest layer Li+1 peer

and hands over all its members (including itself) to this Li+1 peer, which is

also a layer Li leader by sending a ClusterMergeRequest to it.

Inaccurate attachment: Supercluster for a cluster member (in layer Li) is

defined as the cluster of leaders of layer Li. Each member in any layer (say

at layer i), periodically probes all members in its supercluster (members of

layer i+1) to identify closest member in the supercluster (say J). If presently

J is not its cluster leader, it leaves present Li cluster and joins Li cluster

whose leader is J. This way, the heirarchical topology keeps refining.

Leave/Failure: While leaving gracefully, the departing host (H) sends

a Remove message to all clusters of which it is a member. In failure case,

abrupt departure is detected through nonreceipt of HeartBeat message. If

the departing host was the leader of the cluster, new leader (centre among

the remaining members) is selected.

Control and Data topology: Control path peers of a node include all

the nodes which belong to the same cluster in which this node lies in all the

layers to which this node belongs to. Each member of a cluster exchanges

Refresh message with all the remaining members of the cluster.

Source delivers first to all the members of the cluster to which it belongs

to. Whenever a member receives data, it sends it further to all its cluster

members. Thus, given a source; data delivery topology is a source specific

tree.

A Review of ALM (Application Layer Multicast) Protocols 40

2.4.3 Application-Level Multicast Infrastructure (ALMI)

ALMI [17] consists of a session controller and multiple session members.

ALMI provides a centralized solution for multicast groups of relatively small

size (several tens) with many-to-many service mode.

Session controller (centralized entity) creates a minimum spanning tree

(MST) which consists of unicast connections between end hosts. Latency

between members is used as the link cost of the MST. Session controller

ensures connectivity of MST when members join/leave the session. It is also

responsible for periodic tree refinement based on the measuremens received

from session members. Session data is disseminated along the MST, while

control messages are unicast between each member and the controller. The

controller receives updates from each member and periodically re-computes

the MST. Routing information of the MST is then communicated to all the

members. Ideally, since the MST is centrally computed, it will be loop-free.

However, due to the losses and delays in obtaining updates from members and

disseminating the different versions of MST to members, loops and partitions

may occur. To check this, version number is assigned whenever MST is

refined before spreading it to all the members. Members maintain a cache of

the different versions of the routing tables.

Whenever a member (source) generates a packet, it includes latest tree

number in the header. Receiving node, after receiving this packet, checks the

tree version in its cache. If any of tree versions stored in the cache matches

with that in the received packet, packet is forwarded with that tree version;

otherwise discarded. Packets with older tree version (not stored in the cache)

are discarded. If a packet with higher tree version is received, a copy of new

version of tree is obtained from session controller and then the packet is

forwarded accordingly.

A Review of ALM (Application Layer Multicast) Protocols 41

ALMI multicast trees have been shown to be close to source-rooted mul-

ticast trees in efficiency with low performance tradeoff though with higher

control overheads O(N), due to the maintenance of the different tree versions.

2.4.4 HMTP and OMTP

Both HMTP [1] and its upgraded form OMTP [2] are representative protocol

for tree first approach in which single shared tree is formed.

2.4.4.1 HMTP (Host Multicast Tree Protocol)

Join Procedure: The joining member first discovers the root of the tree with

the help of a bootstrapping node called Renzdevous Point (RP). the search

for parent starts from the root. Lower levels of tree are explored gradually

till a node with free degree is found. HMTP iteratively compares the RTT

between the joining nodes and existing nodes in the tree network starting

from the root. A node with minimal RTT is chosen as parent by the joining

node. An example of node joining in HMTP is shown in figure 2.7.

Member leave and tree repair procedure:

Member hosts periodically exchange REFRESH and PATH packets. In

case a Host leaves Gracefully, it notifies its parent and children. In case a

Host Crashes, repeatedly missing REFRESH and PATH packets are used to

identify the missing node and thus repair is initiated.

Limitations: HMTP suffers from the following problems.

1. As tree grows, number of queries and RTT measurements increases

with the depth of tree. Thus for sparse large groups, very high join

latency is expected.

A Review of ALM (Application Layer Multicast) Protocols 42

2. It also has uneven and unfair processing load distribution which is

resolved by Foster children concept.

3. Flash Crowd Problem, for which a solution is to make each host wait

for a random delay before restarting the join procedure.

AB

C

E

D

F G

H I J

Root

{2}

{4}

{3}

{1}

Figure 2.7: Join procedure in HMTP [1]

2.4.4.2 OMTP (Overlay Multicast Tree Protocol)

In Overlay Multicast Tree Protocol (OMTP), by leveraging on the IP hier-

archical addressing locality, the formation of Overlay Multicast tree is made

faster, and efficiency of tree maintenance is enhanced. Both the bandwidth

availability and round-trip-time (RTT) are taken into consideration when a

newcomer selects its parent node.

Join algorithm: To make the root of the tree less affected from flash crowds

and to distribute the load, a dedicated always-up host, called rendezvous

point (RP) is used. All newcomers first contact RP, RP redirects them to

different selected member host in the tree. RP identifies the nearest network

A Review of ALM (Application Layer Multicast) Protocols 43

cluster by matching IP address of newcomer with the prefixes of existing

hosts and then using greedy join algorithm is used to locate the nearest peer

host. The host with the longest prefix match is first set as parent initially

and then children list of this parent is obtained. This list never include the

address of such children with all their out degree exhausted. Finally the

children with smallest RTT becomes the parent. Thus both RTT and band-

width availability are taken into consideration in the algorithm. An example

of node joining in OMTP is shown in figure 2.8.

AB

C

E

D

F G

H I J

Root

RP

{1}

{2}

Figure 2.8: Join procedure in OMTP [2]

Tree maintenance algorithm:

Every child periodically sends an UPDATE message (heart beat packet)

containing its IP addresses, prefix, root path, vacancy status, and prefixes

of its descendents to its parent. Thus children list is updated periodically at

each node. Once a parent receives an UPDATE message sent by its children,

it sends back a PATH message to its children containing its own root path.

The parent compares the children‘s IP prefix with its own. If these are

A Review of ALM (Application Layer Multicast) Protocols 44

found different, the children’s IP prefix is appended into its own descendants’

prefix table which will be eventually sent to RP for longest prefix matching

purposes. The entries in prefix table received by the RP are therefore unique

and represent the nodes in upper hierarchy, i.e. near the root.

The root sends UPDATE message to the RP to make it aware of current

root and the IP prefix set of all the childeren in the tree.

Member leave and Tree repair algorithm:

If a member leaves gracefully, it will broadcast the address of one of its

children chosen randomly to its other children. The elected child will replace

the leaving node. If a member leaves suddenly, each child picks up a potential

parent with which it has the second shortest RTT, rather than all of them

choosing the same grand parent. A member with second shortest RTT is

unlikely to be the same parental candidate of another child.

The join latency in OMTP is reduced by as large as 50 % as compared

with HMTP.

2.5 Open Issues

2.5.1 Two Conflicting Design Goals

Another open issue in ALM is balancing the following two conflicting design

goals:

1. Minimizing the length of the paths (usually in terms of hops) to the

individual destinations

2. Minimizing the total number of hops to forward the packet to all the

destinations

A Review of ALM (Application Layer Multicast) Protocols 45

The minimum spanning tree (MST) and the shortest path tree (SPT)

are two well-known data distribution methods in ALM. The MST optimizes

the resource usage of the multicast tree but the pair-wise paths may not be

optimal and can cause large end-to-end delays. Hence it is suitable for non-

interactive data dissemination when end-to-end delays are not an issue. In

SPT, the distribution tree will consist such that path from a node to source in

tree is same as that used by a unicast connectivity from the node to source.

It is optimal from the source to the receiver in terms of end-to-end delay

but it require more network resources. Scaleable ALM systems usually use

a different approach by creating hierarchical distribution tree. It naturally

uses clustering. The advantage of a hierarchical clustering is the reduction

in control overhead as nodes keep states only for all the nodes in its cluster

and for very few other nodes. It allows faster joining and efficient group

management at the cost of sub-optimal tree.

2.5.1.1 Adapted Routing Algorithm in the Overlay Multicast

Wang et. al. [18] developed an adapted routing algorithm for overlay net-

works that balances delay and bandwidth consumption by integrating the

algorithms which minimizes the delay and bandwidth consumption.

Figure 2.9 shows a sample overlay multicast network with each of its

link having some delay and bandwidth. Consider that figures 2.10 and 2.11

describe two different trees resulted from two different routing algorithms ap-

plied. Figure 2.10 shows the shortest path tree (SPT) that minimizes delay

while in figure 2.11 shows the minimum spanning tree (MST) that minimizes

bandwidth consumption. In the figure 2.12, both delay and bandwidth con-

sumption have been considered by applying proposed adapted algorithm [18]

to optimize the trade-off between the two QoS criteria. Optimal Balance of

A Review of ALM (Application Layer Multicast) Protocols 46

Delay and Bandwidth consumption (OBDB) is formulated as follows.

4

S

2

3

6
5

8

7

1

9

10

Figure 2.9: An Example Multicast Network

OBDB = (1 − α)D + αB (2.4)

Where D is the minimum delay criteria and B is the minimum bandwidth

consumption criteria respectively to SPT and MST. It is known that each one

lead to give excellent performance in one criteria but lead to bad performance

in another criteria. Equation 2.4 gives a theoretical bound for balancing D

and B, where α is a weight indicating the relative performance of delay and

bandwidth.

Wang’s adapted algorithm generates a tree that balances delay and band-

width consumption requirements. The algorithm generates a delay that is

only a few percent higher than that of SPT and a bandwidth consumption

that is a few percent larger than than that of MST.

A Review of ALM (Application Layer Multicast) Protocols 47

4

S

2

3

6
5

8

7

1

9

10

Figure 2.10: Shotrest Path Tree (SPT) resulted from the mesh shown in figure

2.9

2.5.2 Tree Refinement

An open issue for all ALM protocol is that of tree refinement i.e. the reorga-

nization or shuffling of the nodes in the tree. This is usually done to enhance

the system performance. In ALM, the quality of the path between any pair

of members is same as that of the unicast path between them. Typically

a lower diameter tree performs better than a higher diameter tree. Hence,

refinement is a way to improve the quality of the ALM structure once it has

already been constructed, by constantly reducing the tree diameter. If a node

with zero out-degree joins a multicast session, the tree can not be extended

beyond this node. It ultimately increases the tree diameter. To handle such

situations, incremental refinement is the solution. But it is an expensive op-

eration and thus should be applied as sparingly as possible. This is because

the refinement protocols require too much information to perform. Research

to find efficient mechanisms to determine whether or not refinement should

A Review of ALM (Application Layer Multicast) Protocols 48

4

S

2

3

6
5

8

7

1

9

10

Figure 2.11: Minimum Spanning Tree (MST) resulted from the mesh shown in

figure 2.9

be triggered at a particular node is needed. How much the refinement im-

proves the performance of the system, say in terms of average latency or any

other parameter is worth investigation. The protocol should also be aware of

the transient period of the refinement when it actually takes place. It should

be explored whether it affects its dependent nodes and by how much. The

protocols must also consider the churn effect due to tree refinement as it can

make the system inconsistent intermittently. For example, OMNI [19] uses

local transformations (child promote, parent-child swap, iso-level-2 transfer,

aniso-level-1-2 swap) and probabilistic transformations (simulated annealing)

to refine its structure. As it is an expensive operation and requires extra care,

frequent refinement may adversely affects the system performance. Most of

the ALM protocols strategically and infrequently apply refinement operation.

A Review of ALM (Application Layer Multicast) Protocols 49

4

S

2

3

6
5

8

7

1

9

10

Figure 2.12: Tree obtained from the mesh as shown in figure 2.9 as Adapted

Routing Algorithm is applied

2.5.3 Reliability

Due to the inherent dynamic nature (undefined join and leave pattern of

peers) of P2P networks, reliability has always been one of the major con-

cerns in all large scale application layer multicast solutions suggested so far

([20], [21]). Any ALM protocol leverages on the capability of end hosts to

replicate and forward the data in the network, while these are not as stable

as routers in IP multicast. Most of the ALM protocols build a tree based

data distribution topology for efficient use of network resources, but in this

topology a single node’s departure disrupts the streaming to all the peers

located in downstream segment. The protocol proponents either introduce

reliability in the basic topology building components itself e.g. in Narada

[15] or run a separate reliability enhancing protocol e.g. PRM over NICE

[22].

ALM reliability enhancement approaches are broadly classified as proac-

A Review of ALM (Application Layer Multicast) Protocols 50

tive and reactive. In a proactive approach, redundant packets are sent along

with the data packets which can be used to reconstruct the original data in

case some of the data packets are lost. Some of the proactive approaches are

Forward Error Correction (FEC) [23], Digital Fountain [24], Network Cod-

ing and layered coding scheme e.g. Multiple Description Coding (MDC) with

multipath transmission, and Kunichika’s approach [25].

In a reactive approach, lost packets are retransmitted after the receiver

requests for the lost packets. Probabilistic resilient multicast (PRM) includes

both proactive and reactive components.

In FEC-(d, r), [23] [26] source takes a set of d data packets and encodes

them into a set of d + r packets and sends them. A receiver can recover

data packets if it receives any d of the d + r encoded packets. Overhead

of the scheme is r/d and resilience increases with the overhead. With 100

% overhead (i.e. r = d), performance improves with higher values of d (or

r) while delivery latency increases. FEC based approaches can recover from

network losses. However they alone are not sufficient when overlays are used.

Overlay nodes are the processes on regular end hosts and are more prone to

failures than the network routers.

In Kunichika’s approach [25], all the nodes always keep one free out-degree

by force, to accommodate a deprived node in case of a failure. Any end hosts

with an out-degree n caters only to n − 1 children. Redundant structure

of tree avoids exhaustive search of a backup parent and simplifies backup

route calculations. Layers to which the backup route calculation is applied

are limited at worst to the grandchild layer. The limitation of this approach

is that it needs to maintain redundant degrees at each node permanently.

In probabilistic resilient multicast (PRM) enhanced NICE (Nice is the

Internet Cooperative Environment) protocol, Banerjee et. al. [22] intro-

A Review of ALM (Application Layer Multicast) Protocols 51

duced multicast data recovery scheme with two components. A proactive

component called randomized forwarding in which each overlay node chooses

a constant number of other overlay nodes uniformly at random and forward

data to each one of them with a low probability, and a reactive component

called triggered NAKs to handle data losses due to link errors and network

congestion.

Reliability approach suggested in [27] is based on dynamic mapping of

nodes in the tree based on their relative stability. The proposal is based on

the fact that the participating users’ lifetime follows a Pareto (skewed, heavy-

tailed) distribution [28]. The effect of this distribution is twofold: (i) peer’s

expected remaining lifetime becomes directly proportional to current age and

(ii) a small fraction of peers dominate the majority of the lifetime, i.e., only

few peers remain alive throughout the whole session, and most peers are

short-lived. The algorithm in [27], organizes peers into a logical hierarchy

based on their relative stability. We can conclude that full reliability is a

difficult goal for large scale streaming networks.

2.5.4 Scalability

Scalability is a major issue when the application at hand needs to create a

large heterogeneous network at global level. Many schemes which perform

considerably well for small network, fail when network size grows. The first

ALM protocol Narada [15] was designed for few tens of peers as it required

each peer to maintain updates about every other peer in the network. Many

ALM protocols with distributed construction and maintenance algorithm

have been suggested in last one decade. CAN [29], DT based [30] Multicast

and NICE [16] are few of them.

There exists a family of mesh based ALM protocols based on the in-

A Review of ALM (Application Layer Multicast) Protocols 52

frastructure created using DHTs (Distributed Hash Tables) e.g. Pastry [3]

based Scribe [31], CAN [29] based multicast and Chord [32] based Multi-

cast. DHTs form a structured P2P network for efficient storage and retrieval

of data where the responsibility of maintaining the mapping from object

keywords to object values is distributed among the participating nodes and

any join/leave of nodes causes a minimal amount of disruption. This DHT

based design achieves high scalability by efficient routing while supporting

continuous node arrivals, departures, and failures.

Chapter 3

Reliability Approaches in

Overlay Muticast Networks

The overlay multicast network comprises large population of heterogeneous

and dynamic peers. Shifting group management and packet forwarding re-

sponsibility from routers to end hosts gives deployment advantage over IP

multicast and helps realizing large scale group communication, but places

challenges in performance due to unpredictable and autonomous behavior of

peers. In past few years, many resilience improvement schemes have been

suggested for ALM protocols to improve delivery ratio while maintaining

end-to-end latency and control overhead within a limit under high degree

of transiency. Different schemes come with different tradeoffs among these

parameters making one scheme to work better than other for a particular

application.

Classification of reliability approaches, performance metrics of reliabil-

ity, prominent resilience approaches with their basic mechanism and relative

merits have been surveyed in this chapter.

Reliability Approaches in Overlay Muticast Networks 54

3.1 Introduction

Use of application layer multicast (ALM) for bandwidth intensive streaming

application for large number of autonomous and heterogeneous users gives

scalability advantage of multicast and avoids deployment issues of a network

(IP) level solution; though it has many reliability issues. In ALM, the net-

work is built continuously on-the-fly with the end systems whose behavior is

unpredictable. Unlike routers in IP multicast, participating nodes in ALM

may join and leave at their will. Peers’ transiency studies show that peers’

median session time ranges from ninety to one minute [33]. In most of the

ALM protocols, tree topology is a preferred choice for data distribution to

save bandwidth. Thus high degree of transiency in participating nodes places

a big challenge in maintaining reliability with minimum additional overhead

in ALM streaming protocols.

In recent years, many authors have proposed schemes to improve resilience

either by utilizing path diversity to make data delivery independent of nodes’

behavior [22], [34], [35] or by adding data redundancy to the stream through

coding [23], [26] [24]. In this chapter, a review of reliability schemes for ALM

streaming protocols is presented. A classification of reliability approaches

is given at the outset, some popular schemes are discussed in detail, perfor-

mance evaluation metrics for reliability scheme are defined, and then, finally

a comparative evaluation of schemes is done.

Reliability Approaches in Overlay Muticast Networks 55

3.2 Classification of Reliability Approaches

in ALM Streaming Protocols

Reliability approaches in ALM protocols can be classified in three broad

categories: (i) Path diversity based approaches, (ii) Data redundancy based

approaches and (iii) Combined approaches

3.2.1 Path diversity based approaches

A node failure, anywhere in the path from source to receiver may cause in-

terruption in the reception of data at the end receiver; the obvious way to

ensure reliability in such situation is to switch the transmission over an alter-

nate path which is being maintained in advance. This basic concept has been

applied in many forms in reliability solutions for tree based ALM protocols.

Data transmission through an alternate path is maintained probabilistically

[22] or deterministically [36] in some manner to make data delivery indepen-

dent of nodes’ transiency. Considering tree topology for data distribution,

the redundant transmission can be done in any of the following forms.

3.2.1.1 Single tree topology

In reliability approaches of this type, extra links are added to the original

single multicast tree topology for data distribution. The way redundancy is

introduced in ALM protocols has two forms viz. Cross-link redundancy and

In-tree redundancy. PRM (over NICE) [22] is an example of former type

while Nemo [34] protocol is representative of the later type. The difference

between these approaches is described in the next section where PRM is

described in detail.

Reliability Approaches in Overlay Muticast Networks 56

In single tree topology, redundancy can also be introduced by maintain-

ing dual tree deterministically as suggested in [36]. In this protocol, topology

is built incrementally while maintaining dual feeds of the media stream to

any node from the source with minimum differential delay in receiving the

packets via both the alternatives. The availability of a P2P query search net-

work with distributed indexing service e.g. Chord, is assumed to be present

for maintaining the list of presently active potential forwarders for the two

different feeds. It helps in searching of feeds by a newly arrived node. These

two feeds (named as feed 1 and feed 2) come via two different node-disjoint

paths from the source and thus scheme is resilient to single failure at a time.

The details of this scheme are given in chapter 5.

3.2.1.2 Multiple-tree topology

In reliability approaches of this type, several overlapping trees are created for

data distribution. The data stream is divided into several substreams, each

one being sent along each of the trees in multiple tree structure. SplitStream

over Scribe [35] is a representative scheme of this class. Scribe is an ALM

protocol that runs over Pastry, a DHT based structured peer-to-peer overlay.

SplitStream is the reliability enhancement protocol that creates multiple node

disjoint trees over which the substreams of data are disseminated. The detail

of SplitStream is described in subsection 3.3.2.

Since in all the path diversity based approaches, redundant transmission

is done in advance of the occurence of any loss, these schemes are also referred

to as Proactive approaches.

Reliability Approaches in Overlay Muticast Networks 57

3.2.2 Data Redundancy Based Approaches

In reliability approaches of this type, redundant data packets are sent along

with the primary data packets, which can be used to reconstruct the original

data in case some of the data packets are lost. This redundancy can be in-

troduced through some source coding scheme. The representative protocols

include FEC [23], Digital Fountain [24], Network Coding and Layered Cod-

ing Scheme e.g. Multiple Description Coding (MDC) with multi-path trans-

mission [37]. Whereas, in most of the schemes based on data redundancy,

additional redundant packets are sent in advance alongwith the primary data

packets; there exists some schemes in which retransmission of packets is done

after receiving Negative Acknowledgement (NAK) from the receiver side e.

g., in reactive component of PRM [22].

Thus depending on whether the redundancy is added in advance or added

when triggerred by receiver; data redundancy based approaches may be cat-

egorised as Proactive approaches or Reactive approaches.

3.2.3 Combined Approaches

Some researchers have come up with the reliability approaches in which they

introduce redundancy both in network path as well as in data itself e.g.

Padmanabhan’s approach [38] applied to Coopnet [39]. In [38], multiple,

diverse distribution trees are used to provide path redundancy; and multiple

description coding (MDC) [40] is used for data redundancy. Thus a combined

approach is used, though both used in proactive form. The detail of [39] is

described in the next section.

PRM over NICE [22] can also be categorized as using combined approach

in the sense that it has two components viz. proactive and reactive simulta-

Reliability Approaches in Overlay Muticast Networks 58

neously.

3.3 Example Reliability Approaches

3.3.1 PRM over NICE

The detailed description of NICE (recursive acronym for NICE is the In-

ternet Cooperative Environment), a scalable ALM protocol, has been given

in section 2.4.2. In probabilistic resilient multicast (PRM) enhanced NICE

protocol, Banerjee et. al. [22] introduced multicast data recovery scheme

with two components. A proactive component called randomized forwarding

in which each overlay node chooses a constant number of other overlay nodes

uniformly at random and forward data to each one of them with a low proba-

bility, and a reactive component called triggered NAKs to handle data losses

due to link errors and network congestion. The PRM scheme is efficiently

scalable in which, with increasing number of participants, the overhead at

each overlay node decreases to zero asymptotically. The description of the

two components of this scheme is as given below.

3.3.1.1 Randomized Forwarding

Randomized Forwarding, the proactive component of the scheme, introduces

some cross edges in the data delivery tree by way of some additional transmis-

sions with small probability, along randomly chosen overlay edges apart from

regular tree edges. This helps in fast recovery of data under high failure rates

of nodes. An example of proactive randomized forwarding is shown in figure

3.1 and 3.2. Each overlay node selects a small number (r) of nodes other

than its children. On receiving the first copy of a data packet, it forwards

the packet to these nodes with a small probability (β) apart from forwarding

Reliability Approaches in Overlay Muticast Networks 59

to its children in the delivery tree. Due to this additional forwarding, some

nodes may receive multiple copies of the same packet. Such duplicate packets

are detected and suppressed. A duplicate suppression cache is maintained

that temporarily stores the data packets. Packets received after the latency

deadlines are dropped. The cache size is limited by the latency deadline of

the application. The overhead of the scheme is β r. The value of probability

β is kept small (for example 0.01) and r takes value in the range from 1 to

3.

S

A B C

D JE F G H I

NML

K

SRQPO T

Figure 3.1: An overlay multicast network. The circles represents overlay nodes

and crosses indicate the failures at links and nodes. The arrows indicate the data

flow

Random Nodes Discovery: Analysis shows that if nodes for additional trans-

mission are chosen uniformly at random, delivery of packet to each overlay

node can be guaranteed with a high probability. Each node periodically dis-

Reliability Approaches in Overlay Muticast Networks 60

S

A B C

D JE F G H I

NML

K

SRQPO T

Figure 3.2: Randomized forwarding in PRM scheme. The curved edges show the

randomized forwarding

covers a set of random nodes to whom additional transmission is to be done.

The discovering node transmits a discover message with a TTL (time-to-live)

to its parent. Parent then forwards it to one of its randomly selected neigh-

bor which in turn forwards to another neighbor and so on, without retracing

its path along the tree. The TTL value is decremented at each hop. The

node at which TTL reaches to zero is selected as one of the random nodes.

Effectiveness of Randomized Forwarding: With high failure rate, a portion

of the data delivery tree may get partitioned. If the cross edges over which

additional data transmission is done are chosen uniformly at random, the

number of cross edges on a selected subtree increases with the size of parti-

tion. Therefore larger the size of partition, higher is the probability of repair

Reliability Approaches in Overlay Muticast Networks 61

using cross transmission.

3.3.1.2 Triggered NAKs

The data packets are assigned a monotonically increasing sequence number

so that interruption in the delivery can be detected using gaps in the sequence

numbers. On detection of a gap, NAK-based retransmission is triggered. The

information about correctly received and missed prior sequence numbers by

a node is piggybacked in each packet forwarded to its children or the cross

nodes. It makes the receipient node aware of the gaps in sequence numbers

its parent has and prevents it from making NAK-based retransmission re-

quest for these sequence numbers. The receipient node will send NAK based

retransmission request for those sequence numbers which its parent possesses

but are not received by him. Once the parent node obtains missing sequence

numbered packets, it immediately sends them to the children nodes. This

saves network from unnecessary traffic.

An example of triggerred NAKs is shown in figure 3.3. Node K receives

sequence number 65 from its parent C. The received packet also indicates

that its parent has received sequence numbers 61, 62 and 63 but has missed

sequence number 64. Node K has missed sequence numbers 62 and 64. It

will send NAK only for sequence 62 but not for 64 as it is aware that even C

does not have the sequence 64. The same way, node T, on receiving sequence

65 from K, sends NAK for 63 but not for 62 and 64. On receiving sequence

62 from C, K forwards it to T without waiting for any request from T for

that sequence.

Reliability Approaches in Overlay Muticast Networks 62

S

c

K

T

NAK:62

NAK:63

at T

65 64 63 62 61

1 0 0 0 1

at C

65 64 63 62 61

1 0 1 1 1

at K

65 64 63 62 61

1 0 0 11

64 63 62 61

0 11 1

 SEQ No. 65
 C to K

64 63 62 61

0 01 1

 SEQ No. 65
 K to T

Figure 3.3: Triggerred NAKs in PRM with bit-mask length equal to 4

3.3.2 SplitStream over Scribe

In conventional tree-based multicast systems, a relatively small set of nodes

are responsible for forwarding all the multicast messages. This may intro-

duce bottlenecks in the forwarding topology as the induced load may easily

overwhelm a specific end host. To address this problem, Castro et. al. [35]

proposed the use of multiple interior-node-disjoint trees (a forest) over which

stripes of the data stream are disseminated. A node can be leaf node in many

trees but interior node in at least one tree. By forwarding different stripes

over each tree and making each peer an interior node in at least one tree,

the multiple-tree redundancy approach distributes the forwarding load more

Reliability Approaches in Overlay Muticast Networks 63

equally among the participating peers. DHT routing model based Scribe [31]

makes creation and maintenance of this forest efficient. It neither requires

expensive network monitoring nor it requires a centralized coordinator.

3.3.2.1 Pastry

Pastry [3] is an efficient, completely decentralized and self organized peer-to-

peer look-up protocol for object location and routing. It distributes respon-

sibility uniformly among participating nodes while keeping delay and link

stress within acceptable limit. Pastry routes to any node in an overlay net-

work of N nodes in O(log N) steps while maintaining only O(log N) entries

in routing tables at each node.

Nodes are assigned a 128-bit nodeID that places it in a circular nodeID

space ranging from 0 to 2128 − 1. Node ID is assigned randomly to a node

when it joins in and it can be a hashed version of its IP address or of its public

key resulting in uniform distribution of nodeIDs in the circular space. Every

node maintains a routing table, a neighborhood set and a leaf set. Routing

table has ⌈log2bN⌉ rows with 2b − 1 entries each. The neighborhood set con-

tains nodeIDs and IP address of |M | nodes that are closest (proximity metric)

to the local node. The leaf set contains set of nodes with the |L|/2 numer-

ically closest larger nodeIDs and |L|/2 numerically closest smaller nodeIDs.

Typically |L| and |M | are 2b. Configuration parameter b involves trade-off

between the size of the populated portion of routing table and the maximum

number of hops required in routing between any pair of nodes and its typical

value is 4. Pastry routes with guarantee (unless ⌈|L|/2⌉ nodes with adjacent

nodeIDs fail simultaneously) to the numerically closest node to the hash of

a given key in less than ⌈log2bN⌉ steps. Table 3.1 presents the state of some

arbitrary Pastry peer with nodeID 10233102 (base 4).

Reliability Approaches in Overlay Muticast Networks 64

When a new node (with nodeID X) arrives, it initializes its state tables

and informs other nodes of its presence. We assume that it already knows

about a bootstrapping node (nearby pastry node with nodeID A). Node X

asks A to route the ’join’ message whose key is X. Pastry routes it to the

existing node Z whose ID is numerically closest to X. In response, A, Z and

all nodes on the path from A to Z send their state table to X. Node X inspects

these tables and it may further request state from additional nodes in order

to initialize it own state table and that of the other affected peers.

A pastry node is considered failed when immediate neighbouring nodes in

nodeID space can no longer communicate with it. To replace the failed peer

in the leaf set of its neighbours, its neighbours in the NodeID space contact

the live peer with the largest index on the side of the failed peer, and request

its leaf table. An appropriate node from this accumulated set is chosen, then

verified if it is still alive and then inserted in to its set. The neighbourhood

set is not used for routing but to maintain locality properties.

3.3.2.2 Scribe

Scribe builds a scalable infrastructure over Pastry [3] for application layer

multicast (ALM). It can support large number of groups with a wide range

of group sizes and dynamic membership.

Any Scribe node may create a group with a groupID and a few others may

join this group. Group members can multicast messages to other members

of the group. Multicast tree of the group is formed by the union of the

Pastry routes from each group member to the groupID’s root. Being based

on the proximity-aware Pastry substrate, group membership management

in Scribe is highly efficient and decentralized. Though Scribe provides only

best-effort delivery without conforming to a specific order; it offers framework

Reliability Approaches in Overlay Muticast Networks 65

NodeID 10233102

Leaf Set SMALLER LARGER

10233033 10233021 10233120 10233122

10233001 10233000 10233230 10233232

Routing Table

-0-2212102 1 -2-2301203 -3-1203203

0 1-1-301233 1-2-230203 1-3-021022

10-0-31203 10-1-32102 2 10-3-23302

102-0-0230 102-1-1302 102-2-2302 3

1023-0-322 1023-1-000 1023-2-121 3

10233-0-01 1 10233-2-32

0 102331-2-0

2

Neighborhood Set

13021022 10200230 11301233 31301233

02212102 22301203 31203203 33213321

Table 3.1: Pastry peer’s routing table, leaf set, and neighbour set. An example

of routing path for a pastry peer with ID 10233102, b=2 and ID length = 16 bit.

All numbers are in base 4. Top row is row zero. Single digit cells in each row

of routing table show the digits of this peer ID. The node IDs in each cell is is

splitted to show the common prefix with 10233102 - next digit - rest ID.[3]

for implementing reliability.

Reliability Approaches in Overlay Muticast Networks 66

3.3.2.3 SplitStream

In conventional tree-based multicast systems, a participating node may act

as a leaf node or as an interior node. However only interior nodes share the

responsibility to forward the data. In a full binary (fan-out = 2) tree there are

almost equal number of leaf nodes and interior nodes. Consider a full binary

tree of four levels, where root is at level-0, and other hierarchical levels are

numbered as 1, 2 and 3. In level-1, there will be 2 nodes, 4 nodes at level-2

and at level-3, there will be 8 nodes. Thus there are 7 interior nodes whereas

8 leaf nodes (level-3 nodes), thus only half of the participating nodes share

the forwarding load. The fraction of leaf nodes increases with the fan-out of

participating nodes. Consider a full tree with all the nodes having a fan-out

of 16. When all outdegrees are filled upto last but one level in this tree, 90

percent of the peers are leaves and only 10 percent of the peers contribute

in forwarding. Thus single tree based multicast has uneven forwarding load

distribution.

To address this issue, Castro et al.[35] proposed the use of a forest of

multiple interior-node-disjoint trees over which stripes of the data stream

are disseminated. A set of trees is said to be interior-node-disjoint if each

node is an interior node in at most one tree, and a leaf node in other trees. By

forwarding different stripes over different trees the forwarding load is more

equally distributed among the participating peers. This multiple-tree forest

can be created and maintained efficiently in a distributed way by availing

the inherent properties of Pastry in Scribe [31]. Efficient SplitStream forest

can be constructed in which each peer has forwarding bandwidth equal to

the received bandwidth.

SplitStream can also handle heterogeneity by accommodating peers with

different bandwidth capacities. Consider that the original media stream has

Reliability Approaches in Overlay Muticast Networks 67

a bandwidth requirement of B and splitting of stream is done into k stripes.

Now the in-bound bandwidth requirement and out-bound bandwidth require-

ment can be controlled in steps of B/k. A media stream can be encoded using

MDC (multiple description coding) so that the video can be reconstructed

from any subset of the k stripes with video quality proportional to the num-

ber of stripes received and thus permits low bandwidth clients to receive the

reduced quality video by explicitly requesting for fewer stripes. This also

helps when some interior node in a stripe tree fails. The deprived peers can

continue with the reduced quality video until the stripe tree with failed node

is repaired.

The SplitStream Approach: Figure 3.4 describes how splitstream balances

the forwarding load among participating peers. Consider a simple example

where the original stream (banwidth B) is split in to two stripes (each hav-

ing bandwidth B/2) and multicast in two different trees. There are total 8

participating nodes each with fan-out equal to 2. Each peer is an internal

node in only one tree and forwards the stripe to two children.

The SplitStream Design: Splitstream utilizes the pastry routing to construct

interior-node-disjoint trees. In Pastry, a message is forwarded toward nodes

whose nodeID share progressively longer prefixes with the hash of the mes-

sage’s key. As the Scribe tree is formed by the union of the Pastry routes from

each group member to the groupID’s root, the nodeID s of all interior nodes

share some number of digits with the tree’s groupID. Thus if groupIDs of

the k Scribe trees are chosen such that these all differ in the most significant

digit, the trees will have a disjoint set of interior nodes. Figure 3.5 describes

the example Splitstream forest construction. The nodeIDs of interior nodes

Reliability Approaches in Overlay Muticast Networks 68

S

4

1

2 3

5 76

Stripe 1
Stripe 2

Figure 3.4: The Splitstream approach. The stream is divided into two stripes and

each stripe is sent over independent multicast trees. Any peer is an interior node

in one tree and is a leafnode in the other

share a prefix with the stripID, thus they must be leaves in the other trees.

For example node M with a nodeID starting with 1 is an interior node in the

tree for the stripID starting with 1 and a leaf node in other trees.

3.3.3 Resilient Coopnet (Cooperative Networking)

In Coopnet [39] , Padmanabhan et. al. suggested a self scaling and cost

effective approach to address flash crowd problem in traditional client-server

system, occurring during events of great interest; for example, the incident of

September 11, 2001 terrorist attack swamped the major news websites such

as CNN and MSNBC, that made sites unavailable and response times went

over 45 seconds [41]. In most such cases, network bandwidth is the major

Reliability Approaches in Overlay Muticast Networks 69

S

- - - - - - - - - - - -

Tree with stripe ID OX Tree with stripe ID IX Tree with stripe ID EX Tree with stripe ID FX

: Nodes with node IDs starting with ´0´

: Nodes with node IDs starting with ´1´

: Nodes with node IDs starting with ´2´

: Nodes with node IDs starting with ´E´

: Nodes with node IDs starting with ´F´

- - - - - -

Figure 3.5: Forest construction in Splitstream. Trees have disjoint set of interior

nodes. The content is splitted and each stripe is multicast in its designated tree.

Each stripe’s stripID starts with a different digit

constraint, rather than server CPU resources. There are three solutions for

this problem:

1. Proxy Server Caching: It installs distributed clusters of servers. In this

approach, wide deployment of proxy caches is necessary. Intermediate

caching of objects reduces bandwidth consumption and hence reduces

network traffic. But it has low scalability and needs to avail the services

of a Content Distribution Network (CDN).

2. CDN Based Approach: It requires outsourcing the services of an in-

frastructure based content distribution networks (CDN). Infrastructure

based CDNs, for example Akamai [42] applies dedicated machines to

store and distribute the content on behalf of server, and ensure high

availability of content both during flash crowd as well as normal load.

Reliability Approaches in Overlay Muticast Networks 70

It maintains multiple points of presence with web server replicas called

surrogate servers. It is highly scalable and works well even for resource

hungry applications like media streaming, but for small websites it is

not an affordable solution.

3. Peer-to-Peer Content Distribution: P2P approach is low cost, scalable

and effective. Whereas, first two approaches can be applied without

any involvement of clients, the P2P approach engages end systems to

cooperate in storage and distribution.

3.3.3.1 Coopnet

The Coopnet [39] approach spurs cooperation among clients and thus trig-

gers the system for peer-to-peer distribution, where clients become peers to

each other. With P2P approach, the bandwidth available to serve content

scales with demand. Coopnet is unique in the sense that cooperation among

clients is necessary only during flash crowd, its P2P feature become dormant

when normal situation resumes. The central server remains there even when

network has invoked P2P behaviour. Existence of central server simplifies

the content location as compared to expensive distributed content search in

a P2P system. End hosts arrange like a P2P network to improve the network

performance only when it is necessary.

Coopnet asks clients to serve content to other clients and thus reducing

load on the server. Server can redirect some of the requesting clients to other

clients that have downloaded content in recent past. Clients then resend the

request to one or more of these peers. Evaluation of Coopnet was done

using simulation based on traffic traces collected at the MSNBC (Microsoft

National Broadcasting Company) website during 9/11 flash crowd.

Reliability Approaches in Overlay Muticast Networks 71

3.3.3.2 Resilient Coopnet Protocol

In resilient coopnet [38], redundancy is provided in both network paths as

well as in data paths. The multiple tree approach is used for diversity in

distribution and Multiple Descriptions Coding (MDC) gives redundancy in

data paths, resulting in upto a 22 dB improvement in peak signal-to-noise

ratio (PSNR). Resilience has been taken as the prime objective in Resilient

Coopnet, while efficiency has been put as the secondary goal.

Tree Management: Nodes arrive and depart frequently and contribute their

resources as long as they are interested in receiving content. The The trees

with short depth minimize the probability of disruption due to churn; there-

fore the balanced and bushy trees are the preferred. Out degree of nodes is

kept as large as its bandwidth allows.

Diversity in distribution trees requires that the set of ancestors of a node

in each tree should be as disjoint as possible. A distributed tree management

would have supported scalability much better but it requires longer join and

leave processing times, therefore Coopnet opted for centralized tree manage-

ment. In practice, a central node which is the root of the tree (source of

data stream) coordinates tree construction and maintenance. Root is usu-

ally more resourceful, its availability is expected to be high and it should be

able to support quick join and leave.

Join: A joining node contacts the root node first and root node responds

with information about designated parent nodes in each tree. The joining

node then connects with these parents and start getting data.

Leave: In graceful departure, the leaving node informs to the root node.

Root node then finds a new parent for the deprived children and notifies their

identities to them. To handle abrupt leave, every node keeps monitoring the

Reliability Approaches in Overlay Muticast Networks 72

packet loss rate of incoming stream in each tree. If the loss rate exceeds a

threshold, the node checks with its parent to confirm whether parent too is

facing loss on that tree. If the parent is also experiencing the loss, the node

holds off for a while with a hope that the parent will resolve the problem. In

case, parent is not facing loss or he could not resolve the problem, the node

contacts the root node requesting for a new parent. Root responds with a

new parent and records a complaint against the old parent. This information

is used in future parent selection.

Deterministic Tree Construction:

The centralization of tree construction helps respecting the bandwidth

constraints of each node. Making each node interior in just one tree makes

the trees more bushy and shorter rather than having randomized tree con-

struction. It also contributes to diversity and robustness. When a new node

joins, it has to be fertile (interior node) in one tree and sterile (leaf node) in

all the other trees. The count of fertile nodes in each tree is kept track of.

The tree with least number of fertile nodes becomes the fertile tree for a new

node, thus balancing the number of fertile nodes in each tree. In its fertile

tree, the new node starts from the root and comes to the lower levels until a

level is found that either has a node with room or a node with sterile child.

In case a node with a room is found, that node becomes parent. Otherwise

node with sterile child becomes parent of the new node and new parent for

the sterile child is found. The idea behind is to make the upper level of tree

populated by fertile nodes.

There may be situations when large number of fertile nodes from the

same tree departs making that tree unable to support new nodes. In such

situations, a fertile node is picked from the tree which has largest number of

Reliability Approaches in Overlay Muticast Networks 73

fertile nodes and migrated to the tree which is capacity starved.

3.3.4 Kunichika’s Approach for Reliability

In Kunichika’s approach [25], targeted for single source live streaming appli-

cation, authors proposed a proactive backup route maintenance over redun-

dant overlay tree. A degree-constrained spanning overlay tree is obtained in

such a way that all the nodes always keep one free out-degree by force. The

total outdegree of an end host is defined as the ratio of it’s connection band-

width divided by media playback rate. Redundant structure of tree avoids

exhaustive search of a backup parent and simplifies backup route calculation.

Since backup parents are pre-calculated, these are applied immediately after

a failure.

Through simulations, it is verified that in this approach, the recovery

latency reduces drastically without increase in the control overhead since

layers to which the backup route calculation is applied are limited at worst

to the grandchild layer. The control overhead in this scheme is far less than

the schemes where additional data traffic is continuously sent, like in PRM

approach that amounts to a heavy traffic overhead in applications like media

streaming.

3.3.4.1 Host Joining

In this approach, any end hosts with an out-degree n caters only to (n − 1)

children. Forcing to keep one free outdegree simplifies and expedites backup

route discovery and contributes to reduced control overhead. Any newly

arrived nodes starts its search for parent from the root. If root has free

outdegree it accommodates it otherwise redirects the request to its children,

and if even at this level no node is found with two free out-degree it is again

Reliability Approaches in Overlay Muticast Networks 74

redirected and so on. In the host joining example shown in figure 3.6, it is

assumed that each node has total outdegree equal to four, out of which one

is kept reserved for backup route in failure cases. A newly arrived node, node

8 first requests to the root and is refused as it had only one free outdegree

and is redirected to its children 1, where it gets connected.

S

4

21 3

5 76

8

S

4

21 3

5 76

8

S

4

21 3

5 768

Data Flow

Join Request

Redirect Message

Figure 3.6: New node joining in Kunichika’s approach

3.3.4.2 Backup Route Calculation

Backup route calculations are done on every incident of node joining and node

leaving. As soon a new node joins in the distribution overlay, its grandparent

needs to redetermine the backup route for that newly joined node as well as

for all its siblings. Each node keeps track of its grandchildren and calculates

the backup for them as follows. If number of grandchildren are more than the

accommodation capacity of grandparent it arranges all of its grandchildren

in increasing distance order based on RTT measurements. In case its child

fails, corresponding deprived grandchildren are rearranged for feed. The

nearest grandchild connectes directly to its grandparent, the second nearest

grandchild get connects to the nearest grandchild and so on. An example

is shown in figure 3.7, where on failure of node 1, all its children, in order

Reliability Approaches in Overlay Muticast Networks 75

of their distance from source node, are fed from failed node’s parent (here

source) directly or in sequence. The nearest one, node 4 get connected to it

directly, the second nearest node, i.e. node 5 connects to node 4 (parent-child

way) and then then finally node 8 connects to node 5 (parent-child way).

once the immediate remedy has been done for the failure, and redundancy

has been utilized, the tree is reconstituted and backup routes are recalculated

in order to regain the redundancy for any future failures.

4

S

21 3

5 768

S

2 3

5 76

8

4

Figure 3.7: Rearrangement of chilldren nodes as a node fails. Node 1 of example

overlay tree (shown left) fails and its children nodes, i.e. node 4, 5 and 8 are

rearranged in sequence (shown right)

3.3.4.3 Limitations

The limitation of this approach is that it needs to maintain permanently re-

dundant degrees at each node. Proactive backup routes reduce control over-

head but at the cost of latency as the free out-degree at each node amounts

to a larger tree size for a given number of participants.

Reliability Approaches in Overlay Muticast Networks 76

3.4 Performance Metrics for Reliability

A reliability scheme can be evaluated in terms of improvement in applica-

tion performance perceived at users’ end and the cost involved. Following

parameters may be used to quantify the performance of a reliability scheme:

Recovery Latency: It is defined as the time to reestablish transmission

through alternate path after the interruption.

Delivery Ratio: It is defined as the ratio of subscribers receiving a packet

within a fixed time bound

Overhead: It is defined as the amount of additional network traffic gener-

ated when reliability approach is applied due to its message overhead

3.5 Conclusion

For live media streaming multicast in a large scale network without a central

coordinator, reliability is a challenge. It may be because of node churn at

high rate, instant arrival of thousand of nodes at the start of the session,

heterogenity in connection bandwidth and connection type (wired as well

as wireless to accommodate mobile devices in the network) all contributing

to the loss of reliability in the system. For live streaming application, to

avoid any interruption at user end, a combination of proactive and reactive

approach is required. It has been seen that in many schemes, there is a

tradeoff between the level of reliability achieved and the overhead required.

Efforts are still on to achieve a higher reliability in a large scale, dynamic

and heterogeneous network.

Chapter 4

Maintaining Biconnectivity in

Unstructured Overlay Network

Application layer multicast (ALM) also called Overlay Multicast, is an attrac-

tive alternative solution to most of the problems associated with IP multicast.

In ALM, multicast-related functionalities are moved to end-hosts. Applica-

tion layer multicast builds a peer-to-peer (P2P) overlay topology consisting

of end-to-end unicast connections between end-hosts. The key advantages,

overlays offer, are flexibility, adaptability and ease of deployment [12]. The

general approach to build an application layer multicast architecture involves

tracking network characteristics and building appropriate topologies by al-

lowing the end users to self organize into logical overlay networks for efficient

data delivery. The major concern in designing ALM protocol is the mecha-

nism to build and maintain a topology and to route data efficiently and reli-

ably in this topology. In this chapter, we propose a two-fold dynamic overlay

tree construction and maintenance scheme in which a mesh-like topology is

first built. In the mesh, an arriving host connects to two already connected

hosts. This ensures that two node and link disjoint paths are always main-

Maintaining Biconnectivity in Unstructured Overlay Network 78

tained between every possible pair of nodes. Once the mesh is formed, on top

of it, a single or multiple data delivery tree(s) are built using a suitable pro-

tocol. An algorithm is run in the nodes of the overlay topology to maintain

the biconnectivity by inserting new links and deleting the redundant links as

a continuous process.

4.1 Introduction

The Internet has seen an unprecedented growth due to the success of one-to-

one applications such as reliable file transfer, electronic mail and http based

information access over web. IP multicast [10] at network layer defines an

efficient way for multicasting whereby the sources transmit only one copy

of the data and intermediate multicast enabled routers make the required

number of copies for onward transmission. However Internet lacks in multi-

cast support as it evolved primarily for unicast applications since beginning

[43]. Thus, most of the Internet’s infrastructure is unicast-only and does not

provide efficient support for real time multicasting applications viz. Internet-

TV, Video conferencing, Live Lecture Delivery Systems (LLDS) and content

delivery networks over Internet. In these applications, copies of a message

need to be transported to multiple recipients at different locations. IP multi-

cast requires routers to maintain group states on per-group basis; that leads

to scaling constraints when number of groups become huge. Although, pos-

sibly using aggregation techniques, the number of states can be reduced, IP

multicast still needs changes at infrastructure level (deployment/enabling of

multicast routing protocols in the routers) in the Internet.

Internet Protocol (IP) is based on best-effort data delivery, and hence

cannot support QoS. This is not desirable in applications where real time

Maintaining Biconnectivity in Unstructured Overlay Network 79

synchronous data delivery is needed such as multi-party gaming and multi-

party conferencing. It may be noted that the QoS gaurantees are not possible

until they are implemented in all the lower layers of the network. Finally IP

multicast provides only a limited support for group management, multicast

address allocation and network management.

In IPv4, multicast is an optional service as it evolved and stabilized much

later than the implementation of IP for Internet. As a result, most of the

networks have not enabled multicast or provide it only as a value added

service. Therefore multicast has been mostly limited to ‘islands’ of network

domains under single administrative control or in local area networks.

In order to overcome the above limitation, the application layer multicast

(ALM), also known as Overlay Multicast has been studied extensively as an

attractive alternative by moving multicast-related functionalities to the end-

hosts. We can see this as a mechanism to provide multicast services using

whatever available unicast network services. The key advantages, overlays

offer, are flexibility, adaptability and ease of deployment [12]. Since the

multicast connections are based on the end hosts, there is no need of multicast

enabled network routers. ALM achieves multicast via piece-wise unicast

connections.

However ALM incurs a performance penalty over IP Multicast. Links near

the end users carry redundant copy of data and also the delay to some of the

end users is more than what would have been in the case of IP multicast. The

major concern in ALM is formation of an efficient topology for reliable media

transport. Switching off a single node has the potential to partition the whole

overlay multicast network thereby interrupting media feed distributions to

some of the subscribing nodes.

To enhance the reliability in Unstructured Overlay Networks, we pro-

Maintaining Biconnectivity in Unstructured Overlay Network 80

pose the creation and maintenance of a dynamic overlay tree built over

bi-connected mesh overlay topology. In order to create and maintain bi-

connected mesh, a new host connects to two already connected hosts in the

overlay network. This results in at least two node-disjoint paths between

any pair of nodes. A dynamic algorithm is run in the mesh to maintain

biconnectivity by suitably adding new links when needed while also deleting

the redundant links. The detail of algorithm to construct and maintain a

biconnected mesh is given in subsection 4.3.1. Approaches for biconnectivity

in tree-first ALM protocols are suggested in subsection 4.3.2.

Once the mesh is formed, on top of that a data delivery tree is built using

an appropriate distributed algorithm. Our simple broadcast based algorithm

(subsection 4.4.2) ensures the constant tracking of an alternate path (every

node has knowledge of an alternate route to source) for data, so that if feed

stops from the current path, it can switch over to the alternate path by

sending the feed request in that direction. The algorithm ensures that the

next best path to source is again identified. The detail of the algorithm is

given in section 4.4.

The next section gives a brief survey of related work. Section 4.3 describes

proposed approaches toward maintaining the biconnectivity. In section 4.4,

algorithm for data distribution tree overlay in bi-connected topology has been

suggested. In section 4.5, a brief evaluation of suggested algorithms is done.

Finally we conclude in the section 4.6.

4.2 Related Work

In this section, we describe the reliability schemes proposed in the major

unstructured ALM protocols. In Narada protocol, Chu et. al. [15], proposed

Maintaining Biconnectivity in Unstructured Overlay Network 81

a mesh based topology design for small group size. Data delivery trees are

constructed entirely from the overlay links present in the mesh. Shortest

path spanning trees are constructed per source by running distance vector

algorithms on top of the mesh. Periodically, each member generates a re-

fresh message with monotonically increasing sequence number and exchanges

its knowledge of group membership with its neighbors in the mesh. Mesh

partition is detected, when members on one side of the partition stop re-

ceiving sequence number updates from members on the other side. Each of

such members is probed to determine if it is dead, else a link is added to

it. Each of the members on one side may attempt to add new links to some

partitioned member on other side; this situation is probabilistically resolved

such that in spite of several members simultaneously attempting to repair

partition, only a small number of new links are added.

To improve the mesh quality, dynamic addition and dropping of links is

also done. Each member periodically probes some random member that is

not a neighbor, and evaluates the utility of adding a link to this member.

Link is added if expected utility gain exceeds a given threshold. To drop a

link, members periodically compute the consensus cost of its link to every

neighbor. The consensus cost of a link (i, j) is defined as max(costij , costji),

where costij is the number of members for which i uses j as next hop for

forwarding packets, and costji is the number of members for which j uses i

as next hop for forwarding packets. The link with lowest consensus cost is

dropped if the consensus cost falls below a certain threshold.

In PRM enhanced NICE protocol, Banerjee et. al. [22] introduced mul-

ticast data recovery scheme called Probabilistic Resilient Multicast (PRM)

with two components. A proactive component called randomized forwarding

in which each overlay node chooses a constant number of other overlay nodes

Maintaining Biconnectivity in Unstructured Overlay Network 82

uniformly at random and forward data to each of them with a low probability

and a reactive component called triggered NAKs to handle data losses due

to link errors and network congestion.

4.3 Our Approaches toward Biconnectivity for

Resilience

The work presented in this chapter suggests approaches toward maintaining

bi-connectivity in data distribution topology in the application layer multi-

cast networks.

The basic principle behind these approaches is that if two or more nodes

form a ring among them, then between any node pair inside the ring, two

node-disjoint paths exist. Further if two such rings (or two bi-connected

components) share a common link or more than one connected links then

those bi-connected components are again bi-connected.

4.3.1 Construction and maintenance of bi-connected

mesh

In the First approach, an algorithm is suggested to construct a bi-connected

Mesh over which a distribution tree can be formed. Such a biconnected mesh

can be the foundation for mesh-first ALM protocols.

4.3.1.1 Adding newly arriving Node in the Network

Each new node connects to two already existing nodes in the network. Each

node has a unique identity number that may be the function of its IP ad-

dress (for example), known as its identifier. An example bi-connected mesh

Maintaining Biconnectivity in Unstructured Overlay Network 83

formation is described in figure 4.1. In the beginning, when first node comes,

there is no network and the source node, denoted as circled ‘S’ is the first

node in the network. The second node connects to the first node. The third

node connects to the first and second node forming a triangle. Fourth node

connects to any two of the three nodes. The fifth arriving node sees the

source node and node 3 as having least degree hence it connects to them.

The rule followed is that each arriving node connects to two already

existing nodes that are connected with least number of nodes. In case more

than two nodes have same degree, any two can be used for the connection with

equal probability. Continuing this way, a bi-connected mesh can be formed

with any number of nodes where any node pair maintains two node disjoint

paths. An example mesh with 12 nodes (assuming first node is source node)

is shown in figure 4.1. The similar algorithm can be applied to obtain any

general k-connected mesh, where each node pair maintains k node-disjoint

paths.

Further it is assumed that any already existing node while connecting to

any newly arrived node tells that node about all his neighbors to whom it is

already connected. Also, already existing node informs about newly joined

node to all its previously existing neighbors. This information is used in

mesh repairing as explained later in this subsection.

4.3.1.2 Analysis of the Mesh so formed

In the mesh so formed, the average degree of nodes in the mesh, as defined

below, increases slightly with the number of nodes and reaches to a constant

value of 4 as the number of nodes increases to more than 100 (shown in figure

4.2). The average degree of nodes in a network with N number of nodes can

be obtained as below.

Maintaining Biconnectivity in Unstructured Overlay Network 84

4

S

2

3

6

5

8

7

1

9 11

10

Figure 4.1: A bi-connected mesh with 12 nodes

Average degree of nodes =

∑N
i=1 degree of node i

total number of nodes
(4.1)

Average number of hops required to be travelled for any source destination

node pair in the mesh is calculated and plotted in figure 4.3. The average has

been taken over all source destination pairs. It is observed that the number

of hops increase almost linearly with the number of nodes.

4.3.1.3 Deleting redundant Links from the Network

For each existing link in the network, the decision is taken periodically

whether to maintain that link or to delete it. If the nodes connected by

a link have two node disjoint paths even when the link is removed, that link

is declared to be redundant and can be deleted from the mesh.

4.3.1.4 Steps taken in case of node failure

In case any node fails in the network, the biconnectivity to those nodes is

affected which were directly connected to the failed node. In the biconnected

Maintaining Biconnectivity in Unstructured Overlay Network 85

20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

Total number of nodes

A
ve

ra
ge

 c
on

ne
ct

iv
ity

Figure 4.2: Average node degree versus network size

mesh shown in figure 4.1, it can be easily observed that on failure of any node

(except for the first two nodes connected to source), exactly four nodes are

affected. Therefore repair process attempts to recreate a ring among these

nodes. To regain the lost bi-connectivity, links are added between these four

affected nodes. While adding new links, condition that degree of a node does

not exceeds four is fulfilled. It results in a deterministic solution where any

affected node connects to the neighbor of its direct neighbor. This fact is

confirmed with the example described below.

We consider the example case of failure of three adjacent nodes in se-

quence, one after another. In the example topology considered as shown in

figure 4.1, if node 6 fails, its associated links do not work and thus bicon-

nectivity destroys for nodes 4, node 5, node 7 and node 8 (figure 4.4). As

assumed initially, in the start of this subsection, all the affected nodes know

Maintaining Biconnectivity in Unstructured Overlay Network 86

5 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

Total number of nodes

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 s

ou
rc

e

Figure 4.3: Average number of hops; averaged over all source destination pairs

in advance about all other neighbors of node 6, thus every affected node

knows who are the other affected nodes due to this failure. New links are

added between affected nodes with the degree condition, as stated above, is

fulfilled. As a unique possible solution, two links are added; one between node

4 and node 7 and the other between node 5 and node 8, thus re-establishing

bi-connectivity.

Further, after sometime, the adjacent node of node 6, i. e. node 7 fails.

The repair algorithm creates two new links; one between node 4 and 8 and

another between node 5 and node 9 (figure 4.5). Further if node 8 also fails,

to maintain biconnectivity, again two new links are created; one between

node 4 and node 9 and another between node 5 and node 10 (figure 4.6).

The final form of the repaired topology is shown in figure 4.7. In the final

topology, it can be easily confirmed that the original connectivity pattern is

Maintaining Biconnectivity in Unstructured Overlay Network 87

maintained even after successive failure of three adjacent nodes.

4

S

2

3 5

8

7

1

9 11

10
6

Figure 4.4: Failure of node 6. Addition of new links; one between node 4 and

node 7, other between node 5 and node 8 reestablish bi-connectivity

4.3.1.5 Advantages and limitations to the Approach

In the mesh so formed, maximum degree that a node can have is limited to

4. But the maximum number of hops between any pair of nodes increases

linearly as the number of nodes increase.

4.3.2 Approach for biconnectivity in the tree overlays

It is also possible to create a tree topology overlay without creating an un-

derlying bi-connected mesh overlay network. For such overlay topologies,

we can introduce bi-connectedness property for achieving reliability. This

bi-connectivity is achieved through rings formation and then bringing every

node in at least one ring. In the achieved bi-connected topology, a distri-

bution tree needs to be maintained using the algorithm presented in section

4.4.

Maintaining Biconnectivity in Unstructured Overlay Network 88

1

11

4

S

2

3 5

8

7 9

10

Figure 4.5: Failure of node 7. Addition of new links; one between node 4 and

node 8, other between node 5 and node 9 reestablish bi-connectivity

4.3.2.1 Connect-to-grandparent approach

Biconnectivity in this approach is achieved by connecting all the nodes to

their grand parent, which provides an alternate path to get the feed in case

their parents fail. Wherever it is not possible to connect a node to its grand-

parent, that node is connected to its siblings. An example binary tree, hav-

ing 4-level hierarchy, shown in figure 4.8 is considered. Figure 4.9 shows the

newly added links that are required to be added in the original tree topol-

ogy of figure 4.8, to create rings among nodes and then bringing every node

within some ring.

In the child-grandparent approach, for a binary tree, the number of addi-

tional links required is (N − 2); where N is number of nodes in the network.

4.3.2.2 Connected adjacent-leaf-nodes approach

Biconnectivity in this approach is achieved by connecting all the adjacent

leaf nodes in pair. By connecting leaf nodes this way, any node pair in the

Maintaining Biconnectivity in Unstructured Overlay Network 89

S

1

11

4

2

3 5

8

9

10

Figure 4.6: Failure of node 8. Addition of new links; one between node 4 and

node 9, other between node 5 and node 10 reestablish bi-connectivity

tree gets bi-connectivity, as rings are formed through the leaf nodes. Here

again we consider the same example binary tree, as earlier (shown in figure

4.8). Once the adjacent leaf nodes are connected, shown in figure 4.10, rings

are formed between any pair of nodes. Any node can get information about

its adjacent leaf nodes through his parent (if the adjacent leaf node is its

sibling), by his grandparent (if adjacent leaf node is its cousin) and so on.

The number of additional links required to achieve bi-connectivity in this

approach is (N − 1)/2; where N is the number of nodes in the network.

4.3.2.3 Connected least-correlated-leaf-nodes approach

Biconnectivity in this approach is achieved by first dividing the tree in to two

symmetric equal halves and then any leaf node of one half of the tree pairs

with a leaf node in the other half of the tree, as shown in figure 4.11. By

connecting leaf nodes this way, any node pair in the tree gets bi-connectivity,

as in earlier two approaches but with smallest number of additional links (half

of the additional links required in Connected adjacent-leaf-nodes approach).

Maintaining Biconnectivity in Unstructured Overlay Network 90

S

1

11

4

2

3 5

9

10

Figure 4.7: Final form of topology after successive failures of three adjacent nodes,

i. e. node 6, 7 and 8. Biconnectivity pattern remains maintained.

Algorithm for this approach can be stated as following. Assuming binary

tree, the two children of any node are given direction index as left (L) and

right (R) children, for being situated either at left or right side in the next

level. Assuming source at level 0, each node cumulates and forwards this

information to its children in the next level and thus the direction index

string is maintained at every node. This string can form the basis for defining

the correlation of paths from source to any two nodes in the tree. Thus every

node knows for every level, whether its direction index is left (L) or right (R).

Any leaf node can pair with any other leaf node given their level 1 direction

index is different. This actually ensures that path from source to these two

nodes are least correlated and tree gets biconnectivity with least number of

additional links, as shown in figure 4.11.

In case, no leaf node is available with different level-1 direction index,

then the difference of level-2 direction index can be the next best choice for

pairing but such pairing may require more number of links to make the tree

Maintaining Biconnectivity in Unstructured Overlay Network 91

Grand Parents

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Parent

Grand Child

Child

Figure 4.8: An example 4-level binary tree

biconnected.

The number of additional links required to achieve bi-connectivity in this

approach is (N + 1)/4; where N is the number of nodes in the network.

Figure 4.12 gives comparison of the above three approaches considering

additional links required as a metric.

4.4 Algorithm for data distribution tree over-

lay in biconnected topology

We assume initially that there exists a mesh containing all the nodes who

are participants in a session. The existence of a bi-connected topology is

assumed. Further in the case of node or link failure, we assume that repair

mechanisms do exist which will restore the bi-connectedness in the topology.

This will ensure resilience to any further failures.

Maintaining Biconnectivity in Unstructured Overlay Network 92

s

1 2

7

3 64 5

Grand Parent

118 9 10

Parent

12 13 14 Grand Child

Child

Figure 4.9: Connect-to-grandparent approach. All nodes are connected to their

grandparent and if grandparent is absent then connected to their siblings

4.4.1 Data Forwarding

For distributing the data packets belonging to a live stream, each node main-

tains a forwarding table. Packets coming from the shortest path to source

(i.e. the earliest arrived one) are forwarded to the nodes listed in the table.

When a join request is received from a neighbor, its address is added to the

forwarding table, and packets are forwarded to it also thereafter.

4.4.2 Topology Maintenance

4.4.2.1 Obtaining two best paths

Following steps are performed to obtain two best paths toward source:

(i) The source of the stream periodically broadcasts signaling packets (bea-

cons) containing source id and sequence number to all the neighbors.

Maintaining Biconnectivity in Unstructured Overlay Network 93

s

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Grand Parent

Parent

Grand Child

Child

Figure 4.10: Connected adjacent-leaf-nodes approach. Adjacent leaf nodes are

paired to achieve bi-connectivity

The format of signaling packet is shown in Table 4.1. The sequence

number is incremented by the source for every new packet which is

broadcasted.

(ii) In {source id, Sequence number, from neighbor, next hop to source}

format, the packet detail is included in a table and listed as first best

path towards the source (refer Table 4.2), whenever a node gets a packet

with new sequence number from some source ID. This packet is then

further broadcasted to all the neighbors except to the one from which

it was received.

(iii) When a packet with the same sequence number (the one already listed

with the node) arrives at a node from a different neighbor, it is also

listed as second best path toward the source in the ‘next hop to source

Maintaining Biconnectivity in Unstructured Overlay Network 94

Grand Parents

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Parent

Grand Child

Child

Figure 4.11: Connected least-correlated-leaf-nodes approach. Leaf nodes from

two different halves of the tree get paired to achieve bi-connectivity

table’. Thus the alternate paths to source are always available at every

node. This packet is forwarded only to the next hop towards source

via the first best path.

(iv) Any further packets with the same sequence number from any more of

the neighbors are simply discarded.

Each node thus maintains the two neighboring nodes which provide the

two best paths towards the source. A join request will be forwarded to the

best available neighbor node whenever a node wants to receive a data stream.

Life Time is a number that starts with a fixed value proportional to the

expected expiry time desired and it decreases with time. It determines the

Maintaining Biconnectivity in Unstructured Overlay Network 95

3 7 15 31 63 127 255 511 1023

100

200

300

400

500

600

700

800

900

1000

Total Number of nodes

A
dd

iti
on

al
 o

ve
rla

y
ed

ge
s

re
qu

ire
d

connect−to−grandparent approach
connected adjacent leaf nodes approach
connected symmetric leaf nodes approach

Figure 4.12: Number of additional links required to achieve biconnectivity by

different approaches

From source ID Sequence number Hop distance from source Life time

Table 4.1: Format of signaling packet

validity of a beacon packet.

The entry next hop toward source ID helps tracing back the route

toward the source. At each node, a record of received sequence numbers is

kept in the next hop to source table. This information is stored at each node,

so that when a packet (same or different) comes from the same source, it can

be compared with the already received packets. Any node receiving the above

signaling packet will update these entries before broadcasting it further to

all the outgoing links except the one from which it is received. If new and

Maintaining Biconnectivity in Unstructured Overlay Network 96

larger sequence number is received from a different neighbor, it indicates that

a new and shorter route exists and the next hop entry is updated. The two

neighbors from whom first and second packets of same sequence number are

received are updated as first next hop and second next hop (to be used in

case of failure of reception from first one).

Source Last First path Second path

ID sequence Next Hop Timer Next Hop Timer

number hop distance value hop distance value

received toward from toward from

source source source source

Table 4.2: Format of ’next hop to source’ table at each node

Also the life time value from the packet is copied to timer value in the

table. The timer value will keep on decreasing with time. With the timeout,

the information for that path is deleted. The alternate path information is

again entered when beacon packet from same source is received from another

neighbor.

Usually 16-bit binary sequence number is used and this length can

generate 65536 different numbers before repetition occurs. Since the rule is

that the entries are updated only if sequence number of received packet is

more than the sequence number in the table entry, the timeout allows the

update of tables when sequence number 0 is used after completion of a cycle

or due to resetting of counter at the source.

Maintaining Biconnectivity in Unstructured Overlay Network 97

4.4.2.2 Failure handling

Since packets are broadcasted from the source, a downward node can obtain

the same packet from different routes earlier or later. This way the node can

find many paths to the source, but it stores only two best paths. When a

node leaves the overlay, the overlay path to some nodes may fail. Though

the transmission can immediately be resumed from the alternate path that

is already stored in the next hop to source table.

4.4.2.3 New node joining

When a new node joins the overlay, it will also receive beacon after some

time and will know the two best next hop neighbors towards source. It will

send a JOIN request packet to best next hop neighbor towards source. If

the neighbor is receiving the feed, it will update the forwarding table for

multicast and start sending the feed to the new node. If it is not receiving

the feed, it will make the entry of new node in the child table for feed and

further send the JOIN to the next hop to source. This happens till the JOIN

reaches a node (in the worst case to the source) which is getting the feed.

4.4.2.4 Adaptive beacon broadcast rate

Beacon packets broadcasted from the source play an important role in estab-

lishing the paths toward the source. In the situation of failures, the beacon

broadcast rate can be increased with the increase in the failure rate of nodes

so that sudden multiple failures do not interrupt the data delivery. The

node that detects a failure of a particular node may request directly to the

next best hop towards the source along with the failed node ID and a re-

quest to increase the beacon broadcast rate. Then source doubles the rate

of broadcast after that particular failure for a certain period. This enables

Maintaining Biconnectivity in Unstructured Overlay Network 98

the replenishment of second best path entry in the nodes which are left with

only one entry due to the feed failures.

4.5 Evaluation

Our approach for bi-connectivity maintains an underlying resilient bi-connected

mesh. On top of it, a data distribution overlay algorithm is run. Every node

maintains the knowledge of two best paths to source. In the situation of

failure of one path, feed is made available from the second best path while

the broken path is repaired. If no packets are received for certain duration, a

node can assume the failure of first feed path, and can send the data delivery

request to the second best path. Since there is continuous broadcast of bea-

con packets, a new path to source will be registered shortly after failure as

the second best path. Once the repair of broken path is done, after a while

a beacon packet is sure to come from this repaired path and again the two

best paths are updated and feed is taken from the first best path.

The time from the instant, a node fails to the instant when a repaired

path is registered can be considered as restoration time (Tres) of the algo-

rithm. The restoration time thus includes the time to detect a failure (Tdet),

time to establish additional links at mesh level (Tadd) and time to sense and

register optimum path (Treg) after repair is done.

Tres = Tdet + Tadd + Treg (4.2)

If the restoration time does not exceed the time between two successive

failures, uninterrupted data delivery is maintained from the duplicate paths

already stored.

Maintaining Biconnectivity in Unstructured Overlay Network 99

In our approach, the restoration time depends on network diameter, since

a new path can be registered only on arrival of fresh beacon packet from the

source. This puts the limitation in large networks under high failure rate.

4.6 Conclusion and future work

Bi-connectivity of a topology is essential for provisioning of reliable multicast

transmission. Three different approaches toward maintaining bi-connectivity

have been presented in this chapter.

As an extension of the approaches discussed in the work discussed in this

chapter, for the networks where all nodes are not equally equipped and some

nodes are more vulnerable than others, we can opt for tri-connected mesh

instead of bi-connected. If the data distribution overlay algorithm (discussed

in section 4.4) with the similar extension is applied over this tri-connected

mesh, it results in three best paths to source. Since only signaling information

is required to be propagated to maintain these paths, only a small bandwidth

is consumed and hence it proves as an viable option for vulnerable nodes to

maintain three best paths.

As a further extension, a large (heterogeneous) network can be divided

into different protective zones; where different zones can be protected with

bi-connected, tri-connected or n-connected mesh, and 2, 3 or n best paths

can be maintained depending on the vulnerability of different zones.

Chapter 5

Dualpath Approach for

Reliability in Overlay Multicast

Major concern in designing ALM formation and management protocol is how

to build and maintain a topology to route data efficiently and reliably. In this

chapter, we propose a scheme in which the topology is built incrementally

while maintaining dual feeds of the media stream to any node from the

source with minimum differential delay in receiving the packets via both

the alternatives. We have assumed the availability of a P2P query search

network. This enables building of multicast tree directly as an overlay. There

is no need of maintaining an overlaid mesh and running multicast routing

protocol to maintain a multicast tree in this mesh. The proposed scheme is

much more simplified than the ones proposed in the earlier works and has

almost full reliability in receiving packets from the source.

Dualpath Approach for Reliability in Overlay Multicast 101

5.1 Introduction

To enhance the reliability in Structured Overlay Networks, variants of Dual-

Path approach are proposed in this chapter. In these variants, the availability

of peer-to-peer (P2P) query search network has been assumed. One repre-

sentative peer-to-peer query search (look-up) protocol is Chord [32] protocol.

The brief description of Chord look-up mechanism is given in subsection 5.1.1.

In this network, the distributed index of resources is maintained. For ALM

implementation, the resources will typically be end nodes who can poten-

tially act as media forwarders (equivalent of multicast routers). Each node

desirous of receiving the media feed searches for the resource in distributed

index in the P2P overlay. It connects to one of the nodes found in the dis-

tributed index who could potentially provide the feed. Once it gets the feed,

then it adds itself as a potential resource (feed) provider in the distributed

index. Once a node is acting as forwarder for sufficient number of nodes, it

can remove itself from the distributed index as, now it may not be able to

accept requests for the feed from the new nodes without appreciable degra-

dation in the performance. It shall be noted that at any point of time, there

are two overlays, one for maintaining the distributed resource index, also

called query network and the second one the multicast data transport net-

work. It is possible that some nodes simply receive the feed and do not add

themselves to index, thus acting as free riders. In the scope of this chapter,

we are assuming that free-riders do not exist. Exploring the strategies for

identifying and then penalizing the free riders has been left as future scope.

In the mesh based overlays, where the multicast tree is created through a

separately running multicast routing protocol in the overlay, the mesh itself is

created in such a way that a node or link failure does not partition the overlay

network. Since the data delivery overlay in our scheme is a tree, the partition

Dualpath Approach for Reliability in Overlay Multicast 102

problem is prominent. Failure of a node can fragment the multicast topology

unless the recovery mechanism is built. Moreover a streaming application

usually has a playback deadline by which data delivery and loss recovery

have to be accomplished. This makes stringent requirements on the recovery

mechanisms.

In the proposed query search network based scheme, data forwarding

topology is incrementally built. The topology governs the data forwarding

in such a way that it maintains the double feed to any node from the source.

These two feeds come via two different node-disjoint paths from the source

and thus resilient to single failures in the overlay network. The query search

network with distributed indexing service maintains the list of presently ac-

tive potential forwarders for the two different feeds viz. feed 1 (f1) and feed

2 (f2). Any newly arrived node finds two nodes that can provide it duplicate

feeds i.e. f1 and f2 using this query network.

All the Peers form a structured overlay for forwarding the streaming me-

dia. Each node maintains a table of next hop clients to whom media stream

has to be forwarded. It also maintains links with parents from which dupli-

cate feeds (f1 and f2) are received. The algorithm further has provision for

healing of topology after a failure to keep the two feeds intact to every node

via two node-disjoint paths from source.

5.1.1 Chord Look-Up Mechanism

Structured ALM protocols assume the support of query search network for re-

source finding service, over which data distribution overlay is formed. Chord

is a scalable version of its predecessor look-up protocol, Consistient Hashing

[44], that has a good load balancing property. Chord stores key/value pairs

for distributed data items. Given a key, Chord maps the key to a node re-

Dualpath Approach for Reliability in Overlay Multicast 103

sponsible for storing the key’s value known as root node for that key. Each

node maintains routing information of about O (log N) other nodes, and

resolves all lookups via O (log N) messages to the other nodes. Nodes’ leav-

ing/joining requires O(log2N) messages to update the routing information.

A brief decription of Chord look-up mechanism is presented below.

N9

N1

N15

N21

N35

N47

N55

N58

K 17

K 53

K 30
K 25

K 12

Figure 5.1: The basic Chord ring: Identifier circle having 8 nodes and 5 keys with

their unique identifiers

Chord has an identifier circle defining a large addressing space. All the

nodes and keys are assigned unique m-bit ID on this circle by applying some

hashing function (SHA-1) on node’s IP address/key. Identifiers are ordered

in this circle modulo 2m. An example Chord identifier circle with m = 6

(26 identifiers defined) is shown in figure 5.1. A key is assigned to the first

peer whose identifier is equal to or follows k in the identifier circle, called as

successor(k).

Each node maintains a finger table. The ith entry in the table at node n

Dualpath Approach for Reliability in Overlay Multicast 104

N9

N1

N15

N21

N35

N47

N55

N58

K 53

lookup(53)

Figure 5.2: Finding successor node of given identifier ID: Slow routing with Basic

look-up mechanism where every node keeps information only about its immediate

neighbor

contains the identity of the first node, s, that succeeds n by at least 2i−1 on

the identifier circle, i.e., s = successsor(n + 2i−1), where 1 ≤ i ≤ m. Node s

is called ith finger of node n. A finger table at node 9 in our example chord

ring is shown in figure 5.3. The finger tables’ pointers at repeatedly doubling

distances cover half of the circle combinely. Thus each iteration halves the

distance toward the given target. Figure 5.2 shows a slow look-up without

applying Chord protocol whereas in figure 5.4, fast lookup is performed with

Chord applied.

Dualpath Approach for Reliability in Overlay Multicast 105

N9

N1

N15

N21

N35

N47

N55

N58

FINGER TABLE

N9+1 = N15
N9+2 = N15
N9+4 = N15
N9+8 = N21
N9+16 = N35
N9+32 = N47

Figure 5.3: In Chord Protocol, each node maintains a finger table. Finger Table

entries for node 9 are shown

5.2 Related Work

5.2.1 Scalable overlaid multicast topology creation

Shi and Turner [45] took the case of an Overlaid Multicast Network (OMN)

that provides multicast services for real-time audio and video streaming ap-

plications through a set of distributed MSNs (Multicast Service Nodes),

which communicate with hosts and with each other using standard unicast

mechanisms. Authors in [45] have attempted to optimize end-to-end delay

and MSN interface bandwidth usage at the routing sites. To solve the mini-

mum diameter, degree limited spanning tree problem, Compact Tree (greedy)

algorithm is used that builds a spanning tree incrementally. To solve limited

diameter, residual-balanced spanning tree problem, Balanced Compact Tree

algorithm is used, which proved to be effective in achieving a good balance

Dualpath Approach for Reliability in Overlay Multicast 106

N9

N1

N15

N21

N35

N47

N55

N58

K 53

lookup(53)

Figure 5.4: Finding successor node of given identifier ID: Fast routing with Chord

look-up mechanism applied

between residual degree and diameter bound.

Banerjee et. al. [16] described a low overhead hierarchical clustering

scheme called NICE for ALM. It is meant for low bandwidth real-time data

applications with large receiver sets. This protocol is robust in the sense that

failure of any number of group members does not affect the other members in

the group. Members are assigned to different layers. Hosts in each layer are

partitioned into a set of clusters. The cluster size lies between k and 3k − 1,

where k is a constant. All hosts join to the lowest layer L0. The leaders of

all the clusters in lower layer join next higher layer. There are at most logkN

layers, where N is the total number of member nodes. The highest layer

has only a single member. In every layer, each cluster forms a clique (fully

connected mesh) as the control topology and star as the data topology.

Dualpath Approach for Reliability in Overlay Multicast 107

5.2.2 ALM loss recovery approaches

ALM loss recovery approaches are broadly classified as proactive and reactive.

In a proactive approach, redundant data packets are sent along with the

regular data packets which can be used to reconstruct the original data in

case some of the data packets are lost. Proactive approaches include Forward

Error Correction (FEC) [23], Digital Fountain [24], Network Coding and

layered coding scheme e.g. Multiple Description Coding (MDC) with multi-

path transmission. Kunichika’s approach [25] is also proactive.

In a reactive approach, lost packets are retransmitted after the receiver

requests for them. Probabilistic resilient multicast (PRM) [22] includes both

proactive and reactive components.

In [46], it has been mentioned that a good loss recovery approach should

have low residual loss rate, low recovery latency, low recovery overhead and

low deployment overhead.

In FEC-(d, r) [23] [26], the source takes a set of d data packets and

encodes them into another set of d+r packets with redundancy incorporated

and sends them. A receiver can recover d data packets if it receives any d

of the d + r encoded packets. Overhead of the scheme is r/d and resilience

increases with the overhead. With 100% overhead (i.e. r = d), performance

improves with higher values of d (and r) and while delivery latency increases.

FEC based approaches can recover from network losses; however they alone

are not sufficient when overlays are used. Overlay nodes are the processes

on regular end hosts and are more prone to failures than network routers.

In Kunichika’s approach [25], all the nodes always keep one free out-degree

by force, to accommodate a deprived node in case of failure. Any end hosts

with an out-degree n caters only to n − 1 children. Redundant structure of

tree avoids exhaustive search of a backup parent and simplifies backup route

Dualpath Approach for Reliability in Overlay Multicast 108

calculation. Layers to which the backup route search reaches are limited at

worst to the grandchild layer. The limitation of this approach is that it needs

to maintain permanently redundant degrees at each node.

In probabilistic resilient multicast (PRM) enhanced NICE (Nice is the

Internet Cooperative Environment) protocol, Banerjee et. al. [22] intro-

duced multicast data recovery scheme with two components. A proactive

component called randomized forwarding in which each overlay node chooses

a constant number of other overlay nodes uniformly at random and forward

data to each one of them with a low probability, and a reactive component

called triggered NAKs to handle data losses due to link errors and network

congestion.

Efforts toward reliability in structured ALM networks has been described

in chapter 3 in detail. Splitstrem [35], one prominent reliability solution in

this category has been described in section 3.4.

5.3 Our Approach Toward resilience

The work presented in this chapter, illustrates three approaches with their

algorithms, towards resilience of live streaming traffic in an application layer

multicast network. Our approaches and PRM [22] fall in the same category of

redundant transmission based resilient approaches. But there are two main

differences. Our approach builds a data forwarding topology based on P2P

query network. The second difference is that we deterministically maintain

dual tree at all times for dual feed to each node, while in PRM redundant

feeding is done on randomly selected links. Thus we expect high reliability in

our design. The basic aspects common to all three approaches are discussed

in this section. Specific details of the approaches are discussed in the next

Dualpath Approach for Reliability in Overlay Multicast 109

section.

5.3.1 Location and search for the feed

In the proposed scheme, the distributed index using a Distributed Hash Ta-

ble (DHT) maintains a list of presently active sources for the two feeds f1

and f2 of the same video stream. If there are more than one live streams,

each one of them will have two feeds. For example for stream 1, the two

feeds are denoted as 1− f1 and 1− f2; for stream 2, these will be 2− f1 and

2 − f2. The nodes which are willing to act as forwarders for a feed, publish

their advertisement in the distributed index in the P2P query network. Using

the keyword describing a feed, a new node can find the potential forwarders

for a feed from this distributed query network. For example, all the nodes

willing to forward 1 − f1 can be searched by the keyword 1 − f1. For main-

taining distributed index, the query network can be built using any of the

distributed Peer-to-Peer lookup protocol viz. Chord, Tapestry, Pastry etc.

The distributed index maintains a list of some minimum number of active

forwarders (say 5 or 6) for each of the two feeds. For a moderate growth

rate of network, this number is sufficient. Any query is provided with the

best source for each feed. The selection for the best can be based on the

parameter such as:

(i) differential delay between the two feeds (1− f1 and 1− f2) of the same

stream should be as minimum as possible,

(ii) the distance of the forwarders from the source which also should be as

minimum as possible, and

(iii) the feed forwarding capacity of the nodes. Nodes having higher capacity

should connect higher up in the tree.

Dualpath Approach for Reliability in Overlay Multicast 110

The node directly makes connection with the selected forwarders after

getting the response. Every node gets a feed each from one of the f1 as well

as one of f2 forwarders. It also puts up advertisement for being potential

forwarders either for f1 or f2. The nodes which are already forwarding to

sufficient number of nodes can remove their advertisements to avoid over-

loading.

5.3.2 How a search query progresses and replied

Whenever a node declares itself as a source of a particular feed, corresponding

feed-URI (Universal Resource Identifier) pair is published in the Distributed

Hash Table (DHT). Thus list of available stream servers for different stream

feeds is stored as a list of feed-URI pairs in the DHT. The feed-URI pairs for

a feed can be stored (retrieved) at (from) the root node responsible for that

feed. Any media stream in the network is searched in the distributed index

and corresponding URI of potential sources of this stream are retrieved. The

node then makes a direct connection with one of the feed sources and gets

the feed.

While a request moves, in the DHT query network, each node knows the

address of the node that has passed the query to him. Ultimately, when

the query reaches the node where index is maintained (root node for the

keyword), the response is sent back to node which passed the query. The

response thus travels back to the origin of the query. Each of the intermediate

nodes keeps the response in the cache for a defined time. In case a node finds

the response in the cache on receipt of a query, the cached response is sent

back.

Dualpath Approach for Reliability in Overlay Multicast 111

5.3.3 Node Design

A node receiving dual feeds of a stream should use buffering to take care

of differential delay in the duplicate data received from two feeds to avoid

interruption during play back.

Two feeds will be giving packets with different delays most of the time. In

case of failure, and hence interruption of one feed, the playback of the data

feed should remain uninterrupted for user. The stream should be buffered

before being given to media player so that we have some packets to display

when a feed get failed and hence ensuring interruption free playback.

Figure 5.5 and Table 5.1 describe an example scenario. Buffering ensures

that even when a feed gets interrupted, the user gets the playback of multicast

transmission without interruption.

time / from from player packets stored

packet numbers faster feed slower feed is playing in the buffer

t=0 70 66 65 66 67 68 69

t=-1 69 65 64 65 66 67 68

t=-2 68 64 63 64 65 66 67

t=-3 67 63 62 63 64 65 66

t=-4 66 62 61 62 63 64 65

t=-5 65 61 60 61 62 63 64

Table 5.1: An example to show the working of buffer at a node

5.3.4 Join Process

Any new node that wants to get the feed, will find the list of peers from a

distributed P2P query network who are willing to provide the feed; with their

Dualpath Approach for Reliability in Overlay Multicast 112

70

69

68

67

66

From faster feed

From slower feed

Media Player

Figure 5.5: Single buffer created for two feeds from which media player plays the

stream

parent nodes indicated. The query network that does the job of an indexing

server keeps record of these peers in a table format as shown in Table 5.2.

Feed id in the first column is the keyword for indexing.

The new node connects with the one forwarder from each set viz. for-

warder set for f1 and forwarder set for f2. It also registers itself as forwarder

for one of the feeds. Though the node receives feed in duplicate, but it be-

comes forwarder for only one type of feed i.e. either f1 or for f2. It also keeps

the record of its grandparent for each feed. This information can be used to

heal the distribution tree in case the feed from a parent stops coming. Source

Dualpath Approach for Reliability in Overlay Multicast 113

Feed ID (f1orf2) Peer ID Degree Parent node ID

Table 5.2: Record of peers at an indexing server

node is an exception; it is source for both types of feeds (f1 and f2) of the

stream.

5.3.5 Departure of node from multicast tree

When a member leaves gracefully, it informs all of its children in advance and

these children in turn inform further to their children and so on. In this way

the whole subtree rooted at the leaving node, is informed about the departure

of leaving member. Any node in this subtree, who may have advertised itself

as source of feed in the query network, will un-publish the advertisement.

Now the nodes who are informed of the leaving node and who does not have

any feed source i.e. next immediate children of leaving node will search for

the new feed source and attach to them. Once the attachment is done, each

such node can inform the same to subtree rooted at them permitting them

to republish the advertisement of being a potential feed source. This ensures

that the deprived nodes attach to some node which is not part of their own

subtree, thus avoiding loop formation.

The abrupt departure of any member may cause interruption in playback

if sufficient number of packets has not been buffered since it may take time

to notify the failure to each node in subtree and to resume the removed feed

from an alternate source.

An easier solution in this case is to get the lost feed from the departing

node’s parent. We recall that, during join process, when a node gets sources

Dualpath Approach for Reliability in Overlay Multicast 114

for f1 and f2, it also gets information about its grandparent. This grandpar-

ent node information can be used and feed-deprived nodes can request the

feed from their grandparent. To avoid flash crowd, grandparent node then re-

places failed node with one of its grandchildren selected on the basis described

in the next paragraph. All other deprived siblings of selected grandchildren

attach to some leaf node in the subtree of the selected grandchildren.

We define cumulative children of a node i (CCi), as the total number of

children nodes in the sub-tree rooted at this node. When a node fails, all

its children get deprived of feed. The children with the maximum CCi value

may replace its failed parent by attaching to its grandparent. Remaining

children of the failed node will get connected to the leaf nodes of the subtree

of this child or the subtree of its uncle (failed parent’s sibling nodes). With

this solution applied, the reconstituted tree will be more balanced and the

orphaned nodes would be able to get the feed deterministically.

5.3.6 Handling Loop Formation in the Event of Failure

of a Node

In case a node in the multicast tree fails, it may interrupt data stream

to downward nodes in either f1 or f2 tree (Approach 1 and 2) or in both

(Approach-3). This node failure situation can be handled individually for f1

or f2 tree independently.

The information regarding this failure proceeds down the tree gradually

and it may take time to inform the down most node about this failure. In

the mean time the immediate children of the failed node may start searching

for new source and it may happen that they choose some node in their own

sub tree as their parent and thus creating a loop. To circumvent such loop

formation, the following solutions are suggested.

Dualpath Approach for Reliability in Overlay Multicast 115

Solution 1: In case of failure of a node (N), all of its children i.e. imme-

diate children (Ng1 nodes), grand children (Ng2 nodes) and all the nodes in

the sub tree rooted at failed node explicitly un-publish their advertisement

for being a possible source from the query network. And once Ng1 nodes

search and connect to a new source and data streaming resumes, thereafter

the Ng1 nodes and the nodes in the lower level of the sub tree can again

publish advertisement of being a possible forwarder.

Solution 2: In case of failure of a node (N), all its children i.e. immediate

children (Ng1 nodes), grand children (Ng2 nodes) and eventually all the nodes

in the sub tree rooted at failed node will stop getting the feed. Before this

failure occurs, each of the node in the sub-tree rooted at failed node (N) were

registered as potential source for the feed and after failure of root-node of this

sub tree, all these get deprived of the feed. First of all, the Ng1 nodes detect

that their parent has failed and they start searching for a new source. To

avoid the possibility that any node down in the sub tree, which was registered

as potential source; become new parent of Ng1 nodes, immediately after

detecting the failure, all the Ng1 nodes forward a message to their immediate

children with an instruction to forward it further downward unless it is a

leaf node. This message contains instruction not to respond to feed request

from any nodes for the transition time ttransition (time required to heal up the

failure) duration. Thus this message gradually goes downward in the sub tree

up to leaf nodes. Thus in this solution, if any node in the sub tree of failed

node is in the DHT index, which could act as a possible source, is retained

in the DHT but an INE (ineligible) tag is applied for estimated transition

duration (say 30 units of time) to make them ineligible to act as a source for

Dualpath Approach for Reliability in Overlay Multicast 116

that duration. This will avoid chances of looping as Ng1 nodes cannot select

inactive sources.

With such remedy applied, even if a node in the sub tree of the failed

node has its advertisement as forwarder, on getting request, it will not re-

spond for the ttransition duration.

Solution 3: This solution assumes that the distribution tree is binary. The

two children of any node are named as left (L) and right (R) children. Each

node maintains a string path2src for each feed which captures the node’s

position in that feed tree. String length is the maximum possible levels in

the tree for a given number of total nodes. Each character, path2src[i],

represents a level (starting from 1) in the tree and can have 3 values: U,

L and R. It is assumed here that the source is at level 0 and at every hop

from source, level increases by 1. The value U represents that the node is

positioned at a level less than i. The values L (R) represents that the node

can be reached by moving along the left (right) node in level i. For example

the nodes 4, 11 and 2 in figure 5.11 in Approach-3 would be represented by

LRUU, RLLU and RUUU respectively; assuming maximum 4 levels are there

in the tree. We can use this information to deny connection request from all

those nodes that are above the node in the feed tree.

5.3.7 Data Feed Management example

Our basis for reliable multicast is to maintain double feed distribution with

node disjoint paths to each node. We discuss here the three possible ap-

proaches for overlay creation in which double feed distribution can be done,

along with their merits and limitations. A comparative analysis is done on

the basis of average latency in the network, average differential delay between

Dualpath Approach for Reliability in Overlay Multicast 117

the two feeds a node is fed with, and the out degree requirement of nodes.

Out degree of nodes in a tree plays a crucial role to control the tree depth

and hence the average latency.

The source of media stream S, in each case, transmits the same content

as two duplicate feeds i.e. f1 and f2. Two separate trees are maintained for

the two feeds and each node joins both the trees. Thus availing two different

feeds from node disjoint paths, as evident in the respective structure shown

in figures 2, 3 and 4 drawn for each approach. In the figures, f1 feed tree

links are shown as bold lines, while f2 tree links are shown as dashed lines.

It is possible that in one tree a node is a leaf node while in another tree it

is at some intermediate position. In each approach, there are two kinds of

nodes, one which will forward only f1 version of the stream and the other

one which will forward only f2 version.

In each approach, a node forwards the information about its parents for

both the feeds along with the distance from the source to all of its immediate

children when they join it as their parent. This information can be used in

the situation of abrupt failure.

5.3.8 Delay optimization in data distribution tree

With time, the data distribution tree may lose uniform distribution of load

i.e. some portions of the tree may be denser as compared to others due to

which some nodes might be facing inordinate latency, while there may be free

out-degree in some other parts of the tree. Following periodic optimization

algorithm tries to minimize the average latency in the whole tree.

To reduce average latency in the overall tree, nodes at lower level should

be shifted toward root if there is a free out degree in an upper level node. At

any level, all the nodes in that level will periodically tell their value of CCi ,

Dualpath Approach for Reliability in Overlay Multicast 118

the cumulative children of a node i (defined above in section 5.3.5) to their

parent. Parent node on the basis of values obtained from all of its children,

decides about modification in the tree structure.

Filling free out-degree with a grandchild: If a node has free out-

degree, it is filled with one of its grandchildren, who is selected as follows.

The node with free out-degree requests all of its children to send the node

ID and value of their child with highest value. The grandchild with highest

value is selected out of this set and offered to fill that free out-degree with

its grandparent.

In case, a node does not have any children and hence grandchildren, its

free degree can be filled by the grandchildren of its sibling in same manner.

CCi value based parent-child swapping: If a node does not have

free out-degree, this node can exchange its position with one of its children

under certain conditions. A node i becomes eligible to replace its parent if

it satisfies the following condition.

CCi > (
∑

j= all siblings of i

CCj + 1) + 1 (5.1)

The above inequality is self-explanatory and guarantees reduction is av-

erage delay in the network. As a child node swaps its position with parent,

its parent and all its siblings along with their children get an increment in

delay while all of its own children get a reduction in delay. This swapping

will be advantageous if the decrease in delay is more than the increase. The

inequality shows that the delay will reduce because at the left hand side

it counts the number of children and at the right hand side it counts the

number of siblings and their children plus the parent node. The tree orga-

Dualpath Approach for Reliability in Overlay Multicast 119

nizing algorithm can be run periodically by nodes leading to optimization of

performance.

5.4 The three approaches for dual feed

The detailed description of the three approaches for dual feed with specific

detail is given in this section.

5.4.1 First Approach (Approach-1)

In the first approach, we assume that the out degree of each participating

node is two except for the source node (S) which needs to have out degree

three. In fact source or any of two earliest joining nodes can have out degree

three to create a sensible overlay but here source is given this responsibility

as it seems logical that the source has some extra capacity than other nodes.

The overlay structure for the scheme is shown in figures 5.6, 5.7 and 5.8 .

Source can use these three out degrees in delivering at least one f1 and one

f2 feed; the third one could be either f1 or f2. Except source, any other node

forwards only one type of stream (either f1 or f2).

Join Algorithm: The first two nodes i.e. node 1 and node 2 get feed f1

and feed f2 respectively directly from the source. The first node publishes

itself as f1 feed forwarder while the second node publishes itself as f2 for-

warder in the query network. Now both these nodes get complimentary feed

from each other thus resulting in dual feed from source. Any further arriving

nodes search for forwarders in the query network. Once a node with free

out degree (one each in f1 tree and in f2 tree) is found, join request to the

identified node is sent and connection is made. If more than one feed for the

Dualpath Approach for Reliability in Overlay Multicast 120

6

8

10

12

2

1

S

3

5

7

9

11

13

4

14

Figure 5.6: Original f1 tree for approach-1 for example double feed distribution

with 14 nodes before any failure occurs

same feed type are available, the one nearest to the source is preferred given

it causes least differential delay in the two streams. The overlay tree thus

gradually builds up. An example of double feed distribution with 14 nodes

(including source) is shown in figure 5.6, 5.7 and 5.8.

Performance: In this approach, differential delay of zero or one is achieved

at each node as is visible in figure 5.8. This is achieved by placing some re-

strictions during tree construction such that each node is placed at the levels

Dualpath Approach for Reliability in Overlay Multicast 121

5

7

9

11

1

2

S

4

6

8

10

12

14

3

13

Figure 5.7: Original f2 tree for approach-1 for example double feed distribution

with 14 nodes before any failure occurs

differing by at most one in both the streaming trees and thus forming a de-

terministic topology. The limitation with this approach is that the average

latency increases linearly with the number of nodes.

Failure recovery: To explain the recovery mechanism, the steps taken are

listed below with reference to an example network of 14 nodes as shown in

figure 5.8.

1. Let us assume that an f1 forwarder node placed at some intermediate

position fails. It leaves a forwarder vacant position (fvp) in f1 tree and

leaf vacant position (lvp) in f2 tree. The respective parent nodes in

Dualpath Approach for Reliability in Overlay Multicast 122

7

9

11

13

1

2 3

S

4

6

8

10

12

14

5

Figure 5.8: Original f1 tree and f2 tree put together for approach-1 for example

double feed distribution with 14 nodes before any failure occurs

both trees which have gained free out degree due to this node failure,

advertise for the free out degree in the query network.

2. Changes in f1 tree: Failed node had two children in f1 tree, one

leaf child node (lcn) and one forwarder child node (fcn). These are

orphaned and need to be replaced in f1 tree. In f1 tree, ‘fcn’ places

itself at its failed parent’s position with its whole subtree. The ‘lcn’

node finds its parent in f1 tree through a fresh search in the query

network.

3. Changes in f2 tree: Since the failed node was a leaf node in f2 tree,

Dualpath Approach for Reliability in Overlay Multicast 123

it does not affect the transmission to other nodes and no change is

required in f2 tree.

4. Tracking of differential delay: Each node constantly observes the

difference of delay in its two feeds. If it exceeds beyond a certain

threshold, it tries to adjust its position in one or both trees by switching

to a new forwarder either in one or both trees based on the information

available in the query network. During this adjustment, if node leaves

its present position in a tree, it is considered as vacant position and

is advertised in the query network. Affected nodes get appropriate

placement as per steps 1 to 3.

5. Multiple Node failure of same type in sequence: It may happen

that the nodes of the same forwarding type fail in sequence resulting

in shortage of forwarders of that type. The recovery mechanism has

provision for change in forwarding behavior of nodes so that network

never faces shortage of forwarding nodes of any type.

Whenever a node that is orphaned in one tree (say in f1 tree) but

forwarder in other tree (say in f2 tree) finds no feed forwarder for the

feed type (say f1) it is searching for, it converts his forwarding behavior

(from f2 forwarder to f1 forwarder) and becomes forwarder for other

feed type it was searching for. It replaces a leaf node at the bottom

of the tree, places itself there and adopts that removed leaf node as its

child. Immediately after that, it informs this conversion in the query

network.

Since after converting its forwarding behavior, it is no longer forwarding

the earlier feed type (f2), it removes itself from forwarding position in

f2 tree. Its ‘fcn’ and ‘lcn’ will find new parents as per steps 1 to 3.

Dualpath Approach for Reliability in Overlay Multicast 124

6. Further complexity may arise, if failure happens at many places in

the network simultaneously, and everywhere nodes see the deficiency

of one type of forwarder and try to convert their forwarding behavior

simultaneously. As a result of localized decisions taken at many nodes,

a situation may be created where other extreme occurs. Suddenly one

type of forwarders (which were earlier in deficiency) grows large in

number and deficiency occurs for the other type and this cycle may

keep repeating. To check this situation, a probabilistic approach is

suggested below.

With all other conditions fulfilled, a node to change its forwarding

behaviour, waits for a random time U [0, T], where T depends on the

expected network size. Once this wait time is over it again checks if the

deficiency of one type of nodes still exist or not, and acts accordingly.

Instead of immediate change, it thinks twice and saves the network

from the oscillatory situation as stated above.

5.4.2 Second Approach (Approach-2)

Join Algorithm: Figures 5.9 and 5.10 show an example network (binary

tree) created as per join algorithm of approach 2. It assumes the presence

of a central entity that applies a flag to all nodes indicating their type i.e.

whether a node is f1 forwarder or f2 forwarder. It actually stamps every

alternate node with f1 type and f2 type. Thus one half of the arriving nodes

in the network are f1 forwarder and the other half comprises f2 forwarders.

Further in f1 tree, f1 forwarders are preferred and in f2 tree, f2 forwarders

are preferred. This preferential placement puts the f1 forwarders in f1 tree as

near to source as possible. The similar placement happens for f2 forwarders

in f2 tree. The nodes can be swapped in a tree to maintain the preferential

Dualpath Approach for Reliability in Overlay Multicast 125

order. The topology builds gradually but eventually it takes a form that is

deterministic for a given number of nodes. The final form for 14 nodes is

shown in figure 5.9 and 5.10.

Due to this preferential placement, a node finds its position as leaf node

in one tree and connects as intermediate node in another tree.

After getting both the feeds, a node places its advertisement in the query

network as f1 forwarder (or f2 forwarder) according to its type already pro-

vided by central entity so that further arriving nodes can find the nodes with

free out degree and request them to become their parent.

S

1 3

5 7 9 11

13 2 4 6 8 10 12 14

Figure 5.9: f1 tree in approach-2 for example double feed distribution with 14

nodes

Performance: One merit of this scheme is that average latency increases

only logarithmically with the number of nodes. The downside of this ap-

proach is that the structure formed is dynamic and the differential delay for

most of the nodes will increase as the number of nodes increase. However,

the increase happens to be logarithmically with the number of nodes.

Dualpath Approach for Reliability in Overlay Multicast 126

S

2 4

6 8 10 12

14 1 3 5 7 9 11 13

Figure 5.10: f2 tree in approach-2 for example double feed distribution with 14

nodes

Failure recovery: Consider the failure of an intermediate node in f1 tree.

Whenever an intermediate node fails its two children are deprived. One child

can place itself at failed node’s position while the other one gets its new parent

from the advertisements available in the query network assuming availability

of an f1 forwarder with free out degree. The loop avoidance algorithm as

described in section 5.3.6 needs to be used.

Which one of the two deprived children will replace its parent is decided

on the following basis. If one of them is f1 forwarder and other is f2 forwarder,

the f1 forwarder replaces its parent. If both are f1 forwarders or both are f2

forwarders, the child with higher CCi value (cumulative children of a node

i) replaces its parent.

Consider the situation when there is no f1 forwarder available with free

out degree in the query network when a node fails and two of its children

are to be accommodated. In such situation, one of the forwarder nodes in f2

Dualpath Approach for Reliability in Overlay Multicast 127

tree with low CCi value becomes f1 forwarder. A leaf node which is nearest

from source in f1 tree and farthest from source in f2 tree is preferred for this

purpose. As soon a leaf node becomes forwarder in f1 tree, it has to become

a leaf node in f2 tree. In doing so the children of that node in f2 tree may

get deprived. One of them however replaces its parent and the other gets

parent from the query network advertisement.

5.4.3 Third Approach (Approach-3)

Join Algorithm: Figures 5.11 and 5.12 show an example network created

as per join algorithm of approach 3. Any arriving node joins to both the

trees. In f1 tree, it attaches to a vacant position nearest to source. In f2

tree, it attaches in the same layer to which it is attached in the f1 tree. Once

layer in f2 tree is decided, it attaches to a node in that layer, which has

nothing in common in its path to source in f1 tree, which happens to be

unique. The final form for 14 nodes is shown in figure 5.11 and 5.12.

Performance: The average latency increases only logarithmically with the

number of nodes and the differential delay between two feeds to each node is

zero. The only additional assumption it takes is that all the nodes excluding

source node, need to have out degree 4.

5.5 Performance Evaluation

In the proposed scheme, a dual-tree is formed as data distribution topology.

The two feeds are received at any node; one from f1 tree and another one

from f2 tree. Both feeds will have node-disjoint paths from the source. Thus

we need double the bandwidth in the current scheme of reliable media stream.

Dualpath Approach for Reliability in Overlay Multicast 128

S

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 5.11: f1 tree in approach-3 for example double feed distribution with 14

nodes

Since, two feed may have different delays, we need buffers at each node

for merging the two feeds for uninterrupted playback in case one of the feeds

fails. The size of buffer depends on the hop wise path difference in the two

feeds.

The proposed scheme is based on P2P query network. As new host ar-

rives and joins, it knows about available f1 and f2 feed sources from the

query network. It connects to one of f1 feed forwarders and one of f2 feed

forwarders. Thus the new host joining time is equal to the lookup time in the

query network and the connection setup time. Similarly when a node fails,

one of the feeds to the subtree rooted at this node will stop. As explained

above, the recovery time has an upper bound which is equal to sum of DHT

lookup time and connection setup time.

The three approaches discussed in section 5.4 has been compared in Table

5.3. In approach-1, average latency increases linearly while differential delay

remains zero, as number of participating nodes increase. In approach-3,

Dualpath Approach for Reliability in Overlay Multicast 129

S

2 1

3 4 5 6

10 9 8 7 14 13 12 11

Figure 5.12: f2 tree in approach-3 for example double feed distribution with 14

nodes

average latency increases only logarithmic and differential delay remains zero

but out degree requirement for nodes is 4. The approach-2 seems to be most

advantageous in which latency increases logarithmically, differential delay,

though not zero but remains controllable and there is no need to have high

out degree assumption as in approach-3. Therefore we do the simulation for

approach 2 and do the analysis of the observations thus obtained.

The additional overhead in the scheme is the overhead to maintain a P2P

query network to satisfy the requirement of a structured network. One can

use Chord [32], Pastry, and Tapestry for P2P lookup. We assume here the

availability of Chord protocol for query search. In Chord, in the steady state,

for an N node network, each node maintains states for only about O(logN)

other nodes, and resolves all lookups via O(logN) messages to other nodes.

Updates to the routing information for nodes leaving and joining require

only O((logN)2) messages. There is no need of maintaining an overlaid mesh

and running multicast routing protocol to maintain a multicast tree in this

Dualpath Approach for Reliability in Overlay Multicast 130

Approach-1 Approach-2 Approach-3

(two trees, but (two priority (nodes placed at

no priority trees) the same level

for any node) in both trees
n
u
m

b
e
r

o
f
n
o
d
e
s

n
u
m

b
er

of
le

ve
ls

av
er

ag
e

la
te

n
cy

av
er

ag
e

d
iff

er
en

ti
al

d
el

ay

n
u
m

b
er

of
le

ve
ls

av
er

ag
e

la
te

n
cy

av
er

ag
e

d
iff

er
en

ti
al

d
el

ay

n
u
m

b
er

of
le

ve
ls

av
er

ag
e

la
te

n
cy

av
er

ag
e

d
iff

er
en

ti
al

d
el

ay

6 3 2 0 2 1.33 0.67 2 1.33 0

14 7 4 0 3 2.43 1.07 3 2.43 0

30 15 8 0 4 3.27 1.47 4 3.27 0

62 31 16 0 5 4.16 1.68 5 4.16 0

...

1022 511 256 0 9 8.02 1.96 9 8.02 0

Table 5.3: Comparison of the three different approaches used for data feed man-

agement

mesh. Thus the scheme is much more simplified than the earlier schemes of

overlay mesh creation and management and then creation and management

of multicast tree over this mesh.

We have evaluated the efficiency of our scheme based on following per-

formance metrics: tree structure (comparison with perfectly balanced tree),

distribution of differential delay, startupdelay, scalability and system behav-

ior in the face of moderate to high failure rates.

Dualpath Approach for Reliability in Overlay Multicast 131

5.5.1 Startup booster

If a node leaves the streaming overlay, it also causes disruptions in the un-

derlying chord overlay. Hence, measurement of performance of multipath

approach in face of failure will also include undesirable effects of the disrup-

tion caused in the chord overlay. To minimize this effect, some additional

nodes are added to the chord overlay right in the beginning, which do not

take part in streaming and only ensure Chord protocol’s stability. These ad-

ditional nodes are actually virtual nodes all staying at the source node. All

these have same IP address as the source but distinct addresses (identifiers)

on chord ring. The important point is that these virtual nodes are added

in the beginning when there are no other nodes in the system. In this way,

the addition of virtual nodes will not create any churn in the system. If the

virtual nodes are added when there are some other nodes, then the virtual

nodes will compete with real nodes for being added to the chord cycle. Thus,

the performance would be reduced.

The number of virtual nodes must be sufficient enough to prevent the

chord protocol from breaking down even when all real nodes have left. Also,

it must not be too large to increase the chord diameter significantly. Ideally,

it will depend on failure rate. As an example, let there be 1000 virtual nodes

added in a system with 4000 real nodes. Now if 100 nodes fail, out of total

5000 nodes, 4900 nodes (98% nodes) are still intact, since 1000 virtual nodes

remain unaffected due to failure. Even if 1000 nodes fail, out of total 5000

nodes, 4000 nodes (80% nodes) remain still intact. This proves the usefulness

of virtual nodes introduced in the chord ring in the beginning.

These additional nodes will have the negative impact of increasing the

chord diameter and hence the startup delay. But the positive impact of

increased stability in the network outperforms the negative impact and we get

Dualpath Approach for Reliability in Overlay Multicast 132

an overall reduction in system scale and startup delay time. The additional

nodes are only logical entities and they can be created by the source node to

boost startup process.

5.5.2 Simulation results

PeerSim [47] [48], a java based event driven simulation engine, is used to run

the simulation. The following parameters are used in the simulation.

N: total number of nodes considered

d: the peers’ out-degree; taken as 2 as per approach-2

λ: the peer arrival rate with uniform arrival pattern

µ: the peer failure rate

D: hop-difference between the feeds from f1 tree and f2 tree

B: Size of buffer available at a node, should be taken so as to accommod-

ate packets transmitted in the duration of maximum differential delay

expected

The delay between the nodes is modeled by a uniform random variable

between 45 and 55 milliseconds. To simulate the feed distribution, a feed

message is pushed on each tree every 50 milliseconds. These feed messages

are supposed to contain video information of 50 ms. Hence, by pushing them

at every 50 ms, video playback at the nodes is maintained. As we do not

consider overhead calculations, message size is irrelevant. Also, the size of

the messages will depend upon the quality of video and the coding scheme

used. Since, these are not covered in our simulation; size of the feed message

does not matter.

Time is measured in time slots where one time slot denotes the time taken

Dualpath Approach for Reliability in Overlay Multicast 133

for a message transfer between two directly connected peers. The simulation

is run for approach-2. Though there is no minimum number, at any time

in our simulation, we have more than one active feed forwarder. The nodes

register themselves when they have free out-degree and remove themselves

from the list only when both their out-degrees are consumed. The recovery

scheme as described in section 5.3.5, has been considered. For avoiding loop

formation, solution-3 has been considered in our simulation.

5.5.2.1 Tree Structure

Tree structure (tree depth or maximum number of levels and average latency)

is observed and compared with the optimal values i.e. with a completely

balanced tree. Findings are listed in Table 5.4. The nodes arrive with the

rate of 200 nodes/second for 10 seconds. The values are averaged over 10

experiments.

Number of Max Level Average Latency

Nodes

2000
Feed 1 Feed 2 Optimum Feed 1 Feed 2 Optimum

13 12.6 10 9.2 9.2 9.0

Table 5.4: Comparison of feed tree (approach-2) with perfectly balanced tree

5.5.2.2 Distribution of hop difference in the two feeds

Through simulation, we find the probability distribution curve of hop dif-

ference (differential delay) in the two feeds at all nodes, once all the nodes

are connected. Differential delay decides the buffer size required at nodes.

Distribution as shown in figure 5.13 indicates that around 70% of nodes have

Dualpath Approach for Reliability in Overlay Multicast 134

differential delay less than or equal to two, and less than 10% nodes have

differential delay more than 4.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Diiferential delay at a node

P
er

ce
n

ta
g

e
o

f
n

o
d

es

Figure 5.13: Distribution of differential delay

5.5.2.3 System scale and startup delay

In our algorithm, there may be situations when an arriving node does not

get feeds within the given constraints. Any node deprived of any feed keep

attempting periodically for that feed. We plot the system scale and the

cumulative distribution of startup delay in figure 5.14 and 5.15 respectively.

The start-up delay is defined as the time taken by the peer after its arrival,

to get connected to a parent peer already receiving the stream. The nodes

Dualpath Approach for Reliability in Overlay Multicast 135

arrive with the rate of 200 nodes/second for 10 seconds. The values are

averaged over 10 experiments.

As stated earlier, with startup booster process applied, the additional

nodes though increase the chord diameter and hence the startup delay but

support stability of the network. Thus overall, the delay performance im-

proves with startup booster applied. The observations as shown in Figure

5.14 and 5.15 respectively confirm this fact.

Figure 5.14: System scale with time

Dualpath Approach for Reliability in Overlay Multicast 136

Figure 5.15: Cumulative distribution of startup delay

5.5.2.4 Network behavior in face of failure of nodes

Though in our scheme, each node is supplied with the two independent feeds,

high failure rate may give interruption in the stream. The nodes arrive with

the arrival rate of 200 nodes/second for 10 seconds. Now, starting with the

15th second, the nodes leave the network with the failure rate of µ nodes/sec

Dualpath Approach for Reliability in Overlay Multicast 137

for 10 seconds. The performance for different values of failure rate is plotted

in Figure 5.16. Percentage of nodes receiving at least one feed in face of

different failure rates is observed. Plots indicates that with failure rate of 50

nodes/per second in a network of 2000 nodes; 75% nodes still manage to get

at least one feed.

Next we observe the behavior of network again in face of failure of nodes

but with maintaining the moderate arrival rate. Plots in figure 5.17, 5.18

and 5.19 describe this scenario where percentage of nodes having at least one

feed is plotted. Each figure has two plots. The first one shows the percentage

with respect to the total number of nodes in the network including nodes

which have just joined the network but have not started to receive the feed.

The second plot finds the percentage with respect to total connected nodes

without including newly joined nodes thus giving better picture.

In the beginning many nodes join the network at a fast rate as high as 200

nodes/sec for 10 seconds. After 10 seconds onwards, arrival does not stop

and it continues at reduced value say 10/20/50 nodes per second respectively

for figure 5.17, 5.18 and 5.19. Failure starts from 15th second onwards at the

rate 10/20/50 nodes per seconds respectively for figure 5.17, 5.18 and 5.19

and it continues.

Finally, this is to mention that for each data point, multiple simulations

have been performed untill the standard deviation is less than 5% of mean

value. Thus for each point, the number of runs are different. Since confidence

interval is small and uniform, it has not been shown in the results.

Dualpath Approach for Reliability in Overlay Multicast 138

Figure 5.16: Percentage of nodes receiving at least one feed

5.6 Conclusion and future work

We have suggested an approach for maintaining dual-feed to increase the

reliability in overlaid multicast streaming. The dual feeds are maintained

while optimizing the delay. Some minimum outbound degree is needed for

every node for this mechanism to work. We can make the system better if

Dualpath Approach for Reliability in Overlay Multicast 139

Figure 5.17: Percentage of nodes receiving at least one feed with continued failure

and reduced arrival rate, rate = 10 nodes/second. The upper (green coloured)

plot in the figure calculates the percentage with respect to total connected nodes

excluding newly joined nodes in the network

Figure 5.18: Percentage of nodes receiving at least one feed with continued failure

and reduced arrival rate, rate = 20 nodes/second

Dualpath Approach for Reliability in Overlay Multicast 140

Figure 5.19: Percentage of nodes receiving at least one feed with continued failure

and reduced arrival rate, rate = 50 nodes/second

each node advertises its distance from the root node. Thus, when a node

gets multiple options to get the new feed, it can choose the parents based on

the advertised hop count from the root node. If a node only wants to receive

and does not transmit further, it is like free-riding. One needs to study the

mechanisms to discourage this practice to ensure that the network functions

without any problem.

The results presented here are the part of ongoing research to investigate

mechanism for more reliable and scalable Brihaspati Sync [49] Live Lecture

Delivery System (LLDS) development to cater to millions of users worldwide.

The work presented here will be implemented in Brihaspati Sync in future.

Chapter 6

Faster Overlay Creation under

High Growth Rate

Live Streaming Multicast Systems are needed for applications like Live Lec-

ture Delivery. In these systems, a very large number of subscribers may join

a session in a very small duration leading to a problem called flash crowd

handling. The result of flash crowd is that most of the subscribers do not get

the desired feed in first attempt and thus waiting time increases excessively.

We consider this problem in query network based overlaid multicasting [36]

systems, where the information about available feeders is stored distributedly

in Distributed Hash Tables (DHTs). The DHT based look up service is used

to efficiently locate the available feeders for a particular data stream. The

feed is identified by its keyword which is hashed to find the corresponding

root node. The root node maintains the list of forwarders for this feed. When

a new node joins the data overlay, it becomes a potential feeder for further

transmission and gets itself published in the list of available feeders.

At normal growth rate, maintaining a list of only few available feeders

is sufficient, however during flash crowd, a list of large number of feed for-

Faster Overlay Creation under High Growth Rate 142

warders needs to be maintained. Two different algorithms are proposed in

this chapter; one to alleviate the load of root nodes and the other to guaran-

tee with high probability the provisioning of feed to any new arriving node

even at very high growth rate. In the proposed scheme, there is a mechanism

that the number of root nodes for the same keyword increases or decreases in

tune with the growth rate. The simulation of proposed algorithm has been

done for the Chord [32] based overlaid multicasting system with very high

growth rate. Simulation results verify the effectiveness of these algorithms

for the network in sustaining high growth rate in the network.

6.1 Introduction

P2P systems are distributed systems without any centralized command where

all nodes are equivalent in functionality. The advantage in P2P systems as

compared to client-server systems, lies with the fact that any single, arbitrary

chosen terminal entity can be removed from the network without any loss

of network service. This distributed nature makes them inherently scalable

and fault tolerant. Among P2P applications, file sharing, video on demand

and live media streaming are the most extensively studied and used. In live

media streaming applications, delay deadlines are more stringent compared

to file sharing. In file sharing system, a peer can wait for hours in retrieving

a file, while in live streaming system, a newly arrived peer needs an imme-

diate access to the stream. The total delay in live streaming application

comprises the delay in finding an active peer for receiving the desired feed,

the connection time and end-to-end delay along the overlay distribution tree.

In applications where an excessively large number of peers try for the

same feed in a small duration, say in the beginning of a session, finding an

Faster Overlay Creation under High Growth Rate 143

appropriate feed forwarder may involve long delay and system may fail to

accommodate such a large incoming crowd. Following are the two example

scenarios where the growth rate of network is very high in the beginning.

In Live Lecture Delivery (LLD) meant for very large number of expected

subscribers, during first 10-15 minutes, in the beginning of lecture, a large

number of peers may join the session. In football match telecast, the number

can be as large as few hundred millions. The growth rate of the overlay net-

work will be very high during this period. Chen Y. et. al. [50] characterized

the severity of a flash crowd by the parameter called shock level, defined

as the ratio of peers arriving rate during and before the flash crowd. The

capacity of multicast system is defined as the maximum shock level that the

system can survive [50].

Distributed Hash tables (DHTs) are query networks optimized for search

task. In DHT based systems, the communication cost and the state main-

tained by each node scales logarithmically with the number of nodes. There-

fore DHT based overlay networks are considered scalable and bandwidth

efficient. We consider here a DHT query network based overlay multicasting

system [36]. Chord [32] based multicast is an example of this. The Chord

based look up service is used to efficiently locate the available feeders for a

particular data stream. Chord supports the mapping from requested feed’s

key to a node where the URLs (uniform resource locators) for current feed

forwarders are available. When a new node joins the multicast overlay, it

becomes a potential feeder for further transmission and gets itself published

in the list of available feeders at the root node of that feed. Root node for a

feed is the node which has the same or most similar identifier as is the hash

of feedID. The feedID is normally the unique string identifying the multicast

feed. A list of few (say 5 or 6) available feeders needs to be maintained in the

Faster Overlay Creation under High Growth Rate 144

query network at normal growth rate. When the growth rate is very high in

the beginning, rate of joining is limited by the number of feeder nodes listed

in the query network and most of new nodes will not be able to get a data

feed if very few feeders are maintained in the list. Moreover, since any newly

joined node may publish itself as feed forwarder in the query network, it is

logical to think that with high growth rate, the number of feed forwarders

will also increase exponentially. In this situation, only a few nodes would

need to maintain a large number of entries for a single feedID. These entries

could be a list thousands of nodes who become potential feeders for a par-

ticular feed. Therefore the maintenance of an updated list of available feed

forwarders is an important issue for supporting large growth rate of nodes.

We propose two different algorithms to handle high growth rate of nodes;

these are:

(i) Push based cache update algorithm alongwith Purge message based

stale information removal algorithm to alleviate the load of root nodes,

and

(ii) Feed forwarders’ list maintenance algorithm to guarantee with high

probability the provision of feed to any newly arriving node under the

condition of high growth rate.

Rest of the chapter is organized as follows. The next section gives a

brief survey of related work. Section 3 describes the proposed algorithms.

Simulation results for the proposed algorithms are presented in section 4.

Finally conclusion is given in the section 5.

Faster Overlay Creation under High Growth Rate 145

6.2 Related Work

Chen Z. et. al. [51] discovered the fundamental tradeoff between the time

and scale. In their model for P2P live video streaming, they focused on the

peer joining process during initial surge and concluded that the peer startup

time increases with arrival rate and decreases with initial system capacity

and peer uploading capacity. It is proved in their work that system scale was

bounded by timing requirement.

Chen Y. et. al.’s work [50] is the pioneering effort to model and analyze

the performance of P2P live streaming system under flash crowd. He used a

fluid model to characterize a chunk based P2P live streaming system with ad-

mission control implemented at the tracker server. When a peer wants to get

the feed, it first contacts a tracker server to register itself and obtains a neigh-

bors’ list. Media data is divided into small chunks. Peers exchange avail-

ability information of chunks they have fetched, and then requests chunks

from neighbors accordingly. A newly arrived peer called startup peer can

request multiple chunks in parallel but it does not upload chunks to others

until it obtains a sufficient number of chunks (say η0 chunks). Once it obtains

these minimum number chunks, it becomes stable peer and can upload to

other peers. A stable peer prefers to upload data to other stable peers so

that transmission to existing peers is not affected. When a stable peer starts

serving a startup peer, it does not accept the other startup peers’ request

until the served startup peer becomes stable peer. To evaluate the worst case

system performance, Chen et. al. [50] assumed that the newly-arrived peers

do not leave the system before they finish the startup phase.

It was found that a system without admission control had limited capac-

ity to handle a flash crowd. System sustained at a new stable state when

the size of flash crowd is small or moderate, but collapses when the flash

Faster Overlay Creation under High Growth Rate 146

crowd is excessively large. Chen proved that P2P live streaming system with

admission control had excellent capacity to handle flash crowd and a startup

peer’s waiting time scales logarithmically with the size of flash crowd.

In [52], Dwivedi et. al. inferred that collaboration instead of competition

among the peers is required to achieve better system scale. For the first

time in [52], multiple tree based solution is designed to handle flash crowd

in live streaming system. Earlier, in Splitstream [35], Castro et. al. used

multiple tree based solution to handle issues related with resource under

utilization and fault tolerance. Their two step approach first arranges the

newly arrived peers in different levels of different sub stream trees and then

peers are connected with each other to distribute the stream.

6.3 Proposed Algorithm

The problem of flash crowd can be handled at two fronts. In our first algo-

rithm, earlier responses from the root nodes for a (key, value) pair are cached

at intermediate nodes so that further queries for the same key can be han-

dled in the DHT network by intermediate nodes only, and root node is not

overwhelmed by queries. Further since a single root node cannot handle the

publication of the list of thousands of feed forwarders, the second algorithm

makes a number of sets of forwarders; each set is maintained at a different

root node. The number of sets varies with the growth rate of the network in

the proposed algorithm with at least one set being maintained all the time.

Faster Overlay Creation under High Growth Rate 147

6.3.1 Distributed and scalable query handling algo-

rithm

In the situation where a large number of subscribers try to join the session

almost simultaneously and send query to the indexing server or to the query

network to get the URL of an available feed forwarder, the indexing server

may not be able to respond to all the queries simultaneously. The scheme

to handle this problem is as follows. The response to each query is stored in

caches at the intermediate nodes. Any other node querying for the same feed,

if happens to follow a route that has some common nodes with the earlier

query response route, it can get the information from the intermediate nodes

without going up to the root node holding the index of feed forwarders. Thus

the load on the indexing server can be greatly reduced. For a more popular

key (feed), there will be more intermediate nodes that will be storing its

index. This way scalability is supported, and unlimited number of queries

for the same key can be handled. Though the cache based mechanism is a

popular mechanism, we have added methods to update the cached responses

and to purge the outdated information, as described below.

6.3.1.1 Push based Cache information updating

Whenever a new node joins the network and becomes eligible as feed for-

warder for some feed, it publishes itself at the root node for that feed. In

case the information is updated at the root node, the cache update message

is sent to all downward nodes by the root node. For implementing such a

system, root node maintains every entry in the list of feed forwarders with

an associated timer. The timer allows purging the obsolete information. The

list allows sending the update, after updating the timers, to the downward

Faster Overlay Creation under High Growth Rate 148

caches. We call it push based cache update.

6.3.1.2 Purge message based stale information removal

With time, the key-to-URL mapping information stored in intermediate

nodes may become stale and useless. One possible improvement can be to

store the cached information with successively reduced expiry period than

what is stored in the previous node. Thus there remains no stale information

and it expires after due time. Also nodes which are far away from root node,

will never cache the information if the expiry time for them becomes zero.

It is also possible that the information becomes useless even before the

expiry time is over e.g., when all the feed forwarder URLs for the desired

feed as replied in earlier responses have exhausted and the current list at

the root node now contain altogether different forwarder in the list. As and

when, it is detected by some node down the tree, (which has been responded

with the useless list by some intermediate node), that node should sends a

Purge message towards root node informing that the cached list is stale and

useless and thus leading to early purge of useless list. This message goes up

to the root node. Then the root node can send the appropriate instruction

to all the downward nodes which are maintaining the cache, to flush this

information stored in cache. With the new requests and further fresh reply

from the root node, the new list information populates the caches again at

intermediate nodes.

6.3.2 Feed forwarders list maintenance algorithm

In situations, when network grows at a high rate, there is a need to maintain

a list of large number of feed forwarders and it seems wiser to partition

this single large list into different sets and maintaining them at different root

Faster Overlay Creation under High Growth Rate 149

Algorithm 1 Actions taken by a newly arrived node to get feed from some

already connected node in the network

1: Begin

2: Let K = 0 to K − 1 be the set containing set numbers present in the

network

3: Let S = be the empty set in the beginning and records all set numbers

that have been queried

4: while K 6= φ do

5: Select set X randomly from K

6: S = S ∪ X

7: K = K–X

8: while forwarder list from (X) 6= φ do

9: select a forwarder Y randomly from forwarder list from (X)

10: try connecting to Y for getting feed

11: if success then

12: break

13: else

14: forwarder list from (X) = forwarder list from (X) − Y

15: end if

16: end while

17: end while

18: print ‘no forwarder available’

19: End

Faster Overlay Creation under High Growth Rate 150

Algorithm 2 Actions taken by a newly connected node to get published as feed

forwarder in the network
1: Begin

2: Let K = 0 to K − 1 be the set containing set numbers present in the

network

3: Let S = be the empty set in the beginning and records all set numbers

that have been queried

4: while K 6= φ do

5: select a number X uniformly at random from {0, 1, 2,, K-1} - S

6: S = S ∪ X

7: K = K–X

8: if X 6= 0 then

9: send register message to set# X

10: if register message reply received then

11: publish at set# X

12: break

13: else

14: send register message to set# 0

15: if register message reply received then

16: Publish at set# 0

17: else

18: k + +

19: publish at newly generated set# K

20: end if

21: end if

22: end if

23: end while

24: End

Faster Overlay Creation under High Growth Rate 151

nodes. The need for more than one set of feed forwarders and their dynamics

is discussed now.

6.3.2.1 Multiple sets of feed forwarders

In the proposed algorithm, we have more than one root nodes for the same

feed and each one of them stores a different set of feed forwarders. We also

store the count of total number of sets denoted as K at a single root node

decided by the hash of string [feedID] noofsets. At the onset of flash crowd,

the value of K increases and afterwards it decreases at a fixed rate. It is

crucial that the value of K is updated at all the intermediate nodes as soon

as it is updated at root node ([feedID] noofsets). To update the value of K,

push based cache update is used as described in subsection 6.3.1. Whenever

K changes at the root node ([feedID] noofsets), this change is broadcasted

down the tree.

6.3.2.2 Increase and decrease of number of sets

The number of required sets k (it is always greater than or equal to 1) is

determined dynamically by the rate of arrival of subscribers at the root node

of set#0. k may increase or decrease many times until the initial surge settles

down and then it finally stays at one i.e. only the set#0 is maintained.

Any newly arrived node first hashes the [feedID] noofsets and queries for

the value of k from the root node of this hash. Let the value of k is found to be

K. The node then randomly selects one of values from the range 0 to (K-1),

say ‘i ’. The node now hashes [feedID] set#i and finds root node for set#i.

This root node maintains list of feed forwarders in set#i with corresponding

URLs. The node seeks the list of feed forwarders from the root node and

then connects to one of the feed forwarders from the received list. If request

Faster Overlay Creation under High Growth Rate 152

for connection is not accepted, it tries all other feed forwarders in this set

one by one for connection. Eventually if there is no success with anyone in

the list, it selects another set randomly from 0 to (K-1) and repeats the

procedure the same way. The pseudo code for the join process is given in

Algorithm - 1.

The newly joined node once starts receiving the feed from one of the feed

forwarders, will find the latest value of k again by hashing [feedID] noofsets

and sending a query for k. Once the value of k is obtained (say K), it publishes

itself at one of the randomly chosen sets (from range set#0 to set#(K-1))

with equal probability subject to availability of indexing space at the root

node of the chosen set. In case there is no room at the randomly selected

set, it again samples a number between 0 to K-1 excluding earlier used set

number(s) where no indexing space was found. This process continues till

either a set is obtained with available indexing space or eventually set#0 is

sampled. This is to mention here that whenever a new node gets feed from

any node in set#0, it necessarily publishes itself at set#0.

As a new node tries to publish itself at set#0 indexing node (first root

node) as feed forwarder for the feedID and if there is no room for it to be

accommodated in set#0, the value of k is incremented by one, by the root

node of set#0 ([feeID] set#0 node) by updating the published advertisement

for [feedID] noofsets. Thus a new set, set#K is created. The new node

publishes itself as forwarder in the root node of this new set, set#K

While k increases as triggered by the root node ([feedID] set#0 node), it is

decreased by one unit at regular interval by the root node of [feedID] noofsets.

By doing so, it is ensured that k does not increase without limit, and achieves

a value of 1 under steady state. In case, a node cannot get a free feed

forwarder or is unable to publish itself in one of the set, it again chooses

Faster Overlay Creation under High Growth Rate 153

another set randomly and whole procedure is repeated. The pseudocode for

the publish process is given in Algorithm - 2.

6.3.2.3 Removal of entries from a set

All the entries in sets except fixed number of entries in set#0 are maintained

with expiry time. An entry may expire even before its expiry time when all

its fan-out capability is exhausted. Once all the feed forwarders’ entries of a

set are expired, that set also expires.

Certain numbers of entries in set#0 are maintained without expiry, these

entries are deleted only when their fan out capability exhausts. Moreover,

as already mentioned that whenever a new node gets feed from any node

in set#0, it necessarily publishes itself at set#0. Thus there is a guarantee

that some minimum entries are always there in set#0. Thus, the value of

[feedID] noofsets always remain more than or equal to one.

When rate of joining of new nodes reduces to low value after initial burst,

then all the sets except set#0 will expire after some time and number of sets

field will also adjust itself to unity. In set#0, there will be some predefined

number of feed forwarders which will not expire unless their fan-out capability

is consumed. All nodes over and above the minimum will have expiry after

which they will be removed from the feed forwarders’ list.

The set#0 is special in many senses. This is the only set which always

has listing of some minimum number of feed forwarders for the whole session

time. As set#0 root node is crucial, its backup is maintained at nearby

nodes at 2-3 places so that the network does not fail if this root node fails.

Faster Overlay Creation under High Growth Rate 154

6.3.3 Algorithms applied for an example application

Consider a Live Lecture Delivery system (LLDS), where we have different

streams in the system for different course codes e.g. EE605, EE679 etc. with

each having duplicate feeds (feed-1 and feed-2), which can be denoted as

StreamID FeedID (e.g. EE605 f1, EE605 f2, EE679 f1, EE679 f2 etc.).

We assume a typical Chord like distributed lookup protocol for query

search. A new node, who wishes to join the overlay for a particular feed,

hashes the keyword for that feed and gets the 256-bit identifier for that key

and starts search for the root node for that key identifier. This root node

along with few backup nodes in DHT holds the index of feed forwarders.

The key-to-feed forwarder node mapping (indexing) for a key will be

available at the root node for that key. Whenever a query for a particular

feed is resolved, it is responded with all the URLs where that feed is available.

The joining node contacts its indexing server two times, once to get the list of

available feed forwarders and again to publish itself as a potential forwarder

for that feed.

Initially for a particular feed there exists only one set i.e. [feedX] set#0,

the only one root node for the feed, indexing all the available feed forwarders

for this feed. At the start of a session, when a large number of subscribers

for a course attempts to join almost simultaneously, the list of forwarders

becomes too large to be accommodated at a single indexing node. To handle

this situation the forwarder nodes are divided into different sets. In the

changed scenario, the query for a particular feed then also contains the set

ID e.g. EE605 f1Set1, EE605 f1Set2 etc. The first set (set#0) controls the

creation and expiry of sets by updating the number of sets index entry.

Faster Overlay Creation under High Growth Rate 155

6.4 Simulation Results

PeerSim [7] [8], a java based event driven simulation engine, is used to run

the simulation. The following parameters are used in the simulation.

D : the fixed decay rate of number of sets (dk/dt),

d : the peers’ feed-forwarding capacity,

Ssize: number of feed forwarders in a set (set size),

etime: feed forwarder entry expiry time,

λ: peer arrival rate, and

N : number of sets in steady state under continued arrival for sufficient

long time

The link layer delay is modeled as a random variable uniformly distributed

between 45 milliseconds to 55 milliseconds. Though the processing delay at

each node is not zero, it is considered negligible as today’s computers usually

have very high processing capabilities. The routing delay is not modeled by

the simulator as modeling these would prevent large scale simulations. It is

considered that, all the nodes form Chord overlay for query network. Also,

any node can directly send messages to any other node in the network if its

IP address is known.

Rate d Ssize = 5 Ssize = 10 Ssize = 20 Ssize = 30 Ssize = 40 Ssize = 50

ST SD ST SD ST SD ST SD ST SD ST SD

100

2 7.4 2.9 7.1 2.2 6 2 6.8 2.2 7 2.2 7.6 2.2

4 5.3 1 5.3 0.9 5.3 1 5.3 0.9 5.3 0.9 5.3 0.9

6 5.3 0.8 5.3 0.8 5.3 0.8 5.3 0.7 5.3 0.7 5.3 0.7

8 5.3 0.7 5.3 0.7 5.3 0.7 5.3 0.7 5.3 0.7 5.3 0.7

200

2 9.6 4.3 8.5 3.6 6.9 2.8 7.2 2.9 8.2 3.2 9.4 3.3

Continued on next page

Faster Overlay Creation under High Growth Rate 156

Table 6.1 – continued from previous page

Rate d Ssize = 5 Ssize = 10 Ssize = 20 Ssize = 30 Ssize = 40 Ssize = 50

ST SD ST SD ST SD ST SD ST SD ST SD

4 5.8 1.5 5.3 1.2 5.3 1.3 5.3 1.3 5.4 1.3 5.5 1.3

6 5.3 1 5.3 1 5.3 1.1 5.3 1 5.3 1 5.4 0.9

8 5.3 0.9 5.3 0.9 5.3 1 5.3 0.8 5.3 0.8 5.3 0.8

400

2 11.7 5.9 9.8 4.8 10.2 4.2 8.2 3.7 8.4 3.8 9.5 4.1

4 6.7 2.4 5.7 1.6 5.4 1.7 5.8 1.7 6.2 1.8 6.4 1.9

6 5.6 1.4 5.3 1.2 5.3 1.3 5.6 1.4 6.4 1.6 6.5 1.5

8 5.4 1.1 5.3 1.1 5.3 1.2 5.6 1.2 5.6 1.1 5.8 1.2

1000

2 15.6 9.2 13.6 7.2 12.3 6.3 12 6 10.8 5.2 9.7 5

4 8.2 3.7 8.1 3 5.6 2 6 2.2 7.1 2.4 7.9 2.5

6 6.9 2.4 5.6 1.6 5.4 1.6 5.8 1.9 6.7 2.1 7.8 2.3

8 6.4 1.9 5.4 1.3 5.4 1.5 5.8 1.7 6.7 1.9 6.9 1.9

2000

2 19.1 11.9 15.8 9.4 13.5 7.4 14.7 8 15.1 7.8 14.1 6.9

4 10.6 5.2 8.8 4.1 7.4 2.8 6.4 2.6 7.2 2.8 8.4 3.1

6 7.9 3.5 8 2.8 5.5 1.9 5.9 2.1 6.9 2.5 8 2.7

8 7.1 2.7 5.8 1.7 5.4 1.7 5.8 1.9 6.9 2.2 7.9 2.5

4000

2 23.6 14.8 19 12.1 17.2 10 15.9 9.3 16.5 9.5 17 9.4

4 12.9 7.2 11.4 5.4 10.8 4.6 7.9 3.4 7.5 3.3 8.6 3.8

6 10 5 9 3.8 6.7 2.4 6 2.5 7.1 2.8 8.1 3

8 8.4 3.7 8.2 2.9 5.5 1.9 5.9 2.1 7 2.5 8.1 2.8

10000

2 31.2 12.1 24.3 16.6 20.8 13.5 20.4 12.3 18.5 11.4 18.6 11.5

4 17.3 10.5 14 7.9 12.3 6.4 13 6.2 12.6 5.4 8.7 4.3

6 13.6 7.3 11.2 5.3 11.2 4.4 7.2 3.1 7.8 3.2 8.5 3.8

8 11.1 5.6 9.4 4.4 7.2 2.6 6 2.5 7.1 2.8 8 2.9

Continued on next page

Faster Overlay Creation under High Growth Rate 157

Table 6.1 – continued from previous page

Rate d Ssize = 5 Ssize = 10 Ssize = 20 Ssize = 30 Ssize = 40 Ssize = 50

ST SD ST SD ST SD ST SD ST SD ST SD

20000

2 38.5 28 29.2 20.6 24.2 16.6 24 14.9 23.1 14.2 22.1 13.8

4 21.3 14.1 16.4 10 13.8 7.6 14.4 7.6 16 7.7 15.1 7.3

6 16.3 10 12.9 7 11.9 6 11.6 5.4 7.7 3.7 8.3 3.8

8 13.6 7.8 12.1 5.6 11.2 4.5 7.2 3.1 7.2 3.2 8.2 3.5

40000

2 48.1 35.8 36.1 26.3 28.8 20.3 26.8 17.8 26.1 16.9 25.6 16.5

4 26.3 18.1 20.1 13.1 16.2 9.7 15 8.7 15.6 8.9 15.3 9

6 20.3 13 15.6 8.4 12.9 7.1 13.9 7 13.6 6.5 14.5 5.6

8 17 10.5 13.5 7.5 11.8 6.1 11.9 5.4 10.2 4 18.5 3.9

Table 6.1: Stabilization Time (ST) and average Startup De-

lay (SD) in seconds at different arrival rates (nodes/second)

for different out degree values and for different set size values

6.4.1 Estimation of optimum system parameters

The stabilization time is defined as the time taken for providing feed to more

than 90% of the newly arrived peers. The start-up delay is defined as the

time taken by the peer after its arrival, to get connected to a parent peer

already receiving the stream.

Some parameters are kept fixed such as decay rate for sets, D = 1

set/second, and feed forwarder entry expiry time, etime = 10 seconds. The

parameters d and Ssize are varied to capture the effect of their variation on

the stabilization time and on the average startup delay.

Faster Overlay Creation under High Growth Rate 158

Initially, the system contains a single set having a single feed forwarder

entry. Nodes arrive with a uniform arrival rate (λ) for a period of 5 seconds.

It was restricted to 5 seconds because even if we take this period slightly high

say 10 seconds; the simulation takes a lot of time and does not contribute

any new information in the result. Further, the feed forwarder entry expiry

time would be irrelevant in face of high arrival rate since the entry would be

removed after all of its out degrees are utilized even before it expires. The

data obtained through simulation has been put in a table form as well as in

2-d plots. The arrival rate considered is as low as 100 nodes/second to as

high as 40000 nodes/second. The corresponding values for stabilization time

(ST) and average startup delay (ST) have been obtained for different values

of out-degree (feed-forwarding capacity, d).

Stabilization time in our simulation has been observed as follows. We

allow arrival for 5 seconds. We have a count of nodes that has arrived in

these 5 seconds. Say with rate of 2000 nodes/second, 10000 nodes arrive in 5

second. Now we observe, at what time instant, 9000 nodes (90% of the total

arrived nodes) get the feed. We start clock at the arrival of first node and

stop the clock when 90% of the total arrived nodes have got the feed.

From the table as well as from the plots obtained, following can be in-

ferred.

(i) At a fixed set size, higher out-degree reduces stabilization time and

average startup delay (ST and SD) for sure but this reduction is more

pronounced only at high arrival rates. At low arrival rates reduction

is not significant. It depicts that increasing out degree gives more

advantage at high arrival rates than at low arrival rates. The variation

range for out degree considered is from 2 to 8 and the minimum ST as

well as SD is obtained at 8.

Faster Overlay Creation under High Growth Rate 159

(ii) At a fixed out degree value, higher value of set size reduces stabilization

time and average startup delay in general, but there are exceptions

where optimum is obtained before the highest set size value. We have

considered here set sizes ranging from 5 to 50. At higher arrival rates,

minimum is obtained at Ssize = 50, but at low rates, minimum is

sometimes seen at Ssize = 20. It depicts that increasing set size any

further at low arrival rate is not always advantageous.

Figure 6.1 and 6.2 plot the stabilization time for different values of

out-degree at Ssize = 5 and 20 respectively as function of arrival rates.

As seen from the figure, as we increase d from 2 to 4 and up to 8, the

reduction in ST becomes less and less pronounced. An out degree value

4 can be considered as optimum as it gives the maximum advantage

with the increase in arrival rate. Therefore d = 4 is taken for the rest

of the simulations.

Figure 6.3 and 6.4 plot the stabilization time for different values of Ssize

at out-degree d = 2 and 4 respectively as function of arrival rates. As

seen from the figures, with increase in Ssize from 5 to 20 and then up

to 40, the reduction in ST is not always guaranteed and at low arrival

rates minimum is seen at Ssize = 20. Even at high arrival rate, though

minimum is obtained at Ssize = 50, as seen from the table 6.4, but

the advantage is not significant. Therefore Ssize = 20 is considered as

optimum and this value is taken for the rest of the simulations.

Figure 6.5 and 6.6 plot the average startup delay against arrival rate once

for varying out degree (Ssize constant) and then for varying Ssize (outdegree

constant). These plots also have same nature of variation as in figures 6.1,

6.2, 6.3 and 6.4 for stabilization time. The out degree = 4 and set size = 20

again come as values with maximum advantage.

Faster Overlay Creation under High Growth Rate 160

100 200 400 1,000 2,000 4,000 10,000 20,000 40,000
0

5

10

15

20

25

30

35

40

45

50

Arrival Rate

S
ta

bi
liz

at
io

n
T

im
e

(O
ut

de
gr

ee
 v

ar
ie

s,
 S

et
si

ze
 =

 5
)

2, 5
4, 5
6, 5
8, 5

Figure 6.1: Effect of increasing arrival rate on the stabilization time for various

out degree values for set size = 5

6.4.2 Flash crowd handling at different rates

The plots for stabilization time and average peer startup delay against arrival

rate are obtained on a log scale in figures 6.1 to 6.4 and in figures 6.5 to 6.6

respectively. As seen from these figures (observing any single plot line at a

time), when arrival rate is slow, the system stabilizes immediately after all

the nodes have arrived. On increasing the rate further, the stabilization time

increases, but the slope decreases for very high rates. Figures clearly reveal

that the peer start-up delay as well as stabilization time varies logarithmically

with the arrival rate. Hence, our algorithm is able to work for very high

growth rates

Faster Overlay Creation under High Growth Rate 161

100 200 400 1,000 2,000 4,000 10,000 20,000 40,000
0

5

10

15

20

25

30

Arrival Rate

S
ta

bi
liz

at
io

n
T

im
e

(O
ut

de
gr

ee
 v

ar
ie

s,
 S

et
si

ze
 =

 2
0)

2, 20
4, 20
6, 20
8, 20

Figure 6.2: Effect of increasing arrival rate on the stabilization time for various

out degree values for set size = 20

6.4.3 System scale and peer start-up delay

In the simulation to see the scaling behaviour, we assumed that initially the

system contains only the source node. Thereafter, in next 5 seconds, total

200,000 nodes are added at the rate of 40,000 nodes/second. The values of

other parameters are set as following: D = 1/seconds, etime = 10 seconds,

d = 4 and Ssize = 20. Figure 6.7 shows how the system scales with time.

When the flash crowd arrives, initially the system grows slowly as limited

resources are available in the system, but when sufficient feed-forwarders are

available; the system grows very fast and even surpasses the node arrival

rate.

Figure 6.8 shows the distribution of peer start-up delay for the arrival

rate of 32,000 nodes/second with other parameters set as above.

Faster Overlay Creation under High Growth Rate 162

100 200 400 1,000 2,000 4,000 10,000 20,000 40000
5

10

15

20

25

30

35

40

45

50

Arrival Rate

S
ta

bi
liz

at
io

n
T

im
e

(O
ut

de
gr

ee
 =

 2
, S

et
si

ze
 v

ar
ie

s)

2, 5
2, 10
2, 20
2, 40

Figure 6.3: Effect of increasing arrival rate on the stabilization time for various

set size values for out degree = 2

6.4.4 Steady state behaviour

Finally, we see the behavior of network with continuous constant arrival

rate for sufficiently long time. It is observed that the value of N (number

of sets), the number of sets increases monotonically with time and finally

saturates after certain time. If entry expiry time is increased, N at saturation

increases, while increasing Ssize decreases N at saturation. Observations for

number of sets against time at continued arrival rate of 8000 nodes/second,

for variations in out-degree (d) are shown in figure 6.9. The two plots for

out-degree values 4 and 8 respectively are obtained for constant set size (Ssize

=50) and entry expiry time (etime =10s). Observations reveal that the final

value of N does not depend much on degree.

Observations for number of sets against time for variations in set size for

Faster Overlay Creation under High Growth Rate 163

100 200 400 1,000 2,000 4,000 10,000 20,000 40,000
5

10

15

20

25

30

Arrival Rate

S
ta

bi
liz

at
io

n
T

im
e

(O
ut

de
gr

ee
 =

 4
, S

et
si

ze
 v

ar
ie

s)

4, 5
4, 10
4, 20
4, 40

Figure 6.4: Effect of increasing arrival rate on the stabilization time for various

set size values for out degree = 4

arrival rates 2000, 4000 and 8000 nodes/second are shown in figures 6.10,

6.11 and 6.12 respectively. These observations are taken for set size variation

between 10 to 50 while out-degree (d=8), and entry expiry time (etime=10s)

are kept constant.

In all these plots, there appears almost a flat region sandwiched between

two distinct regions with different slopes and finally saturation occurs. The

reason for the flat region is following. At the arrival of surge in the beginning,

many new sets are formed almost simultaneously, though none of them have

more than 1 or 2 entries and it takes time to fill these sets. This flat region

denotes the time elapsed while the average occupancy of these sets increases

from 1 to the maximum value.

Further, this is to state that for each data point, multiple simulations have

Faster Overlay Creation under High Growth Rate 164

100 200 400 1,000 2,000 4,000 10,000 20,000 40000
0

5

10

15

20

25

Arrival Rate

S
ta

rt
up

 D
el

ay
 (

O
ut

de
gr

ee
 v

ar
ie

s,
 S

et
si

ze
 =

 2
0)

2, 20
4, 20
6, 20
8, 20

Figure 6.5: Effect of increasing arrival rate on the startup delay for variation in

out degree; setsize remains constant at 20

been done untill the standard deviation is less than 5% of mean value. Thus

for each point, the number of runs are different. Since confidence interval is

small and uniform, it has not been shown in the results.

6.4.4.1 Analysis for the steady state behaviour

Since there are constant number of sets in the steady state, total number

of feed forwarders will also be constant. It implies that total number of

arriving nodes (that become feed forwarders) is equal to total number of feed

forwarders exhausted per second. Since every second 1/etime part of total

forwarders expires (from the definition of entry expiry time). Now, there are

(N. Ssize) feed forwarders under steady state.

Faster Overlay Creation under High Growth Rate 165

100 200 400 1,000 2,000 4,000 10,000 20,000 40,000
0

2

4

6

8

10

12

14

16

18

20

Arrival Rate

S
ta

rt
up

 D
el

ay
 (

O
ut

de
gr

ee
 =

 4
, S

et
si

ze
 v

ar
ie

s)

4, 5
4, 10
4, 20
4, 40

Figure 6.6: Effect of increasing arrival rate on the startup delay for variation in

set size as out degree remains constant at 4

λ =
N.Ssize

etime
(6.1)

⇒ N =
λ.eime

Ssize
(6.2)

The value of N calculated as above matches with the value of N obtained

by simulations.

Since arrival rate is λ, λ feed forwarders are selected per second. One

feed forwarder is selected per 1/ λ second.

Assume no node is expiring and N is very large. On every new arrival, a

feed forwarder is selected with probability

Faster Overlay Creation under High Growth Rate 166

Figure 6.7: System scales with time when nodes are arriving with a rate = 40000

nodes/second for 5 seconds

P(any of existing feed forwarders is selected) =
1

N.Ssize
(6.3)

Since there are λ arrivals per second, a feed forwarder is selected λ .(1 /

N. Ssize) times per second. Therefore time needed to select it d times will

be (N. Ssize. d) / λ. And thus approximate time to exhaust all d degrees is

Faster Overlay Creation under High Growth Rate 167

Figure 6.8: Distribution of startup delay for rate = 32000 nodes/second

(N. Ssize. d) / λ.

Finally we can comment that in the steady state, out-degree of forwarding

nodes will be around 1 and not d since in the steady state N is constant and

hence N. Ssize is constant i.e. number of forwarders is constant. Therefore

under steady state, as many nodes are added, that many numbers of feed

Faster Overlay Creation under High Growth Rate 168

Figure 6.9: Variation of N against time for continued arrival rate for out degree

values as d = 4 and 8; set size (= 50) and etime (= 10 seconds) remain constant,

Rate = 8000 nodes/second

forwarders are consumed. Thus only one out-degree is filled in the feed

forwarders. They are removed due to expiry timer.

Faster Overlay Creation under High Growth Rate 169

Figure 6.10: Variation of N against time for continued arrival rate for different

set size values; peer’s feed forwarding capacity d (= 8) and etime (= 10 seconds)

remain constant, Rate = 2000 nodes/second

6.5 Conclusion

The algorithms presented to handle flash crowd in this chapter reduce the

load at root nodes by dynamically changing their numbers and thus new

Faster Overlay Creation under High Growth Rate 170

Figure 6.11: Variation of N against time for continued arrival rate for different

set size values; peer’s feed forwarding capacity d (= 8) and etime (= 10 seconds)

remain constant, Rate = 4000 nodes/second

arriving nodes are able to get the stream feed even at very high network

growth rate. The number of sets (each root node maintains one set of feed

forwarders) i.e., the number of root nodes starts increasing at the onset of

Faster Overlay Creation under High Growth Rate 171

Figure 6.12: Variation of N against time for continued arrival rate for different

set size values; peer’s feed forwarding capacity d (= 8) and etime (= 10 seconds)

remain constant, Rate = 8000 nodes/second

flash crowd, and then decays at a fixed rate. But at least one set is always

maintained for all arrival rates. PeerSim based simulation results indicate

Faster Overlay Creation under High Growth Rate 172

that the proposed algorithm is effective.

There exists an optimum value for the pair (out-degree, set size) for which

minimum stabilization time is obtained. For a given arrival rate, initially

the system grows slowly but it soon surpasses the arrival rate as the feed

forwarders’ density increases. The scheme has provision to accommodate

flash crowd with very high shock level yet it does have start up delay within

a reasonable limit.

The results obtained are better than our earlier work [52] where dis-

tributed population control algorithm allows the system to scale up better

as compared to the system without admission control. Though it was not a

complete P2P design; as every node had to contact the bootstrapping server

once before joining the network but the work done by the bootstrapping

server was kept to a minimum. Through bootstrapping a nodeRank was as-

signed to each new arriving node. In [52], only 80% peers got the feed within

6 time slots, whereas 90% peers get the feed within 6 time slots with flash

crowd handling algorithm presented here. The results presented here are

part of ongoing research for proposed reliable and scalable Brihaspati Sync

LLDS System [49].

Chapter 7

Conclusions and Future Scope

In the present chapter, the conclusions of this thesis work have been pre-

sented by revisiting the lessons learned during the course of research work.

Directions for further research in this area are also mentioned at the end.

7.1 Conclusions

Exponential growth in the internet access to people all over the world and

the advent of peer-to-peer (P2P) technology has revolutionized the way of

human interaction in last two decades. P2P technology, that initially came

up with an aim to optimize resource sharing among systems in the network

gave birth to many interesting applications. P2P network can support multi-

cast, also called as Application Layer Multicast (ALM) for millions of people

distributed across the globe. ALM has been proven to be a good alternative

of IP (network layer) Multicast where multicast-related functionalities are

moved to end-hosts. In ALM, peers self organize themselves and an overlay

topology is built for data distribution.

There have been many attempts to write an ALM protocol for cost ef-

Conclusions and Future Scope 174

fective, scalable live streaming but still an ideal solution has not come. For

different sets of intended applications, there are different sets of issues that

can be organized in a matrix form for more clarity with rows and columns

corressponding to applications and problems respectively. Our contribution

has attempted to address a small subset of issues from this matrix.

Whether we take structured or unstructured P2P network as substrate,

the major concern in ALM is to route data efficiently and reliably in the

overlay topology right from the beginning of a session.

The main contributions of the thesis are the following.

1. An algorithm for construction and maintenance of bi-connected mesh

in unstructured P2P network is proposed. Algorithms to create bicon-

nectivity in tree overlays are presented. Further, algorithm for creating

distribution tree overlay over the bi-connected mesh is given. Compar-

ative analysis of these algorithms is given at the end.

2. Structured P2P networks have been considered next. Three variants

of dual-feed data distribution approach are proposed. Use of query

network enables building of multicast tree directly as an overlay. Loop

formation avoidance scheme in the event of failure is explained. Delay

optimization schemes for distribution tree, and start up booster concept

for Chord stability has been introduced in this chapter.

3. Flash crowd handling has been taken care of finally. Two different

algorithms, one to alleviate the load of root nodes and the other to

guarantee the availability of feed to any arriving node even at very

high growth rate are proposed.

Conclusions and Future Scope 175

7.2 Summary of Important Findings

The basic terminology, performance metrics, and detailed description of few

initial research efforts in the direction of development of streaming ALM

protocols are given in tutorial form in chapter 2. It is evident from this

survey that resource search becomes a major issue in a large P2P network

and the scalable services of DHT based distributed lookup protocols become

necessary.

Critical Comparison of available reliability approaches for ALM protocols

is given in chapter 3. It has been found that the available approaches are

insufficient to maintain perfect reliability which is necessary for live streaming

application.

In chapter 4, Reliability in unstructured P2P networks is investigated.

The algorithm for development of bi-connected mesh among participating

hosts is found to be characterized by following.

1. Average out-degree requirement saturates soon, while the network di-

ameter increases linearly with the number of nodes.

2. Two node-disjoint paths exist between any node pair in the network

Out of two approaches suggested for creating bi-connectedness in tree-

first protocols, connected leaf nodes approach proves to be superior to child-

grandparent approach. Algorithm for data distribution overlay maintains

first hop nodes to two best paths towards source from any node.

Reliability issues in structured overlaid multicasting are investigated in

chapter 5. Out of the three proposed approaches for dual-feed data distribu-

tion, approach-2, one with two priority trees, proves to be the best in terms of

both differential delay and average latency. The differential delay does not

increase beyond two, while average latency increases logarithmically with

Conclusions and Future Scope 176

number of nodes. System scales soon with time and its failure performance

is found to be as expected. Start up booster concepts plays a positive role

for the Chord stability in case of high failure rates and the algorithms give

better results whenever start up booster concept is invoked.

Chapter 6 covers the issue of flash crowd handling under high growth

rate in overlay streaming protocols. Fully distributed algorithms, one to

alleviate the load of root nodes, and the other to regulate the availability of

forwarders in synchronism with the current requirement have been developed.

Simulation results prove the effectiveness of the proposed algorithms at high

growth rate.

7.3 Directions for Future Research

The present work has taken up the reliability issues at priority and suggested

the solutions for associated concerns such as scalability and abrupt growth in

the network for live media streaming. The prime objective has been to devise

an algorithm which can be later implemented in BrihaspatiSync, an open-

source live lecture streaming system. The issue of complexity has not been

taken up in the thesis. Since the algorithms are distributive, the computation

complexity at each node will be lower, however overall message complexity

will be of significance and it is expected to be linear with factor N.(logN), if

all N nodes are generating the querries. As further evaluation of algorithms,

their complexity analysis can be done.

The proposals suggested in the thesis have been tested in PeerSim sim-

ulator. Further evaluation of the algorithms developed in this thesis can be

done on an experimental testbed, that will give a better evaluation.

During the course of the investigations carried out in this thesis, follow-

Conclusions and Future Scope 177

ing issues are identified for the future research in this area. These are as

follows: prevention of free riding, Handling of heterogeneity among nodes,

fair distribution of load among nodes.

Bibliography

[1] B. Zhang, S. Jamin, and L. Zhang, “Host multicast: A framework for

delivering multicast to end users,” In proceedings of IEEE Infocom, NY,

USA, pp. 1366–1375, June 2002.

[2] T.-M. T. Kwan and K. L. Yeung, “On overlay multicast tree construction

and maintenance,” In proceedings of IEEE International Conference on

Collaborative Computing: Networking, Applications and Worksharing,

San Jose, CA, USA, 2005.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object

location and routing for large-scale peer-to-peer systems,” In proceed-

ings of 18th IFIP/ACM International Conference on Distributed Sys-

tems Platforms (Middleware), Heidelberg, Germany, vol. 11, pp. 329–

350, November 2001.

[4] Wikipedia, “History of communication,”

http://en.wikipedia.org/wiki/History of Communication, 05:46; June

28th, 2014.

[5] Matthews, Stephen, C. Bernard, and P. Marcia, “Atlas of languages:

The origin and development of languages throughout the world,” New

York: Facts on File, 1996.

BIBLIOGRAPHY 179

[6] B. Pourebrahimi, K. Bertels, and S. Vassiliadis, “A survey of peer-to-

peer networks,” In proceedings of the 16th Annual Workshop on Circuits,

Systems and Signal Processing, Veldhoven, The Netherlands, pp. 1–8,

November 2005.

[7] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”

In proceedings of the First IEEE International Conference on Peer-to-

Peer Computing, Linkoping, Sweden, pp. 99–100, August 2001.

[8] C. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies

of replicated objects in a distributed environment,” Theory of Comput-

ing Systems, vol. 32, no. 3, pp. 241–280, 1999.

[9] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.

Kubiatowicz, “Tapestry: A resilient global-scale overlay for service de-

ployment,” IEEE Journal on selected areas in communications, vol. 22,

no. 1, pp. 41–53, January 2004.

[10] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down

Approach Featuring the internet, 3rd ed. Pearson Education, 2005.

[11] internetworldstats.com, “Internet world stats: Usage and population

statistics,” http://www.internetworldstats.com/stats.htm, 2014.

[12] S. Fahmy and M. Kwon, “Characterizing overlay multicast network and

their costs,” IEEE/ACM Transaction on Networking, vol. 15, no. 2, pp.

373–386, April 2007.

[13] S. Banerjee and B. Bhattacharjee, “A compara-

tive study of application layer multicast protocols,”

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832,

2010.

BIBLIOGRAPHY 180

[14] S. W. Tan, G. Waters, and J. Crawford, “A multiple shared trees ap-

proach for application layer multicasting,” In proceedings of the IEEE

International Conference on Communications, vol. 3, pp. 1456–1460,

2004.

[15] Y.-h. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end sys-

tem multicast,” In Proceedings of the ACM International Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS),

Santa Clara, CA, USA, pp. 1–15, June 2000.

[16] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-

cation layer multicast,” In proceedings of ACM SIGCOMM Conference

on applications, Technologies, Architectures and Protocols for Computer

Applications, Pittsburgh, Pennsylvania, USA, vol. 32, no. 4, pp. 205–217,

October 2002.

[17] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “Almi: An applica-

tion level multicast infrastructure,” In proceedings of the Third USENIX

symposium on Internet technologies and Systems (USITS), San Fran-

cisco, CA, USA, 2001.

[18] Z. Wang, X. Cao, and R. Hu, “Adapted routing algorithm in the overlay

multicast,” In Proceedings of International Symposium on Intelligent

Signal Processing and Communication Systems, pp. 634–637, November

28-December 1, 2007.

[19] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller,

“Construction of an efficient overlay multicast infrastructutre for real-

time applications,” In proceedings of 22nd Annual Joint Conference of

BIBLIOGRAPHY 181

the IEEE Computer and Communication Societies (INFOCOM), March-

April 2003.

[20] X. Zhang, J. Liu, L. B., and T.-S. P. Yum, “Donet/coolstreaming: A

data driven overlay network for peer-to-peer live media streaming,” In

proceedings of 24th Annual Joint Conference of the IEEE Computer and

Communications Societies, Miami, FL, pp. 2102–2111, March 2005.

[21] “Pplive,” http://www.pplive.com/en/index.html.

[22] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient mul-

ticast using overlays,” IEEE/ACM transaction on networking, vol. 14,

no. 2, pp. 237–248, April 2006.

[23] C. Huitema, “The case for packet level fec,” In proceedings of 5th inter-

national IFIP workshop on protocols for High Speed Networks, 1996.

[24] J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain ap-

proach to asynchronous reliable multicast,” IEEE Journal on Selected

Areas in Communications, vol. 20, no. 8, October 2002.

[25] Y. Kunichika, J. Katto, and S. Okubo, “Application layer multicast with

proactive route maintenance over redundant overlay trees,” In proceed-

ings of Conference on Advances in Multimedia Information Processing-

PCM 2004, 5th Pacific Rim Conference on Multimedia, Tokyo, Japan,

pp. 306–313, November-December 2004.

[26] A. Mahanti and et. al., “Scalable on-demand media streaming with

packet loss recovery,” In proceedings of IEEE ACM Special Interest

Group on Data Communication (SIGCOMM) conference, 2001.

BIBLIOGRAPHY 182

[27] B. Rang, I. Kalil, and Z. Tari, “Reliability enhanced large scale applica-

tion layer multicast,” In proceedings of IEEE Global telecommunication

System Conference (GLOBECOM), San Francisco , CA, USA, 2006.

[28] F. E. Bustamante and Y. Qiao, “Friendship that last: Peer lifespan and

its role in p2p protocols,” In proceedings of Workshop on Web Control

caching and Distribution, Septeber 2003.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content addressable network,” In proceedings of the ACM con-

ference on Applications, technologies, architectures, and protocols for

computer communications (ACM SIGCOMM’01), pp. 161–172, 2001.

[30] J. Liebeherr, M. Nahas, and W. Si, “Application layer multicast with

delaunay triangulations,” IEEE Journal of Selected Areas in Communi-

cations, vol. 20, no. 8, pp. 1472–1488, 2002.

[31] M. Castro, D. P., A. M. Kermarrec, and R. A., “Scribe: A large-scale and

decentralized application-level multicast infrastructure,” IEEE Journal

on Selected Areas in Communication, vol. 20, no. 8, pp. 1489–1499,

October 2002.

[32] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applica-

tions,” In proceedings of ACM Special Interest Group on Data Commu-

nication (SIGCOMM) conference, San Diego, California, USA, vol. 31,

no. 4, pp. 149–160, August 2001.

[33] S. Birrer and F. E. Bustamante, “A comparison of resilient overlay mul-

ticast approaches,” IEEE Journal on Selected Areas in Communications,

vol. 25, no. 9, pp. 1695–1705, December 2007.

BIBLIOGRAPHY 183

[34] F. E. Bustamante and S. Birrer, “Resilient peer-to-peer multicast with

out the cost,” In proceedings of 12th Annual Multimedia Computing and

Networking Conference (MMCN), San Jose, CA, USA, January, 2005.

[35] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and

A. Singh, “Splitstream: High-bandwidth multicast in cooperative envi-

ronments,” In proceedings of 19th ACM Symposium on Operating Sys-

tems Principles (SOSP), Bolton Landing, NY, USA, pp. 298–313, Oc-

tober 2003.

[36] A. Singh and Y. N. Singh, “Multipath approach for reliability in query

network based overlaid multicasting,” http://arxiv.org/abs/1309.3628,

September 2013.

[37] B. Li and J. Liu, “Multirate video multicast over the internet: An

overview,” IEEE Network, vol. 17, no. 1, pp. 24–29, 2013.

[38] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient peer-to-

peer streaming,” In proceedings of the 11th IEEE International Confer-

ence on Network Protocols (ICNP), Atlanta, Georgia, USA, November

2003.

[39] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,

“Distributing streaming media content using cooperative networking,”

In proceedings of 12th International Workshop on Network and Oper-

ating Systems Support for Digital Audio and Video (NOSSDAV’02),

Florida, NY, USA, pp. 177–186, May 2002.

[40] V. Goyal, “Multiple description coding: Compression meets the net-

work,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74–93,

2001.

BIBLIOGRAPHY 184

[41] Wikipedia, “Web acts as hub for info on attacks,”

http://news.cnet.com/news/0-1005-200-7129241.html?tag=rltdnws,

11 September 2001.

[42] “Akamai,” http://www.akamai.com/.

[43] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “De-

ployment issues for the i p multicast service and architecture,” IEEE

Network, vol. 14, no. 1, January 2000.

[44] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Pani-

grahy, “Consistent hashing and random trees: Distributed caching pro-

tocols for relieving hot spots on the world wide web,” In proceedings of

29th Annual ACM symposium on Theory of Computing (P2P’09), El

Paso, TX, pp. 654–663, May 1997.

[45] S. Y. Shi and J. S. Turner, “Multicast routing and bandwidth dimen-

sioning in overlay networks,” IEEE journal on selected areas in commu-

nications, vol. 20, no. 8, pp. 1444–1455, October 2002.

[46] X. Jin, W. P. Ken, and S. H. Gary Chan, “Loss recovery in application-

layer multicast,” IEEE Multimedia, published by IEEE computer society,

vol. 15, pp. 18–27, 2008.

[47] A. Montresor and J. Mark, “Peersim: A scalable p2p simulator,” In

proceedings of 9th International Conference on Peer-to-peer (P2P’09),

Seattle, WA, pp. 99–100, September 2009.

[48] “Peersim,” http://peersim.sourceforge.net.

[49] “Brihaspati-3,” http://brihaspati.nmeict.in/brihaspati/servlet/brihaspati.

BIBLIOGRAPHY 185

[50] Y. Chen, B. Zhang, and C. Changjia, “Modelling and performance anal-

ysis of peer-to-peer live streaming systems under flash crowds,” In pro-

ceedings of IEEE ICC 2011, Kyoto, pp. 1–5, June 2011.

[51] Z. Chen, B. Li, G. Keung, H. Yin, C. Lin, and Y. Wang, “How scal-

able could p2p live media streaming system be with the stringent time

constraint,” In proceedings of IEEE ICC 2009, Dresden, pp. 1–5, June

2009.

[52] A. Dwivedi, S. Awasthi, A. Singh, and Y. N. Singh, “Flash crowd han-

dling in peer-to-peer live video streaming systems,” In proceedings of

ICEIT MCNC 2015, New Delhi, pp. 1–5, April 2015.

List of Publications

1. Ashutosh Singh, Anurag Dwivedi, and Yatindra Nath Singh,“Algorithms for

Faster Overlay Creation under High Growth Rate in Query Network based

Overlaid Multicasting”, National Communication Conference (NCC), IIT

Guwahati, 4-6 March 2016, Available at IEEE Xplore Digital Library

2. Ashutosh Singh, and Yatindra Nath Singh,“Approaches toward Maintaining

Biconnectivity for resilience in Overlaid Multicasting”, Networking and

Internet Architecture, Computer Science, Cornell University Library, 2013,

Arxiv.org/abs/1310.4291

3. Ashutosh Singh, and Yatindra Nath Singh,“Multipath Approach for reliability

in Query Network based Overlaid Multicasting”, Networking and Internet

Architecture, Computer Science, Cornell University Library, 2013, Arxiv.

org/abs/1309.3628

4. Anurag Dwivedi, Sateesh Awasthi, Ashutosh Singh, Yatindra Nath Singh,

“Flash Crowd Handling in P2P Live Video Streaming Systems”, ICEIT

MCNC 2015, 16-17 April, 2015, New Delhi.

	thesis_20170324
	THESIS_CERTIFICATE PAGE_20170324_New Doc 2017-03-20_1
	thesis_20170324

