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Online social network has become one of the most important medium to propa-

gate the information among communities. The topologies of these have been found as

complex network arrangements. Thus, the study of information diffusion in the com-

plex networks is of great importance. If any information circulates without officially

publicized confirmation, it is called rumor. Most of the researchers have focused on

the rumor dynamics, primarily deriving from earlier epidemic studies. The susceptible-

infected-removed (SIR) model and its variants for rumor spreading were introduced

many years ago by Daley-Kendal and Maki-Thomsan [1, 2] without considering the

topology of the underlying networks. In these models, population of nodes are divided

into three groups: ignorants, spreaders and stifler. The models assume that the rumor

propagates through pairwise contacts of the spreaders with ignorants. By considering

the topology of network, rumor model on small world network [3, 4, 5] and scale free

networks [6] have been defined. In today’s information oriented society, a mechanism to
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suppress harmful rumors in social web has become very important. In order to control

the spread of rumors, inoculating the nodes is an option. Although, random inocula-

tion strategy works very well in homogeneous random networks, but this strategy is not

effective in preventing a rumor in scale free networks [7]. Hence, the new inoculation

strategies need to be developed which are able to recover from the rumor spreading.

One of the efficient approach is to inoculate the high degrees nodes, or more specifically,

to inoculate those nodes (hereafter termed as hubs or hub nodes) which have degrees

higher than a preset cut-off value kc . Such a strategy is known as targeted inoculation

[8, 9, 10, 11, 12, 13]. Targeted inoculation is successful in arresting the rumor spread

in scale free networks [7]. Random inoculation usually requires inoculation of large

number of nodes for being effective. If nodes with higher connectivity are targeted for

inoculation, the same effectiveness can be achieved with smaller number of inoculated

nodes. But it requires the knowledge of nodes which have higher connectivity [14].

The classical rumor spreading model based on SIR model was proposed by Nekovee

et al. [3] for small world (homogeneous) and scale free (heterogeneous) networks. When

a spreader meets with an ignorant node, ignorant node becomes a spreader with rate

λ. When a spreader meets with a spreader or stifler, the spreader becomes a stifler who

accepts the rumor with rate σ. A spreader can become stifler spontaneously with rate

δ. In further improvement of this model, the real life scenarios can be added. When

a person passes rumor to his friends then, some of them accept the rumor and spread

it, some of them accept it but do not spread it, while some of them reject the rumor.

Therefore in the thesis, two new compartments for the population of nodes have been

added in the classical model: nodes who accept the rumor and become stifler, nodes

who reject the rumor with rate ρ and become stifler. Here, 1/ρ has been considered as

acceptability factor. Therefore, acceptability factor is considered as a new parameter
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in the model and its impact has been investigated on the rumor spreading. It has been

found that it helps to control the rumor spreading when simultaneously applies with

the inoculation of nodes. The new models have been considered for small world network

which are homogeneous [15], as well as scale free network which are heterogeneous [16].

In both the scenarios, networks have been considered uncorrelated (or no degree-degree

correlation).

The model has been further modified, to incorporate the links with varying tie-

strengths. The tie strength models the weights for the edges between the pair of nodes

for rumor spreading with the varying spreading and stifling rates [17]. We have further

considered the rumor spreading that will vary nonlinearly with the nodal degree of

the neighbors of an informed node. In the classical model, a node contacts all of its

neighbors in a single time step for rumor spreading. This scenario can not be always true

for social networks. A person can spread the rumor only to some of his friends in a single

time step. Therefore, number of contacted neighbors in a single time step by a node for

rumor spreading may be nonlinear e.g. kα, with exponent α where, 0 ≤ α ≤ 1. Further,

in the classical model, spreading rate λ and stifling rate σ remain constant throughout

the population. But λ and σ may vary according to the tie strength between the nodes.

It can be understood by an example where a person has higher probability to spread

the rumor to his more close ignorant friends in comparison with the less close ignorant

friends. The tie strength between two nodes is (kikj)
β , where ki and kj are degrees of

node i and j, and β is tie strength exponent. Considering α and β exponents, a new

rumor spreading model can be defined. Here, the new models has been considered for

uncorrelated scale free networks. The existing rumor spreading model has also been

used for inoculation for correlated scale free network to study the rumor dynamics [18].

In order to control the rumor spread, the inoculation of nodes is an effective tech-
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nique. We have looked into the random, targeted, and neighbor inoculation mechanisms

for their effectiveness in all proposed rumor spreading models. We have further looked

into the selection of nodes for inoculation on the basis of structural centrality condi-

tions [19]. It has been observed that the rumor spread can be effectively controlled by

inoculation of nodes if chosen judiciously.

The thesis has been organized in the following eight chapters.

Chapter 1, defines the basic theory behind the complex networks. It describes the

metrics used in complex networks, e.g. degree distribution, excess degree etc.. This

chapter also differentiates the correlated and uncorrelated complex networks. Here,

homogeneous and heterogeneous networks have been defined.The construction methods

for both of them are also presented. The given theory of complex network will help in

the design of underlying topology to study the rumor dynamics.

In chapter 2, we have discussed about the classic rumor spreading model and also

discussed the different inoculation strategies.

In chapter 3, we have proposed a new rumor spreading model using the accept-

ability factor. The dynamics of the rumor spreading has been studied using this model

for small world network (homogeneous networks). Inoculation of the nodes has been

considered to stop rumor spreading. Random and targeted inoculation techniques have

been applied on the proposed rumor spreading model for small world network. Rumor

threshold has been found for different fraction of inoculation in small world network.

Finally, the role of acceptability factor has been studied to control the rumor spread-

ing in small world network. Further, acceptability factor in rumor spreading has been

investigated for scale free (which are heterogeneous) networks. As random inoculation

does not work satisfactorily, we have investigated neighbor inoculation for arresting the
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rumor spread for the networks with unknown topologies.

Chapter 4, describes the rumor dynamics and inoculation of nodes for correlated

networks. Different scale free networks have been generated with given correlation

coefficients. Effects of correlation coefficients in controlling of rumor spread in the scale

free networks have been studied. The threshold variation with the change of correlation

coefficients in the scale free networks has also been discussed.

In chapter 5, we have proposed rumor spreading model for more realistic cases

of real world complex networks. Let us assume that in a social network, some of the

friends are closer than others. Therefore, strong tie strengths are there between them.

A node is expected to spread a rumor with high probability to a neighbor connected

strongly than to a neighbor which is loosely connected. The strength of connection

is modeled by the tie strength. Hence, rumor spreading rate may vary with the tie

strength of the edges in the social networks. In this chapter, variable spreading rates

and stifling rates have been included. In more realistic scenario, it depends on a person

that he may spread the information only to some of his friends and not to all at a

time. Thus, the rumors will spread nonlinearly to the neighboring nodes with increase

in the nodal degree. The dynamics of rumor spreading has been studied as a function

of time for different spreading rates. The effects of the tie strength exponent β and

nonlinear rumor spreading exponent α on rumor threshold have been studied. Some

nonzero rumor thresholds have been found with some specific conditions on α and β

values. With certain conditions, constant rumor threshold has been found, which is

independent of the network size. To control the rumor spreading, random and targeted

inoculations have been applied on proposed rumor spreading model and effect of α and

β parameters has been studied.
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In chapter 6, we have discussed a new technique to find influential node based on

structural centrality.

In the last, chapter 7 of the thesis presents the conclusions of the work done. Some

of the possible future research directions are also suggested.
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Chapter 1

Introduction

In this thesis, the dynamic process of the rumor spread in the complex networks

has been studied. We have investigated the dynamic behavior of rumor spread using

different strategies for inoculation of nodes in homogeneous and heterogeneous complex

networks. The rumor spreading model was introduced many years ago by Daley and

Kendal (DK) [1] and its variant was given by Maki-Thomsan (MK) [2]. DK and MK

models have an important shortcoming that they do not take into account the topology

of the underlying social interconnection networks along which rumors spread. It is

important to consider the topology of underlying network. Many researchers have

discussed the properties of the networks which affect the dynamical processes taking

place in the networks. Recently, the complex network structures and their dynamics

have been studied extensively [3, 7, 20, 21, 22, 23, 24, 25]. By analyzing different

real world networks e.g. Internet, WWW, social network and so on, researchers have

identified different topological characteristics of complex networks such as the small

world phenomenon and scale free property. Therefore, we need to study the basics of

complex network before starting to talk about the rumor dynamics and inoculation of

nodes.
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1.1 Network

In the context of networks, graphs are used to model pairwise connections between

components nodes. A complex network is defined as graph, G = (V,E), where, V

denotes the set of nodes and E the set of connections (links or edges) between them.

These links can be either directed or undirected (Figure 1.1). Each link may have

different weights.

21

5

63

21

5

63

(a)Undirected network (b) Directed network

Figure 1.1: Example of a network (graph) with 5 nodes.

1.2 Network Metrics

A network is considered as connected if it is possible to travel between any pair of

individual nodes by moving along edges of the network. An epidemiological interpre-

tation of connectedness is that a single individual node can transmit infection to any

other individual node in the population, typically via a number of intermediate nodes.

Clearly, connectedness can only be determined from global knowledge of the network.

The degree or connectivity of a node, often written as k, is equal to the number of
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neighbors that an individual node has on the graph (that is, the number of other nodes

to whom it is directly connected). Since different individual nodes may have different

numbers of neighbors, we talk about the degree distribution of the network, often

written as P (k). If Xk is the number of nodes having the degree k, then P (k) = Xk/N

is called the degree distribution, where N is the total number of nodes. From this

distribution, the average degree, written as k̄ or �k� , can be calculated as
�

k kPk. The

variance of the degree distribution is given by σ2 =
�

k(k− k̄)2Pk. This variance nearly

equals zero if every individual has the same number of neighbors and we say that the

network is homogeneous. Otherwise, the network will to be classified as heterogeneous.

All of these quantities are local measures i.e, they can be calculated once we know the

connectivity of an individual node with other nodes.

Several metrics have been used to describe the size of the network. The distance

between two nodes is the length of the shortest path that connects them. The diameter

of a graph is the largest of these values when all pairs of nodes are examined. The

average path length can be calculated and provides some idea of the typical number of

steps between individuals on the network . Clearly, one needs to have global knowledge

of the network in order to calculate these quantities

Assortative mixing describes situations in which individuals are more likely to

interact with other individuals who are similar to themselves in some respect [26].

Disassortative mixing describes the opposite situation, in which individuals tend to

interact with dissimilar individuals. Proportionate mixing (also known as random

mixing) occurs when interactions have no particular preference.
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1.3 Complex Networks

A complex network is a network with non-trivial topological features, with patterns

of connection between their elements that are neither purely regular nor purely random.

The structure of complex networks is irregular, complex and dynamically evolving with

time. Thus complex networks resembles the real networks e.g. transportation networks,

phone call networks, social network, the Internet, the World Wide Web , the actors

collaboration network, scientific co-authorship and citation networks, neural network,

metabolic and protein networks [27].

1.4 Properties of Complex Networks

1.4.1 Degree Distributions

The probability of randomly chosen node of degree k is P (k), where 1 ≤ k ≤ N

(N number of nodes in a network). The distribution of the probability P (k) is called

degree distribution in the network. The directed networks have in-degree distributions

and out-degree distributions.

1.4.2 Excess Degree

Except a randomly chosen link to reach on to the node, all other links connected

to the node are considered to be excess degree in the network. qk is the probability

of a node at the end of a random link having excess degree k [24] (Figure 1.2). The

distribution of this probability is the excess degree distribution qk [26, 28] in the network,

and is given by
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qk =
(k + 1)P (k + 1)
�∞

k=1 kP (k)
. (1.4.1)

k = 4
k = 3

n1 n2

Figure 1.2: Excess degree of nodes, edge between n1 and n2 nodes has excess degree 4
at one end and 3 at another end.

Therefore, average number of outgoing edges of a neighbor vertex is

∞
�

k=0

kqk =

�∞
k=0 k(k + 1)Pk+1

�

j jPj

=

�∞
k=0 (k − 1)kPk

�

j jPj

=
�k2� − �k�

�k�
(1.4.2)

Number of Next-Nearest Neighbors : The number of neighbors m hops away

is denoted by zm. Thus

z1 = �k�, (1.4.3)

z1 is also commonly written as z. Equation (1.4.2) gives the average number of nodes

two hops away from the starting node via a specific neighbor vertex. Multiplying the
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Equation (1.4.2) by average degree of starting node, z1 ≡ z, the mean number of second

neighbors, z2 is

z2 = �k2� − �k�. (1.4.4)

The average number of edges emerging from a second neighbor (but not leading

back), is also given by Equation (1.4.2). Hence, the average number of neighbors at the

m hops away is

zm =
�k2� − �k�

�k�
zm−1 =

z2
z1
zm−1. (1.4.5)

using recursion, the relation can be given by

zm =

�

z2
z1

�m−1

z1. (1.4.6)

Giant Connected Component

The set of nodes reachable from a given node is called a component. The convergence

or divergence of Equation (1.4.6) will depend on whether z2 is lesser than z1 or not i.e.,

lim
m→∞

zm =

�

∞, if z2 > z1

0, if z2 < z1
(1.4.7)

The z1 = z2 is the percolation point. For z2 < z1, the total number of neighbors

�

m

zm = z1

∞
�

m=1

�

z2
z1

�m−1

(1.4.8)

=
z1

1 − z2/z1
(1.4.9)

=
z21

z1 − z2
, (1.4.10)
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is finite in the macroscopic limit, whereas for z2 > z1, it is infinite. The complex

network will decay for N → ∞, into non-connected components when the total number

of neighbors is finite.

When the largest component of a graph encompasses a finite fraction of all vertices,

in the macroscopic limit, it is said to form a giant connected component. Only when

the number of neighbors is infinite then there must be a giant connected component.

The Percolation Threshold : If a system has two or more possibly macroscopically

states, then they are said to have a phase transition. The phase transition happens at

z2 = z1. Therefore, from Equation (1.4.4), the condition can be found

�k2� − 2�k� = 0, (1.4.11)
∞
�

k=0

k(k − 2)Pk = 0. (1.4.12)

Joint Degree Distribution

In undirected networks, for a link having excess degree k on one end and excess

degree l at another end [26, 29], we can define joint probability distribution P (k, l) of

the excess degrees of two nodes at either end of a randomly chosen link. For undirected

networks, P (k, l) and P (l, k) will be symmetric [28] i.e.,

P (k, l) = P (l, k). (1.4.13)

For the above equation, the sum rule will be true i.e.,

�

k

P (k, l) = ql. (1.4.14)
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1.5 Assortativity

Assortativity [26, 28, 30, 31, 32, 33, 34, 35] is a property of the complex networks

where nodes mostly make connections with nodes of the similar degree [36, 37, 38].

In the real world, most of the complex networks show assortativity where high degree

nodes are likely to be connected with other high degree nodes. Similarly, some complex

networks show the disassortativity where high degree nodes are likely to be connected

with low degree nodes. Therefore, for the assortative and disassortative complex net-

works the probability for existence of an edge between the two nodes depend on the

degrees of both nodes, respectively.

The assortative mixing can be measured by correlation function in terms of the

degrees of the nodes in the network [26, 29]. The value of this correlation function

will be zero for non-assortative mixing, positive for assortative mixing and negative for

dis-assortative mixing.

In the undirected networks, for non-assortative mixing then

P (k, l) = qkql. (1.5.15)

If there is assortative mixing then, P (k, l) will be different from Equation (1.5.15).

The correlation function with assortative mixing can be defined as

P (k, l) = �kl� − �k��l�

=
�

kl

kl(P (k, l) − qkql). (1.5.16)
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The correlation function [26] can be defined as

r =
1

σ2
q

�

kl

kl(P (k, l) − qkql), (1.5.17)

where, P (k, l) is the joint probability distribution of the excess degrees of the nodes

on the both sides of randomly chosen edge. The σq is the variance of excess degree

distribution, qk, and is given by σ2
q =

�

k k
2qk − [

�

k kqk]2. Similarly, mean of the qk

can be defined as

µq =
�

l

lql. (1.5.18)

Now, correlation function can be defined as

r =
1

σ2
q

�

(
�

kl

klP (k, l)) − µ2
q

�

. (1.5.19)

In the above Equation (1.5.19), −1 ≤ r ≤ 1, where, r = 1 shows full assortative

networks and r = −1 full disassortative networks. For r = 0, network will be non-

assortative. If correlations between adjacent nodes exist then, the probability that a

randomly chosen edge connecting two node of degrees k and l respectively, is (2 −

δkl)P (k, l) .

The probability that a node with excess degree k is reached by any randomly chosen

edge emanating from a node with degree l is

P (k|l) =
P (k, l)

ql
. (1.5.20)
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1.6 Models of Complex Networks

1.6.1 Homogeneous Networks

There are some types of complex networks exist, which have similar degrees. Al-

ternatively, we can say that degree distributions of these type of networks have very

small variations. These properties can be seen in random networks (Erdos Renyi graph)

and in small world networks. The complex networks with the given properties of their

degree distributions are called homogeneous networks.

1.6.1.1 Erdos-Renyi Model of Random Networks

In the Erdos-Rnyi (ER) model [39], we start from N vertices without edges. Subse-

quently, edges connecting two randomly chosen vertices are added until the total number

of edges becomes L. It generates random networks with no particular structural bias.

The only restriction in the model is that no multiple edges are allowed between two ver-

tices. In this study,it has been chosen that the average degree �k� ≡ 2L/N as a control

parameter in the ER model. The ER model graphs have a logarithmically increasing l

, a Poisson-type degree distribution, and a clustering coefficient close to zero.

1.6.1.2 Watts-Strogatz Model of Small-World Networks

In the Watts-Strogatz (WS) model [25] one starts by constructing a regular network

with only local connections of range x. For example, x = 2 means that each vertex

is connected to its two nearest neighbors and two next nearest neighbors (see Figure

1.3). Then each edge is visited once, and with the rewiring probability Pr is detached

at the opposite vertex and reconnected to a randomly chosen vertex forming a shortcut
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(Figure 1.3). For Pr = 0 the network is a regular local network, with high clustering,

but without the small-world behavior. The average geodesic length in this case grows

linearly with the network size. In the opposite limit of Pr = 1, where every edge

has been rewired, the generated random graph has vanishing clustering, but shows a

logarithmic behavior of the average geodesic length l ∝ logN . In an intermediate range

of Pr (typically P ∼ O(1/N)), the network generated by the WS model displays both

high clustering and small-world behavior the commonly found characteristics of real

social networks.

Figure 1.3: The Watts-Strogatz (WS) model. The starting point is a regular network
with the range x = 2 of the connections. First the local regular network when Pr =
0, with the high clustering but with the large average geodesic length, and last, the
fully random network when Pr = 1, with low clustering but with very short geodesic
length. In the intermediate region of Pr, the WS model has both high clustering and
the small-world behavior (more specifically, the average geodesic length l ∝ logN for
the network with the size N ).
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1.6.2 Heterogeneous Networks

In adverse of homogeneous networks, some networks have larger degree variations in

their degree distributions. These categories of complex networks are called heteroge-

neous networks. Internet, WWW, email, power grid and other large networks define

the class of heterogeneous networks.

1.6.2.1 Barabsi-Albert Model of Scale-Free Networks

It has been found that degree distribution of the most of the large scale networks like

Internet, Web network etc. follows the power law, hence most of the theories developed

to understand the topology of the emerging network are directed towards explaining the

emergence of scale free networks. In this context, several complex network theoretical

models are proposed. In Barabasi and Albert(BA) model, the appearance of scale free

networks is explained with the help of preferential attachment rules [20].

Apart from the average geodesic length and clustering, the degree distribution is a

structural bias that has received much attention. Many (but not all) real networks

are known to have a power-law distribution of degrees [3, 28], manifesting a scale-free

nature of the network. The BA model of scale-free network [3, 20] is defined by the

following ingredients:

• Initial condition: To start with the network, consists of m0 vertices and no edges.

• Growth: One vertex v with m edges is added every time step.

• Preferential attachment: An edge is added to an old vertex with the probability

proportional to its degree. More precisely, the probability Pu for a new vertex v
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to be attached to u [21].

1.6.2.2 Other Models of Scale Free Networks

Kleinberg et al. proposed vertex coping model of network growth [40] where, the

network grows stochastically by constant addition of nodes and replicating the edges

from another existing nodes. Fabrikant et al. [41] proposed a plausible explanation of

the power law distributions observed in the graphs arising in the Internet topology. In

this growth paradigm (FKP growth model),the incoming node i stochastically connects

to an existing node j such that the node j is physically close to node i (small Euclidean

distance dij between the node i and j) and at the same time the node j is centrally

located in the network (hop distance of j, (hj) to other nodes is minimum). Callaway et

al. [42] proposed the model of evolving networks that is initially scattered into discon-

nected components and eventually merged with each other to form large components.

In this model, nodes may join to network without necessarily connecting with some ex-

isting nodes. Then, with probability d, two nodes are chosen uniformly at random and

joined by an undirected edge. This may result in growing network containing isolated

nodes along with component of various sizes. However, among these various growth

models, the BA model is the simplest one, widely studied.

1.6.2.3 Configuration Model for Scale Free Networks

The scale free networks can also be generated by configuration model [24]. In this,

we define a random number (nodes’ degree ki) to each node i with i ≤ i ≤ N by using a

probability distribution (degree distribution). The given random number (nodes degree

ki) for each node i is called ‘subs’ or ‘half edges’. After this, we find the stubs of random



1.7 Problem Definition and Organization of Thesis 14

pairs of the nodes i and j and combine to make an edge (i, j) by assuming that there

is no duplicate edge between the nodes i and j and node i should not be equal to node

j. The generation of edges will go on until there are no more stubs to combine. For

making the scale free networks we give the random numbers to nodes using the power

law degree distribution,

P (k) ∝

�

k−γ , if kmin ≤ k ≤ kmax

0, otherwise,
(1.6.21)

where, kmin = 1 is the minimum degree and kmax = N − 1 is the maximum degree

of the scale free network and γ is the power law exponent with, 2 < γ ≤ 3. For

generation of degree-degree correlated networks each node each edge is generated with

the given degree-degree correlation matrix. In the thesis, the scale free network has

been generated with the configuration model.

1.7 Problem Definition and Organization of Thesis

In chapter 2, we have discussed about the classic rumor spreading model and also

discussed the different inoculation strategies.

In chapter 3, we have proposed a new rumor spreading model using the acceptability

factor. The dynamics of the rumor spreading has been studied using this model for small

world network (homogeneous networks). Inoculation of the nodes has been considered to

stop rumor spreading. Random and targeted inoculation techniques have been applied

on the proposed rumor spreading model for small world network. Rumor threshold has

been found for different fraction of inoculation in small world network. Finally, the role

of acceptability factor has been studied to control the rumor spreading in small world

network. Further, acceptability factor in rumor spreading has been investigated for
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scale free (which are heterogeneous) networks. As random inoculation does not work

satisfactorily, we have investigated neighbor inoculation for arresting the rumor spread

for the networks with unknown topologies.

Chapter 4, describes the rumor dynamics and inoculation of nodes for correlated

networks. Different scale free networks have been generated with given correlation

coefficients. Effects of correlation coefficients in controlling of rumor spread in the scale

free networks have been studied. The threshold variation with the change of correlation

coefficients in the scale free networks has also been discussed.

In chapter 5, we have proposed rumor spreading model for more realistic cases of

real world complex networks. Let us assume that in a social network, some of the

friends are closer than others. Therefore, strong tie strengths are there between them.

A node is expected to spread a rumor with high probability to a neighbor connected

strongly than to a neighbor which is loosely connected. The strength of connection

is modeled by the tie strength. Hence, rumor spreading rate may vary with the tie

strength of the edges in the social networks. In this chapter, variable spreading rates

and stifling rates have been included. In more realistic scenario, it depends on a person

that he may spread the information only to some of his friends and not to all at a

time. Thus, the rumors will spread nonlinearly to the neighboring nodes with increase

in the nodal degree. The dynamics of rumor spreading has been studied as a function

of time for different spreading rates. The effects of the tie strength exponent β and

nonlinear rumor spreading exponent α on rumor threshold have been studied. Some

nonzero rumor thresholds have been found with some specific conditions on α and β

values. With certain conditions, constant rumor threshold has been found, which is

independent of the network size. To control the rumor spreading, random and targeted

inoculations have been applied on proposed rumor spreading model and effect of α and
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β parameters has been studied.

In chapter 6, we have discussed a new technique to find influential node based on

structural centrality.

In the last, chapter 7 of the thesis presents the conclusions of the work done. Some

of the possible future research directions are also suggested.



Chapter 2

Rumor Dynamics: A Study

2.1 Background

In today’s world, the Internet has become the most important medium to circulate

information. We use online social network sites almost every day to express our loca-

tions, emotions and to communicate with friends. For most of the events, the informa-

tion first spreads over the Internet than on any other medium. Twitter and Facebook

have become most important mechanisms for information spread. Twitter has more

than 500 million registered users and Facebook has more than 955 million registered

users currently. Huge number of users share information on Twitter and Facebook.

Lot of research has been carried out to provide valuable insight into the information

diffusion over social networks. If any information circulates without officially publicized

confirmation, it is called rumor [43]. In other words, rumors are unreliable information.

Rumor may change its meaning when it moves from one person to another. The rumor

may evolve (change) as they propagate in an real scenario. This makes the study of

information diffusion quite complex. In this thesis, we have restricted ourselves to the

study of rumor which does not change with time. To stop the rumors in the network
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inoculation of nodes can be used.

Dynamics is the process for the propagation in the networks as seen in temporal

domain. The networks carrying rumor normally belong to the real world networks

e.g. Internet, World Wide Web, Social networks etc. These real world networks follow

the complex network topologies and can be defined in the form of contact networks,

e.g. social networks. It can be formed after the contacts/interactions have taken place

between the friends in a social network. The dynamics of the flow of some entities

(rumor, epidemics, viruses etc.) in the network is influenced by the contact pattern

among the nodes. Epidemic spreading also has similar features, hence epidemic models

can be used to study the rumor dynamics. Most of the work reported so far in propa-

gation dynamics has been based on the studies done in epidemics. The simplest of all,

susceptible-infected (SI) model for dynamic process has only two states for any node.

A node can be infected or not infected. An uninfected node can be infected by an

infected neighbor permanently with some spreading rate. Finally, all the nodes become

infected in the end. There are two more models for epidemic spreading, susceptible-

infected-susceptible (SIS) [8, 44] and susceptible-infected-recovered (SIR) [23, 45]. SIS

model allows nodes to recover and become susceptible again. Therefore, it is difficult

for the disease to infect all the population. The SIR model introduces a new refractory

state in which nodes cannot be infected again. The SIR model for rumor spreading

was introduced many years ago by Daley and Kendal [1] and its variant was given by

Maki-Thomsan [2]. In the given model, all the population has been considered to be

homogeneous. In the homogeneous population all nodes will have same degree. The

epidemic spreads with certain rate throughout the network. Simultaneously, the in-

fected nodes are also cured with certain rate. By using the Daley Kendal model [1],

Kephart and White [46] have studied the propagation of the computer viruses in the



2.1 Background 19

network.

Studies of rumor spreading in complex networks are of interest and the results have

largely changed the views on the issue of rumor spreading. The theory and the method

of transmission dynamics being applied to the analysis of structure and characteristics

of rumor spreading play a vital role in the design of rumors prevention and control

system.

In order to improve the resistance of the community against undesirable rumors, it is

essential to develop deep understanding of the mechanism and underlying laws involved

in rumor spreading and to establish an appropriate prevention and control strategy to

generate social stability. First time, Sudbury studied the spread of rumors based on SIR

model [47]. In Daley-Kendal (DK) model [48] homogeneous population is subdivided

into three groups: ignorant (who don’t know about the rumor), spreaders (who know

about the rumor) and stifler (who know about the rumor but do not want to spread

it). The rumor is propagated throughout the population by pairwise contacts between

spreaders and other individuals in the population. Any spreader involved in a pairwise

meeting attempts to infect other individual with the rumor. In case other individual is

an ignorant, it becomes a spreader. If the other individual is a spreader or stifler, it finds

that rumor is already known to it, and decides not to spread rumor anymore, thereby

turning into stifler. In Maki Thomsan (MK) model, when spreader contacts another

spreader, only the initiating spreader becomes a stifler. DK and MK models have an

important shortcoming that they do not take into account the topology of the underlying

social interconnection networks along which rumors spread. These models are restricted

while explaining real world scenario for rumor spreading. By considering the topology

of network, rumor model on small world network [3, 4, 5] and scale free networks [6] have

been defined. Therefore, as long as, one knows the structure of spreading networks, he
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can figure out variables and observables to conduct quantitative analysis, forecast and

control the rumor spreading. The most important conclusion of classical propagation

theory is existence of critical point of rumor transmission intensity. When an actual

intensity is greater than critical value, the rumors can spread in networks and exist

persistently. When the actual intensity is less than the critical value, rumors decay

at an exponential rate. This critical value is called rumor threshold. Each informed

node can be assumed to make contacts with all of its neighbors in a single time step.

In other words we can say that each informed node can spread information to nodes

equal to its degree in single time step. Studies on small world networks have found that

compared to regular network, small world network has smaller transmission threshold

and faster dissemination. Even at smaller spreading rates, rumors can exist for long.

Studies on infinite-size scale free networks have also revealed that no matter how small

transmission intensity may be, rumors can be persistent as positive critical threshold

does not exist [7, 9].

In the previous studies on the rumor spreading in the scale free networks, it has been

assumed that larger the node degree, greater the rumor spreading from the informed

node, i.e. the rumor spread is proportional to the nodal degree. With these assumptions

for SIR model, in scale free networks of sufficiently large size, the rumor threshold λc can

be zero. In these studies, the dynamical differential equations are used to represent the

models for information spread. These equations are used to find the threshold and study

the rumor propagation behavior. The results are usually verified by the simulations.

In the scale free networks, rumors first affect individuals who have more social con-

tacts, then the general individuals and finally those with less social contacts. It has

been found that in the scale free networks, rumors spread at a relatively low speed for

a very short period of time starting from the outbreak and then rise rapidly to a high
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peak, followed by a rapid decline exponentially.

To consider the topology of network, the rumor spreading models on small world

network [3, 4] and scale free networks [6] have been defined. Using mean field theory,

Nekovee et al. [3] discovered that threshold (below which a rumor can not be spread)

was small in homogeneous networks e.g. small world networks, and networks following

Erdos Renyi (ER) model. On the other hand, as found by Liu and his associates [6], the

heterogeneous networks e.g. scale free networks, are more robust against spreading of

rumors as compared to homogeneous model. In the previous studies on rumor spreading

in scale free networks, it has been found that larger the nodal degree, the greater the

rumor spread from the informed node. Therefore, in scale free networks with sufficiently

large size, the rumor threshold λc can be zero [9]. Few studies have been reported to

stop the rumor spreading. These studies are more important since false and fatal rumors

have negative impacts on the society during disasters. There is a threshold value on

spreading rate below which the disease(or rumor) cannot propagate in the system.

2.2 Rumor Threshold

If the value of spreading rate λ is above threshold λc, the rumor spreads. When λ ≤

λc, the rumor quickly dies out exponentially. For scale free networks with connectivity

exponent γ (2 < γ ≤ 3) threshold, λc is �k�
�k2�

[7]. If �k2� → ∞ then λc = 0. It shows

that for any value of λ, the infection can pervade a large network with finite prevalence.

Statistically speaking, a rumor can easily survive and cause an outbreak in an infinitely

large scale-free network no matter how weak its spreading capability is. Further studies

on the finite-size scale-free networks show that the threshold remains low and decreases

with an increasing network size [7] . Such analytical results help to explain our real-life
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experiences, e.g., persistent rumor spreading in the scale free networks. For finite size

network, λc = �k�
�k2�

∼ 1
ln(N)

, where N is the network size.

2.3 Classical Rumor Spreading Model

Classical rumor spreading model using SIR model is one of the most investigated

rumor spreading models for the complex networks. In this model, nodes are in one of

the three categories —ignorants (the nodes who are ignorant of the rumor), spreaders

(those who hear the rumor and also actively spread it) and stifler (the nodes who hear

the rumor but do not spread it further). The rumor is propagated through the nodes

by pairwise contacts between the spreaders and other nodes in the network. Follow-

ing the law of mass action, the spreading process evolves with direct contact of the

spreaders with others in the population. These contacts can only take place along

the edges of undirected graph of complex network. If the other node is the spreader

or stifler then the initiating spreader becomes the stifler. The classical SIR model

has been studied by M. Nekovee et al. [3, 22] for heterogeneous population (nodes

having different degrees). In this chapter, I(k, t), S(k, t),R(k, t) are the expected val-

ues of ignorants, spreaders and stifler nodes in network with degree k at time t. Let

I(k,t) = I(k, t)/N(k), S(k,t) = S(k, t)/N(k), R(k,t) = R(k, t)/N(k) be the fraction of

ignorant, spreaders and stifler nodes, respectively with degree k at time t. These frac-

tions of the nodes satisfy the normalization condition, I(k,t)+S(k,t)+R(k,t) = 1. Here,

N(k) represents the total number of nodes with degree k, in the network. Above rumor

spreading process can be summarized by the following set of pairwise interactions (see

Figure 2.1).



2.3 Classical Rumor Spreading Model 23

S1 + I2
λ
−→ S1 + S2,

(when spreader meets with the ignorant, it makes them spreader at rate λ)

S1 + R2
σ
−→ R1 + R2,

(when a spreader contacts a stifler, the spreader becomes a stifler at

the rate σ)

S1 + S2
σ
−→ R1 + S2,

(when a spreader contacts with another spreader, initiating spreader

becomes a stifler at the rate σ) and

S
δ
−→ R.

(δ is the rate at which spreaders change their state to stifler spontaneously

and stop spreading the rumor).

Nekovee et al. [3] proposed the formulation of this model for analyzing complex

networks as interacting Markov chains. They used the framework to derive from the

first-principles, the mean-field equations for the dynamics of rumor spreading in the

complex networks with arbitrary correlations. These are given below.

dI(k,t)

dt
= −kλI(k,t)

�

l

P (l|k)S(l, t). (2.3.1)

dS(k,t)

dt
= kλI(k,t)

�

l

P (l|k)S(l, t) − kσS(k,t)
�

l

(S(l, t) +R(l, t))P (l|k)

−δS(k,t). (2.3.2)

dR(k,t)

dt
= kσS(k,t)

�

l

(S(l, t) + R(l, t))P (l|k) + δS(k,t). (2.3.3)



2.3 Classical Rumor Spreading Model 24

Spreader contacts with all of its neighbors at time t

t t+1

Si

Si

Si S

SSi S

I

R R R

R

Initiating spreader

Spreading process done by spreader node Si

λ

σ

σ

δSi R

I

R Si

R

I

I

I

S S

σ

σ

σσ

λ

λ

λ

λ

Figure 2.1: Pairwise interactions in classical model.

Where, the conditional probability P (l|k) is the degree-degree correlation function

that a randomly chosen edge emanating from a node of degree k, leads to a node of degree

l. Here, it has been assumed that the degree of nodes in the whole network are uncorre-

lated. Thus P (l|k) will be the probability that a randomly chosen link is terminating on

a node with degree k. Therefore, degree-degree correlation is P (l|k) = lP (l)
�k�

where, P (l)

is the degree distribution and �k� is the average degree of the network (the edge will

be biased to fall on vertices of high degree, therefore conditional probabilityP (l|k) is

proportional to kP (k) and after normalizing this gives us the result). Nekovee et al. [3]

have shown that the critical threshold for rumor spreading is independent of the stifling

mechanism. The critical threshold found by them was λc = �k�
�k2�

. It is same as found

for SIR model [45, 49]. Hence, it implies that epidemic threshold is absent in large size

scale free networks (�k2� → ∞, λc → 0) irrespective of stifling mechanism. This result

is not good for epidemic control, as the epidemics will exist in the real networks for any
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non zero value of spreading rate λ.

2.4 Inoculation Strategies

Inoculating the nodes is an option to control the spread of rumors. Inoculated nodes

cannot be made to believe on rumor thus cannot be made spreaders. Therefore, they

do not help in spread of rumors to their neighboring nodes. The inoculation process

is similar to percolation. Each inoculated node can be considered as a site which is

disconnected from the network. The goal of inoculation strategy is to remain below the

percolation threshold. So that, we can get minimum number of nodes who are infected

with rumor. Therefore, inoculation strategy is successful if the network is operating

below the percolation threshold [50]. Although, random immunization strategy works

very well in homogeneous random networks, but this strategy is not effective in pre-

venting a rumor in the scale free networks [7]. Hence, the new immunization strategies

need to be explored which are able to recover from the rumor spreading in the scale

free networks. One of the efficient approaches is to inoculate the high degrees nodes

or, more specifically, to inoculate those nodes (hereafter termed as hubs or hub nodes)

which have degree higher than a preset cut-off value kc . Such a strategy is known

as targeted inoculation [8, 9, 10, 11, 12, 13, 15]. Targeted inoculation is successful

in arresting the rumor spread in scale free networks [7]. Random inoculation usually

requires inoculation of much large number of nodes for being effective. If nodes with

higher connectivity are targeted for inoculation, the same effectiveness can be achieved

with smaller number of inoculated nodes. But it needs the knowledge of nodes which

have higher connectivity [14]. D.Chen et al. have suggested that identifying influential

nodes using betweenness centrality and closeness centrality for spreading an information



2.4 Inoculation Strategies 26

can lead to faster and wider spreading in complex networks [51]. The best spreaders

using various measures of centrality can be identified in a network to ensure the more

efficient spread of information. The inoculation of these efficient spreaders can also

efficiently stop the rumor spreading [52, 53]. But this approach cannot be applied in

large-scale networks due to the computational complexity involved in identifying such

nodes. On the other hand, higher degree nodes can be identified with much less efforts.

2.4.1 Random Inoculation

This approach inoculates a fraction of the nodes randomly, without any information

of the network (Figure 2.2 a). Here, variable g (0 ≤ g ≤ 1) defines the fraction of inoc-

ulated nodes. In the presence of random inoculation rumor spreading rate λ is reduced

by a factor (1 − g). Therefore,

λ → λ(1 − g).

Random inoculation is successful in the homogeneous networks, as there is no large

degree variation in them. The degree of all the nodes is closer to the average degree

of the network. But random inoculation is not successful in the case of heterogeneous

network due to the large degree variation. Therefore, we need to inoculate almost 80-90

% nodes to make the random inoculation successful [8, 11, 54].

2.4.2 Targeted Inoculation

Scale free networks permit efficient strategies and depend on the hierarchy of nodes.

It has been shown that scale free networks show robustness against random inoculation.
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a

b

Figure 2.2: Modified network after inoculation (a) Random inoculation (red crossed
nodes inoculated) (b) Targeted inoculation (red crossed nodes inoculated).

It shows that the high fraction of inoculation of nodes can be resisted without loosing its

global connectivity. But on the other hand SF networks are strongly affected by targeted

inoculation of nodes (Figure 2.2 b). The SF network suffers an interesting reduction of

its robustness to carry information due to targeted inoculation. In targeted inoculation,

the high degree nodes are inoculated progressively as these are more likely to spread

the information. In SF networks, the robustness of the network decreases even with a

tiny fraction of inoculated individuals [7, 12, 50, 55].

Let us assume the fraction of gk of nodes with degree k are successfully inoculated.

An upper threshold of degree kt , can be defined, such that all nodes with degree k > kt

get inoculated. This fraction gk is given by,
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gk =











1, k > kt,

f, k = kt,

0, k < kt.

(2.4.4)

Ahere, 0 < f ≤ 1, and
�

k gkP (k) = ḡ, where ḡ is the average inoculation fraction.

2.4.3 Neighbor Inoculation

For random inoculation, it is necessary to inoculate almost all the nodes in the

network in order to stop the rumor. The targeted inoculation is very effective but it

needs the global information of the network. At least, the knowledge of most of the

high degree nodes is required. Because of large, complex and time varying nature of

most of the networks as well as the Internet, it is very difficult to determine the target

nodes. Therefore, Cohen et al. proposed an inoculation strategy known as acquaintance

immunization [56]. In the acquaintance inoculation strategy, some nodes are being

randomly selected with probability p in the network from the N nodes. Then, neighbors

are being selected randomly by the selected nodes for inoculation. The probability that

a specific neighbor node with degree k is selected for inoculation is kP (k)/(N�k�). In

this inoculation strategy, we only need the information of randomly selected nodes and

neighbor nodes attached with them. In scale free networks, if a node has been selected

randomly then probability of choosing one of its neighbor nodes with higher degree is

higher than a node with lesser degree [57]. This inoculation strategy is referred to as

neighbor inoculation.



Chapter 3

Rumor Dynamics with
Acceptability Factor

In this chapter, the dynamics of rumor spreading has been studied with the addition

of a new compartment of ignorant nodes who rejects rumors for homogeneous network

(small world network) 1 and heterogeneous network (scale free networks) 2. The rumor

acceptability factor is being introduced and the effects on propagation of rumor in

small world and scale free networks have been observed. Here, small world and scale

free network topology have been considered because real world social networks follow

these properties. The inoculation of nodes has been introduced to control the rumor

with the variation in rumor acceptability factor (1/ρ).

Nekovee, et al. [3] gave a general stochastic model for the rumor spreading. In this

model, the total population is divided into three compartments: ignorant individuals,

spreaders and stifler. Ignorant population is susceptible to being informed, spreaders

1Anurag Singh and Y. N. Singh, “Rumor spreading and inoculation of nodes in complex networks,”

in Proceedings of the 21st international conference companion on World Wide Web, ser. WWW ’12

Companion. New York, NY, USA: ACM, 2012, pp. 675–678.
2Anurag Singh, R. Kumar, and Y. N. Singh, “Rumor dynamics with acceptability factor and

inoculation of nodes in scale free networks,” in Signal Image Technology and Internet Based Systems
(SITIS), 2012 Eighth International Conference on, nov. 2012, pp. 798–804.
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spread the rumor and stifler know the rumor but they are not interested in spreading it.

In this chapter, stifler have been further divided into two compartments: one population

of stifler which accepts the rumor but is not interested in spreading it, the other one

rejects the rumor (i.e., not interested in accepting it). The other part of population can

be considered inoculated as in epidemic spreading model. Let there be N nodes and

each node can be in one of the compartments of ignorant, spreaders and stifler. When

a spreader meets with an ignorant node, ignorant node becomes a spreader with rate λ,

or a stifler who accepts the rumor with rate η, or a stifler who rejects the rumor with

rate ρ. Here, λ, ρ and η rates satisfy the condition λ+ρ+η ≤ 1. When a spreader meets

with a spreader or stifler, the spreader becomes a stifler who accepts the rumor with

rate σ. The specialty of this model is that it allows ignorant nodes to become stifler

when it is contacted by a spreader. This is similar to real life social network examples,

when a person wants to spread rumor to his friends then some of his friends may not be

interested in spreading it further after hearing the rumor. The friends may reject the

rumor and become stifler, it depends on the acceptability of rumor (1/ρ) [58, 59, 60].

Here 1/ρ can be considered as acceptability of the rumor. If the value of ρ increases,

ignorant nodes are more likely to become stifler who reject the rumor. On the other

hand, the friends may accept the rumor and decide not to spread further because of his

limited energy. When a spreader contacts another spreader or a stifler, forgetting and

stifling mechanism mutually result in the cessation of rumor spreading. The individuals

no longer spread a rumor when they know that the rumor is out dated or wrong. If for

a rumor, ρ is small, the rumor has more acceptable information [15]. In this chapter

I(t), S(t), Racc(t), Rrej(t) represent the fraction of ignorant nodes, spreaders, stifler who

accept the rumor and stifler who reject the rumor respectively, as the function of time

t for homogeneous networks. R(t) is the total number of stifler (includes both, the

one who accept the rumor and the other who reject the rumor) at a time t. On the
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other hand for heterogeneous networks, I(k, t), S(k, t), Racc(k, t), Rrej(k, t) are defined

as the density of ignorants, spreaders, stifler who accepts the rumors and the stifler

who rejects the rumors, respectively belonging to connectivity class k at time t. Above

rumor spreading process can be summarized by the following set of pairwise interactions

with the condition that,

S + I
λ
−→ S + S,

S + I
ρ
−→ S + Rrej ,

S + I
η
−→ S + Racc,

S + Racc
σ
−→ Racc + Racc,

S + Rrej
σ
−→ Racc + Rrej, and

S + S
σ
−→ Racc + S.

In heterogeneous networks, when a rumor is being propagated on the network from

spreaders, stifling is not the only way to stop it and we have to consider the factor of

forgetting mechanism with rate δ. Therefore, one more pairwise interaction has been

added for heterogeneous networks,

S
δ
−→ Racc.

Normalizing condition for all three types of fractions,

I(t) + S(t) + Racc(t) + Rrej(t) = 1, (3.0.1)

I(k, t) + S(k, t) + Racc(k, t) + Rrej(k, t) = 1. (3.0.2)
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In this chapter, the rumor spreading model defined for homogeneous networks with

acceptability factor in section 3.1. Random and targeted inoculation strategies have

been applied to observe the changes in rumor dynamics. The rumor spreading model for

heterogeneous networks has been defined in section 3.2. Random, targeted and neighbor

inoculation strategies have been applied to control the rumor. After inoculating some

fraction of nodes, new degree distributions have been generated [61, 62].

3.1 Rumor Dynamics with Acceptability Factor in

Homogeneous Networks

3.1.1 Proposed Rumor Spreading Model

The mean field rate equations are defined for our model as

dI(t)

dt
= −(λ + ρ + η)�k�I(t)S(t), (3.1.3)

dS(t)

dt
= λ�k�I(t)S(t) − σ�k�S(t)(S(t) + Racc(t) + Rrej(t)), (3.1.4)

dRacc(t)

dt
= σ�k�S(t)(S(t) + Racc(t) + Rrej(t)) + η�k�I(t)S(t), (3.1.5)

dRrej(t)

dt
= ρ�k�I(t)S(t). (3.1.6)

R(t) = Racc(t) + Rrej(t). (3.1.7)

Here, �k� is the average degree of the Watts-Strogatz (WS) [25] network and initial

conditions of above equations are I(0) ≈ 1, S(0) ≈ 0, Racc(0) = 0, Rrej(0) = 0. In

Equations (3.1.3)-(3.1.6), λ + η + ρ ≤ 1. Here I, S, Racc, Rrej are not the function of

k as we are discussing homogeneous network. Instead average of node degree �k� has

been multiplied on the right hand side of Equations (3.1.3)-(3.1.7)
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By using Equations (3.0.1) -(3.1.7), one get the following transcendental equation

(Appendix A.1).

R(∞) = 1 − e−
λ+σ
σ

R(∞), (3.1.8)

where, R(∞) = limt→∞R(t) and R(∞) = Racc(∞) + Rrej(∞). One can solve the

Equations (3.1.3) -(3.1.6) with simulink and get a relation between fraction of different

population with the time as shown in Figure 3.1. We know that for a nonzero solution
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Figure 3.1: Ignorant, Spreaders and Racc densities with time.

of Equation (3.1.8), (λ + σ)/σ ≥ 1. This inequality is always valid, except for σ=0.

There will not be any threshold for λ. It is different from SIR [14, 63] model. Now we

can also solve expressions for Racc(∞) and Rrej(∞) (Appendix A.3) :

Racc(∞) =
η + λ

λ + ρ + η
R(∞)

Rrej(∞) =
ρ

ρ + η + λ
R(∞) (3.1.9)
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Using Equation (3.1.9):

Racc(∞)

Rrej(∞)
=
η + λ

ρ
(3.1.10)

From Equation (3.1.10) it is evident that if we increase ρ (decrease the acceptability)

and fix other parameters, Racc(∞) will decrease. Thus, if we decrease the acceptability

of the rumor, density of populations who accept the rumor will also decrease.

3.1.2 Random Inoculation on Small World Network

A Random inoculation strategy inoculates a fraction of the nodes randomly, using

no knowledge of the network. The g defines the fraction of inoculated nodes. In mean

field level, in case of uniform inoculation, the initial conditions of Equations (3.1.3)

-(3.1.6) will be modified as: I(0) ≈ 1 − g, S(0) ≈ 0, Racc(0) = 0, Rrej(0) = g. Solving

the Equations (3.0.1) -(3.1.7) under these initial conditions, following transcendental

equation (Appendix A.2) is obtained.

R(∞) = 1 − (1 − g)e
λ+σ
σ

ge−
λ+σ
σ

R(∞) (3.1.11)

For any desirable value of R(∞), one can always find a nonzero g using Equation

(3.1.11), (Appendix A.4). Defining an auxiliary function using Equation (3.1.11).

f(R(∞)) = 1 − (1 − g)e
λ+σ
σ

(g−R(∞)) − R(∞) (3.1.12)

f �(R(∞)) =
λ + σ

σ
(1 − g)e

λ+σ
σ

(g−R(∞)) − 1

There are three possible cases,
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Case I (1 + λ

σ
)(1 − g) > 1

If 0 < R < g then,

λ + σ

σ
(g − R(∞)) > 0. (3.1.13)

Thus,

e
λ+σ
σ

(g−R(∞)) > e0 = 1. (3.1.14)

Therefore,

f �(R(∞)) > 0, as
λ + σ

σ
(1 − g)e

λ+σ
σ

(g−R(∞)) > 1. (3.1.15)

Thus f(R(∞)) is an increasing function for 0 < R(∞) < g.

This case can be understood by solving Equation (3.1.12) by graphical method (Fig-

ure 3.2). Equation (3.1.12) can be broken as,

y1 = R(∞),

y2 = 1 − (1 − g)e
λ+σ
σ

(g−R(∞)), (3.1.16)

y = y2 − y1. (3.1.17)

Plotting the above, we get Figure 3.2.

In Figure 3.2, we get R(∞) = g as one of the solutions. At this point the curves for

y1 and y2 are intersecting and slope of y is positive. We will also get another solution

when R(∞) > g and curve y starts decreasing and again cuts the x − axis (since the

value of curve y will go down after getting some maximum value). We can show that y

is less than 1 for R(∞) = 1 and hence the curve y has to cross x axis at some points

s.t. R(∞) > g.
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Figure 3.2: Graphical solution for case I, for g = 0.3.

Case II

Similarly, if (1 + λ
σ
)(1 − g) < 1 then f(R(∞)) will be a decreasing function for

g < R(∞) < 1.

This case can be understood by solving Equation (3.1.12) after considering Equations

(3.1.17) (Figure 3.3).

In Figure 3.3, we got one of the solution, R(∞) = g when curve y is intersecting

x axis with negative slope. If value of y at R(∞) = 0 is less than zero, then another

solution which is less than g exists. In case value of y at R(∞) = 0, is more than

zero, then R(∞) = g will be the only solution, as the other solution will be invalid as

0 ≤ R(∞) ≤ 1.
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Figure 3.3: Graphical solution for case II, for g = 0.7.

Case III

If (1 + λ
σ
)(1− g) = 1, then we will get only one solution identified as critical value of

g. We can represent this as gc. If g < gc, then (1 + λ
σ
)(1 − g) > 1. This scenario is case

I and one of the solutions is R(∞) = g. The other solution will be higher than g and

will be largest.

As g is the only nonzero solution of Equation (3.1.11) with (1 + λ
σ
)(1 − g) = 1,

f �(R(∞))|R(∞)=g =
λ + σ

σ
(1 − g) − 1 ≤ 0

If g > gc, then (1 + λ
σ
)(1 − g) < 1. This is same as case II and one of the solutions

will be R(∞) = g. This solution will be the largest (Figure 3.4). The final worst case

solution will be largest solutions of all possible ones.
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Figure 3.4: Solution for case III, for g = gc = 0.5 and g = 0.6.

Therefore, gc = λ
λ+σ

is the critical fraction of inoculation. When, g > gc, R(∞) = g,

is only the nonzero solution of Equation (3.1.11). Therefore, Racc(∞) = R(∞) −

Rrej(∞) = R(∞) − g ≡ 0. This model shows that, by using random inoculation the

density of stifler who accept the rumor can be brought down to zero. For the other

values of g (g < gc), we will get another solution for R(∞), for which R(∞) > g.

Therefore, Racc(∞) = R(∞) − Rrej(∞) will have some value greater than zero (Figure

3.5).

The above analysis can be validated by numerical simulations on WS model. Let

N=10,000, �k� = 4 and rewiring probability (Pr)=0.8. Set the other parameters as, λ =

0.25, η = 0, ρ = 0 and σ = 0.25. These simulations are performed for 100 different initial

configurations of proposed rumor models on at least 10 different realizations of WS

model. Results are shown in Figure 3.5, it can be analyzed that if fraction of inoculation

g increases, the fraction of stifler who accept the rumor decreases monotonically. For

the values of g such that g < gc, we will get R(∞) > g as a worst case solution as per
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Figure 3.5: Comparison between Racc and fraction of inoculation nodes g in random
inoculation with a small average degree of 4.

case I. After the critical fraction, the both solution of R(∞) will be merged into a single

solution R(∞) = g. In Figure 3.5, critical inoculation gc is approximately 0.5 , which

is in agreement with the calculated value of gc = λ
λ+σ

= 0.5 considered.

By this analysis, it can be seen that critical inoculation gc does not depends on

�k� in homogeneous networks. In [48], it has been shown that the condition 0 ≤

(λ + η + ρ)�k�S(t) ≤ 1 and 0 ≤ σ�k�(S(t) + Racc(t) + Rrej(t)) ≤ 1 should be satisfied

for the mean field equations representing the proposed model. Therefore, when �k� is

too large the rumor equations will not be valid and gc cannot be calculated using λ
λ+σ

.

Too large fraction of nodes will need to be inoculated to stop the rumor. It can be

decreased by decreasing the acceptability factor (1/ρ). The simulation has been again

performed on WS model with same parameters as used earlier for different values of

ρ, 0 ≤ ρ ≤ 0.75. The results are plotted in Figure 3.6. It has been observed from

Figure 3.6 that when λ = 0.25, η = 0, ρ = 0, σ = 0.25, analysis will fail to calculate
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Figure 3.6: Comparison between Racc and density of inoculation nodes g in random
inoculation with large degree 12.

correct gc. The obtained gc is approx 0.85 which is much higher than the previously

obtained value of 0.5 for ρ = 0. If mean field rate equations are valid, then constraint

0 ≤ σ�k�(S(t) + Racc(t) + Rrej(t)) ≤ 1 should be satisfied, while for σ = 0.25, �k� = 12

and S(0)+Racc(0)+Rrej(0) = gc = 0.5, we have σ�k�(S(0)+Racc(0)+Rrej(0)) = 1.5 > 1.

Therefore mean field rate equation will not be accurate when �k� is large and random

inoculation is no longer efficient. The problem can be solved by increasing the parameter

ρ (decrease the acceptability of rumor) and apply random inoculation method at same

time. In Figure 3.6, when ρ = 0.75 and g=0.55, Racc(∞) near to zero, which means

that the given model is valid for larger values of ρ (ρ > 0.75).

3.1.3 Targeted Inoculation on Small World Network

To arrest the spread of rumors in heterogeneous networks (e.g., scale free networks),

targeted inoculation were introduced. If we have information about degrees of all nodes,
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we may rank nodes by degree, and use targeted inoculation to inoculate nodes in order

of descending degree. When a high-degree node is inoculated, the effective degree

of its neighbors drop. This inoculation strategy is more effective on heterogeneous

networks e.g. scale free networks. The results for numerical simulations for targeted

inoculation for a network built using WS model with same parameters as used earlier,

are given in Figure 3.7. It can be analyzed from Figure 3.7 that the target inoculation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

De
ns

ity
 o

f a
cc

ep
te

d 
st

ifl
er

 R
ac

c(∞
)

Density of inoculated nodes(g)

Figure 3.7: Comparison between Racc and density of inoculation nodes g in targeted
inoculation with small degree 4.

is better than the random inoculation. Here, gc is approx 0.25 and rumor spreading is

almost zero for inoculation g ≥ 0.25. The degree distribution in WS model is Poisson

degree distribution, which is not strictly homogeneous and possesses some heterogeneity

property. If a small world network is strictly homogeneous then random inoculation

will be equivalent to targeted inoculation.

When �k� is high, Figure 3.8 shows the simulation results for WS model with �k� = 12

and all parameters as take earlier. ρ has been varied to determine its impact. When
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�k� is large, targeted inoculation is not effective. Like before, the rumor spreading can

be suppressed by increasing the parameter ρ with targeted inoculation also.
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Figure 3.8: Comparison between Racc and density of inoculation nodes g in targeted
inoculation with large degree 12.

3.2 Rumor Dynamics with Acceptability Factor in

Heterogeneous Networks

3.2.1 Proposed Rumor Spreading Model

An ignorant node with degree k is influenced by informed neighbors, and the average

density of informed neighbors over connectivity class l is P (l|k) = lP (l)/�k� [3]. Here,

we are considering uncorrelated networks only where conditional probability satisfies
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P (l|k) = lP (l)/�k�. The rate equations for the rumor diffusion model are,

dI(k, t)

dt
= −k(λ + ρ + η)I(k, t)

�

l

P (l|k)S(l, t), (3.2.18)

dS(k, t)

dt
= λkI(k, t)

�

l

P (l|k)S(l, t) − kσS(k, t)
�

l

(S(l, t) + Racc(l, t) +

Rrej(l, t))P (l|k) − δS(k, t), (3.2.19)

dRacc(k, t)

dt
= σkS(k, t)

�

l

(S(l, t) + Racc(l, t) + Rrej(l, t))P (l|k) +

ηkI(k, t)
�

l

P (l|k)S(l, t) + δS(k, t), (3.2.20)

dRrej(k, t)

dt
= ρkI(k, t)

�

l

P (l|k)S(l, t). (3.2.21)

The Equation (3.2.31) can be integrated to get,

I(k, t) = I(k, 0)exp

�

−k(λ + ρ + η)

�k�
Θ(t)

�

. (3.2.22)

Here, I(k, 0) is the initial fraction of ignorant nodes with degree k and

Θ(t) =
� t

0

�

l S(l, t�)P (l)ldt�. The initial conditions are taken as, I(k, 0) ≈ 1, S(k, 0) ≈

0, Racc(k, 0) ≈ 0 and Rrej(k, 0) ≈ 0. At t → ∞ i.e., at the end of rumor spread,

S(k,∞) = 0 as system achieves steady state, and consequently, limt→∞ dΘ(t)/dt = 0.

After solving Equations (3.2.31)-(3.2.21) to leading order in σ,

Θ =

�

(λ + ρ + η) �k
2�

�k�
− δ

�

λ2 �k
3�

�k�
(1/2 + σδ �k2�

�k�
I)
. (3.2.23)
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Here, limt→∞ Θ(t) = Θ and I is a finite positive integral in the form I =
� t

0
eδ(t−t�)f(t�)dt�.

Hence rumor threshold can be calculated for positive value of Θ from Equation (3.2.23),

(λ + ρ + η)

δ
≥

�k�

�k2�
(3.2.24)

(3.2.25)

It has been assumed that after each time step spreaders are going into stifler state

spontaneously, i.e. δ = 1. Therefore critical rumor threshold is

λc =
�k�

�k2�
− ρ− η. (3.2.26)

When ignorants are not converting into stifler state directly after being contacted by

spreaders then ρ = 0 and η = 0, in this case, the critical rumor threshold is

λc =
�k�

�k2�
. (3.2.27)

In other words, if the value of λ is above the threshold, λ ≥ λc, the rumor can spread in

the network. For λ < λc, the rumor dies out exponentially. This finding also suggests

that in infinite scale free networks with, 2 < γ ≤ 3, for which, �k2� → ∞, we have

λc=0. The final size of rumor spread is given by the fraction of nodes which hear the

rumor by t → ∞ i.e. ,

R(∞) =
�

l

P (l)R(l,∞), (3.2.28)

R(∞) = Racc(∞) + Rrej(∞), (3.2.29)

=
�

l

P (l)

�

1 − exp

�

−(λ + ρ + η)lΘ

�k�

�

�

. (3.2.30)
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From Equations (3.2.21) and (3.2.28)-(3.2.30), we obtain (Appendix A.5) the following.

Racc(∞) = =
λ + η

λ + η + ρ

�

1 −
�

l

P (l)exp

�

−(λ + η + ρ)lΘ

�k�

�

�

, (3.2.31)

Rrej(∞) =
ρ

λ + η
Racc(∞), (3.2.32)

Rrej(∞) =
ρ

(λ + η + ρ)

�

1 −
�

l

P (l)exp

�

−(λ + η + ρ)lΘ

�k�

�

�

. (3.2.33)

After observing the Equations (3.2.31)-(3.2.33), we can easily understand that the size

of population of nodes with accepted rumor can be decreased by increasing the ρ (i.e.

decreasing the rumor acceptability factor) and keeping the other parameters fixed.

3.2.2 Inoculation Strategies

The inoculation strategy is same as the site percolation problem. Each inoculated

node can be seen as a site which is removed from the network. The target of the

inoculation strategy is to get the percolation threshold, aimed to minimize the infecting

nodes [23].

3.2.2.1 Random Inoculation in Scale Free Networks

In random inoculation (RI) strategy, randomly selected node will be inoculated. In

this approach, a fraction of the nodes are inoculated randomly without any information

of the network [54]. Here, the variable g (0 ≤ g ≤ 1) defines the fraction of inoculated

nodes. At the mean-field level, the presence of random inoculation will effectively reduce

the spreading rate λ by a factor (1 − g). In scale free networks, almost 80-90 % nodes

need to be inoculated to suppress the rumor.
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Table 3.1: Number of deleted edges after random, targeted and neighbor inoculation.
Removed fraction(g) edel(RI) edel(TI) edel(NI)

0.03 541 2833 990
0.06 981 3468 1870
0.08 1348 3980 2443
0.1 1569 4642 2924
0.2 3122 5312 4117
0.3 4502 6248 5358

3.2.2.2 Targeted Inoculation in Scale Free Networks

Scale free networks permit efficient strategies that depend upon the hierarchy of

nodes. It is known that SF networks shows robustness against random inoculation

[12, 54]. It implies that the high fraction of inoculation of nodes can be resisted without

loosing its global connectivity. But on the other hand, SF networks are strongly affected

by targeted inoculation (TI) of nodes. In targeted inoculation, the high degree nodes

have been inoculated progressively as they are more likely to spread the information.

In SF networks, the robustness of the network decreases even with a tiny fraction of

inoculated individuals. The SF network suffers an interesting reduction of its robustness

to carry information.

3.2.2.3 Neighbor Inoculation in Scale Free Networks

For random inoculation, it is necessary to inoculate almost all nodes in the network

to stop the rumor. The targeted inoculation is very effective but it needs the global

information of the network. At least, the knowledge of most of the nodes with higher

degrees is required. Because of large, complex and time varying social networks as

well as Internet, it is very difficult to determine the target nodes. Therefore, Cohen

et al. [56] proposed an inoculation strategy known as acquaintance immunization.
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In the acquaintance inoculation strategy, some nodes are being selected in the network

randomly by probability p from the N nodes. Then the neighbors are selected randomly

by the selected nodes for inoculation. The probability that an specific neighbor node

with k degree is selected for inoculation is kP (k)/(N�k�). In this inoculation strategy,

we only need the information of randomly selected nodes and neighbor nodes attached

with them. In scale free networks, if a node has been selected randomly then, the

probability of choosing one of its neighbor nodes with higher degree is higher than a

node with lesser degree [57]. In this chapter, this inoculation strategy is referred to as

neighbor inoculation (NI).

3.2.3 Simulations and Results

The numerical simulations are done to observe the complete dynamical process with

and without inoculation strategies with different spreading (λ), stifling (σ) and forget-

ting (δ) rates with the variation of rumor acceptability factor (1/ρ). In each time step,

all the N nodes interact with their neighbors for rumor passing. After the interaction,

all the N nodes, update their states according to the proposed rumor model and time

step is incremented. Scale free networks are used for the contact process. The scale

free networks have been generated according to the power law, P (k) = k−γ , where

2 < γ ≤ 3. We have taken N = 10000 and γ = 2.5. The random inoculation is

implemented by selecting gN nodes randomly in the network.

Similarly, targeted and neighbor inoculation have been studied. In the generated

SF network, random, targeted and neighbor inoculation strategies have been applied

and the number of deleted edges are given in Table 3.1 and Figure 3.9. After applying

inoculation, new degree distribution of scale free network has been calculated. The
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Algorithm 1 New degree distribution after Random inoculation.

Input: A 2-d edge array after inoculation
Input: Total number of nodes in the network(N) before inoculation
Input: Number of nodes after deletion (T nodes)
Input: Fraction of nodes deleted in the network (del fr)
Input: Number of edges in the network (T edges) after inoculation
Output: Degree distribution after applying random inoculation
deg, deg distrib, norm deg distb, count, k = 0, i = 0; count = 0;
while i < T edges do

Put ith node in the match=Edges[i][0]
while i < T edges do

if match(i)==Edges[i][0] then
count++ ; i++ ;

else
break

end if
end while
degree of the match(i) in degree array, deg(match) = count

end while
for i < T node do

for j < N do
if deg[j]==i then
k++

end if
end for
deg distb[ i ]=k
deg distb will contain the node of same degree
norm deg distb [i]=k/N

end for
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Figure 3.9: Number of deleted edges with fraction of inoculated nodes for different
inoculation strategies.
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Figure 3.10: Final size of rumor as function of λ for δ = 0.2.
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algorithms used to find new degree distribution after applying inoculation strategies are

similar to Algorithm 1. At the starting of each simulation, initially spreader nodes are

chosen randomly, while all the other nodes are ignorants. In Figure 3.10, the threshold

value of the spreading rate λ above which the rumor can spread widely, approaches

almost zero with ρ = 0.25 and ρ = 0. After introducing ρ, final size of accepted rumor

decreases for all the λ values in Figure 3.10(b). Figure 3.11 described the fraction

of nodes for all the compartments as a function of time. If ρ = 0, the final size of

nodes with accepted rumor is larger in comparison with the ρ = 0.25. In the scale free

networks, initially the fraction of Racc(t) remains unchanged. After some time steps,

the number of nodes with accepted rumor increases exponentially to a high level and

finally reaches the steady state. The rumor will spread to more number of nodes in a

scale free networks due to smaller average shortest path length.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Fr
ac

tio
n o

f n
od

es
 at

 tim
e t

fraction of stifler who accepts rumor
fraction of ignorants
fraction of spreaders
fraction of stflrers who reject rumors

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Fr
ac

tio
n o

f n
od

es
 at

 tim
e t

(a) ρ = 0 (b) ρ = 0.25

Figure 3.11: Time plots for fraction of ignorants, spreaders and stifler with accepted
and rejected rumor.

In Figure 3.12, the relaxation time (time to get steady state for rumor spreading)
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of the rumor dynamics has been plotted with different spreading rates. If relaxation

time is smaller, then rumor can spread to other nodes within a less time. Comparable

spreading and stifling rates lead to a large relaxation time, such as λ = 0.1 and δ = 0.3

when the average degree is 2.
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Figure 3.12: Relaxation time as a function of λ.

The final size of accepted rumor plotted against λ for random, targeted and neighbor

inoculation strategies for g = 0.1 is given in Figure 3.13. The rumor threshold for

spreading rate λ is found to be largest in targeted inoculation and smallest in random

inoculation. The rumor threshold in neighbor inoculation is found between targeted

and random inoculation. It shows that after applying inoculation strategies on some

fraction of nodes, we can control the rumor in scale free networks. If degree of nodes

are not known in scale free networks then we can apply neighbor inoculation to control

rumor in scale free networks. The random inoculation strategy is not much successful

in the case of scale free networks.
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Figure 3.13: Final size rumor as a function of λ for g = 0.1 inoculations.

Although inoculation scheme is successful to control the rumor, but according to our

investigations the rumor can be suppressed more efficiently by decreasing the rumor

acceptability factor (1/ρ). In Fig. 3.14, random inoculation strategy has been applied

and final size of rumor has been calculated. It has been found that we need to inoculate

approx. 75% of nodes to stop the rumor for ρ = 0. We have changed the acceptability

factor to improve the random inoculation. We less number of nodes are needed to

inoculate after decreasing the acceptability factor (1/ρ) (50% for ρ = 0.7).

Similarly, for neighbor inoculation we have calculated final size of rumor with the

different fraction of inoculated nodes. Here, 65% of nodes are needed to inoculate to

stop the rumor for ρ = 0 for arresting the rumor Fig. 3.15. It can be improved after

decreasing the acceptability factor (40 % for ρ = 0.7).

In the case of targeted inoculation, we have needed to inoculate very less number of

nodes (27 %) to stop the rumor for ρ = 0 Fig. 3.16 . In the case of scale free networks,
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Figure 3.14: Final size of accepted rumor with the fraction of randomly inoculated
nodes(g) with the variation of acceptability factor for λ = 0.4, σ = 0.25 and δ = 0.3.
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Figure 3.15: Final size of accepted rumor with the fraction of neighbor inoculated
nodes(g) with the variation of acceptability factor for λ = 0.4, σ = 0.25 and δ = 0.4.
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targeted inoculation is very much effective itself. After decreasing the acceptability

factor we can improve it slightly (15% for ρ = 0.7).
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Figure 3.16: Final size of accepted rumor as a function of targeted inoculated nodes(g)
with the variation of acceptability factor for λ = 0.4, σ = 0.25 and δ = 0.4.

3.2.4 Conclusions

In this chapter, a new compartment of nodes viz. the stifler who rejects the rumor

with rate ρ is added. In real, it is possible that a ignorant node after the meeting with

spreader node can loose the interest in spreading the rumor, with or without accepting

it. These nodes are similar to the inoculated nodes. The rumor acceptability factor

(1/ρ) has also been introduced. It is shown that the proposed model supports the

small critical inoculation value gc in the random as well as in the targeted inoculation

to control rumor spreading when average degree �k� of small world network is small.

It is also found that in targeted inoculation, gc is smaller than in the case of random

inoculation when degree �k� is small. It happens even when the degree distribution in
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the small world networks is relatively uniform. The mean field approximation fails if

�k� is high. In this case, random or targeted inoculation alone will not be effective.

Therefore, one should decrease the acceptability of the rumor and apply either random

or targeted inoculation method at the same time. After doing this, we got a small value

of gc to control rumor spreading, which was very high in the case of high acceptability

(ρ = 0). The developed model does not require to inoculate large number of nodes. We

have also investigated the rumor diffusion mechanism in scale free networks with this

new compartment of stifling nodes who reject the rumors. After decreasing the rumor

acceptability factor, the population who reject the rumor increases. Random, targeted

and neighbor inoculation strategies have been applied in the proposed model to control

the rumor. If the degrees of nodes are known, then targeted inoculation strategy is

found to be the best for scale free networks. But, if there is no global information

about the scale free networks, then neighbor inoculation strategy can be applied which

is better than the random inoculation to control the rumor. It has also been observed

that decrease in the rumor acceptability factor (increasing the value of ρ) makes the

inoculation more effective in controlling the rumor in scale free networks.



Chapter 4

Rumor Dynamics with Inoculations
for Correlated Scale Free Networks

4.1 Introduction

Rumors spread by pairwise contacts between nodes in the scale free networks with

some spreading rate. Previous research [26, 64] shows that complex networks display

degree-degree correlations. The connectivity of any two nodes in the real-world network

is influenced by the degree-degree correlation existing in the network. When high (or

low) degree vertices preferably connect to high (or low) degree vertices, it is called

assortative mixing. On the other hand, when high degree vertices prefer to attach with

less connected ones, it is called disassortative mixing. Recent studies show that social

networks display assortative degree correlations e.g. Facebook, implying that highly

connected vertices preferably connect to vertices which are also highly connected [26]. In

order to study the impact of such assortative correlations on the dynamics of the rumor

spreading model, the degree-degree correlation function is considered to investigate the

impact of assortative degree correlations on the speed and size of the rumor spreading

in scale free networks. It is interesting to note the influence of correlations on the final
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size of rumor depends very much on the rumor spreading rate. This chapter describes

the dependence of the rumor threshold in the scale free networks on their assortativity

properties after considering the SIR model for rumor spreading 1.

4.2 Modified Rumor Spreading Model

For scale free networks, the degree distribution, P (k) ∝ k−γ alone does not define

the topology of the network completely. It does not tell anything about the vertices

that are connected to each other. A correlated network is completely defined by its

degree distribution P (k) and its degree-degree correlation matrix P (k, l) which defines

the probability of finding an edge, emerging from a k degree node to a l degree node.

The correlation matrix can defined as












P (1, 1) P (1, 2) ... P (1, kmax)
P (2, 1) P (2, 2) ... P (2, kmax)

. . . .

. . . .
P (kmax, 1) P (kmax, 2) ... P (kmax, kmax)













.

Where, (2 − δkl)P (k, l) is the probability that a randomly chosen edge connects

two vertices of degree k and l respectively [33]. In case of undirected networks the

probability that node i and node j connected is same as, node j and node i connected,

P (i, j) = P (j, i), for undirected networks

According to reference [33],

P (l|k) =
P (k, l)

qk
, (4.2.1)

1Anurag Singh and Y. N. Singh, “Rumor dynamics with inoculations for correlated scale free

networks,” in Communications (NCC), 2013 National Conference on, 2013, pp. 1–5.
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where, qk = kP (k)
�k�

and,

P (k, l) = qk[rδkl + (1 − r)ql] (4.2.2)

P (l|k) =
P (k, l)

qk
= rδkl + (1 − r)ql (4.2.3)

Where, δkl is the Kronecker delta function and r is the assortativity coefficient. It is,

0 ≤ r ≤ 1 for assortative networks, r = 0 for uncorrelated network and r = 1 for full

assorted network. Therefore, for the social network r will be positive [26].

Now, rumor equations in classic rumor spreading model can be modified as,

dI(k, t)

dt
= −

λ�k�

P (k)
I(k, t)

�

l

S(l, t)P (k, l)

dS(k, t)

dt
=

λ�k�

P (k)
I(k, t)

�

l

S(l, t)P (k, l) −
σ�k�

P (k)
×

S(k, t)
�

l

[S(l, t) + R(l, t)]P (k, l) − δS(k, t)

dR(k, t)

dt
=

σ�k�

P (k)
S(k, t)

�

l

[S(l, t) + R(l, t)]P (k, l)

+δS(k, t) (4.2.4)

4.3 Targeted Inoculation

It is assumed that fraction gk of nodes with degree k is successfully inoculated. All

the nodes with degree k > kt get inoculated i.e. gk = 1. The fraction of inoculated

nodes is given by,

gk =







1, k > kt,
f, k = kt,
0, k < kt.
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Where, 0 < f ≤ 1 and kt is the cut-off degree.

Initial degree distribution is denoted by P (k) with network size N . The new degree

distribution after application of targeted inoculation is given as [62],

P �(k) =
∞
�

q=k

�

q

k

�

Ωq−k
q (1 − Ωq)

kpq. (4.3.5)

After applying inoculations, we can categorize all the nodes of network into two sets:

one is the set of inoculated nodes and other is the set of non inoculated nodes. The

probability to find a node of degree k in the non inoculated set of nodes in the network

is defined by pk. Ωl is the probability of finding an edge from non inoculated set of

nodes with the l degree to any node in the set of inoculated nodes. Both probabilities,

Ωl and pk are defined by

Ωl =
N�k�(1 − gl)

�

k P (l, k)gk
lNP (l)(1 − gl)

(4.3.6)

pk =
(1 − gk)P (k)

1 −
�

i P (i)gi
(4.3.7)

4.4 Random Inoculation

In random inoculation strategy, randomly selected node will be inoculated. This

approach inoculates a fraction of the nodes randomly, without any information of the

network. Here, the variable g (0 ≤ g ≤ 1) defines the fraction of inoculative nodes. For

random inoculation put gk = g in Equation (4.3.7). The final degree distribution in the

correlated network is found to be same as in the uncorrelated network.
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Table 4.1: Number of deleted edges after random and targeted inoculations.
Removed Fraction(g) r edel(RI) edel(TI)

0.02 0 6408 14077
0.02 0.1 7070 14526
0.02 0.3 6675 14342
0.02 0.5 6271 14007
0.02 0.7 6877 14074
0.03 0 1461 11194
0.03 0.1 1192 11113
0.03 0.3 1160 10628
0.03 0.5 1163 10866
0.03 0.7 928 10575
0.06 0 1915 11928
0.06 0.1 1863 11874
0.06 0.3 1623 11654
0.06 0.5 1611 11491
0.06 0.7 1576 11329
0.20 0 7527 14342
0.20 0.1 7070 14256
0.20 0.3 6746 14092
0.20 0.5 6428 14045
0.20 0.7 6271 14077

4.5 Simulations and Results

The numerical simulations are studied to observe the complete dynamical process

with and without inoculation strategies for different spreading rates (λ) and with the

variation of assortativity coefficient (r) for correlated networks. Stifling rate (σ) has

been fixed to be 0.25 and spontaneously rumor forgetting rate (δ) is fixed to be 1. After

spread of rumor in a time step, the spreader will become stifler in next time step. At

the starting of each simulation, initially spreader nodes are chosen randomly for rumor

spreading model, in Equation (4.2.4), while all the other nodes are ignorants. In each

time step, all the N nodes interact with each other for rumor passing. After N nodes

update their states according to the proposed rumor model, time step is incremented.



4.5 Simulations and Results 61

Scale free networks are used for the contact process. The scale free networks have been

generated according to the power law, P (k) = k−γ , where 2 < γ ≤ 3. We have taken

N = 10000 and γ = 2.1. The random inoculation is implemented by randomly selecting

gN nodes in the network.

The degree distribution of the correlated scale free networks before and after applica-

tion of the targeted (Figure 4.1) and random inoculation are shown in Figures 4.1-4.2,

respectively. The degree distributions before and after the inoculation schemes has been

plotted from the theory and simulation. Theoretical and the simulation results have

been found to be similar. Table 4.1 shows the number of removed edges from the scale

free network after applying random and targeted inoculations for different fraction of

removed nodes and assortativity coefficients (r). Initially total number of edges are

16500 without any inoculation.

In Figures 4.3-4.5, final size of the rumor spread has been plotted against the rumor

transmission rate, λ for no inoculations, random and targeted inoculation schemes for

various assortativity coefficients (r = 0, 0.1, 0.3, 0.5, 0.7).

The final size of rumor has been observed to be large with high values of r in cor-

related networks for spreading rate, λ ≥ 0.5 without inoculations. Before this rate,

the rumor size is higher in uncorrelated network (r=0). Similar patterns are observed

in the random (Figure 4.4) and targeted inoculations (Figure 4.5). It is interesting

that the rumor threshold is very less for random inoculation scheme shown in Figure

4.4 for both correlated and uncorrelated networks and it is same for all the values of

assortative coefficients (r). On the other hand for targeted inoculation in Figure 4.5,

the rumor threshold is higher than the random inoculation and it increases with the
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Figure 4.1: Degree distribution of correlated scale free network before and after applying
targeted inoculation with cutoff degree=60.
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Figure 4.2: Degree distribution of correlated scale free network before and after applying
random inoculation g = 40 %.
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Figure 4.3: Final rumor size R vs λ plot for correlated and uncorrelated scale free
networks without inoculations.

decrease of assortative coefficient (r). The maximum rumor threshold has been found

in the uncorrelated scale free network.
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Figure 4.4: Final rumor size R vs λ plot for 25% random inoculation of nodes in
correlated and uncorrelated scale free networks.
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Figure 4.5: Final rumor size R vs λ plot for targeted inoculation with cut off degree
=10 in correlated and uncorrelated scale free networks.

The sizes of informed nodes and spreader nodes observed with the time are shown

in Figures 4.6-4.9. It is observed from Figures 4.6-4.9 that size of the informed nodes

initially increases exponentially with the time. After some time they achieve steady

state and remain forever in this state. The size of spreader initially increases with

the increase in time. But after some time, when spreaders turn into stifler then the

number of spreaders decreases with the increase in time. Therefore, after some time

the size of spreaders will be zero as the system will attain steady state. R(t) and S(t)

are plotted against time for scale free network with different assortativity coefficient

(r) and 25% random inoculation in Figure 4.6 and 25% targeted inoculation in Figure

4.7, respectively. It can be easily observed that final size of rumor increases with the

increase of r. Initially, spreading rate of rumor increases with the increment of r value

and dies out early when correlations are stronger and rumor spreading is found almost

zero in the targeted inoculations (Figure 4.6). Similar patterns have been found for

the 10 % inoculation of nodes in random (Figure 4.8) and targeted (Figure 4.9).
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Figure 4.6: Size of rumor and spreaders with time for correlated networks with g =
25% random inoculations for λ = 0.5.
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Figure 4.7: Size of rumor and spreaders with time for correlated networks with g =
25% targeted inoculations for λ = 0.5.
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Figure 4.8: Size of rumor and spreaders with time for correlated networks with 10%
random inoculations and λ = 0.5.

Here, in the size of rumor and spreaders, some perturbations are observed. When,

gk is less in targeted inoculations, the rumor spreads very fast initially because of hub

neighbors. After some time steps, if spreaders will become more then the number of

stifler will increase.

At that time, the number of spreaders will be less. But again in next time steps,

hub ignorants neighbors can be found and same process of increasing and decreasing

of spreaders happens. Therefore, we will get perturbations in the spreaders and stifler

sizes with time. For the higher gk in targeted inoculation scheme, correlated scale

free networks will loose the heterogeneity and this scheme will be similar as random

inoculation. Therefore, no perturbations is found in the size of spreaders and stifler.
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Figure 4.9: Size of rumor and spreaders with time for correlated networks with 10%
targeted inoculations and λ = 0.5.

4.6 Conclusions

The rumor spreading model has been proposed for correlated networks. It has been

observed that the rumors can be stopped more effectively in correlated networks us-

ing targeted inoculation. The degree distribution in the reduced network after random

inoculation is found to be independent even if the degree-degree correlation is present

or not. However, it does not hold true for targeted inoculations. The new degree dis-

tribution is generated after targeted and random inoculation schemes. It is interesting

to observe that for small values of rumor transmission rate (λ), final size of rumor in

uncorrelated networks is larger than in correlated one with or without inoculation. On

the other hand, for higher values of transmission rate, rumor size is lower in uncorre-

lated scale free networks. It is concluded that removal of connections among hub nodes

can decrease the rumor spreading.



Chapter 5

Nonlinear Rumor Spread with
Degree dependent Tie Strength in
Complex Networks

Yan et al. [65] have demonstrated that the asymmetry of infection plays an important

role. They redistributed the asymmetry to balance the degree heterogeneity of the

network and found the finite value of epidemic threshold. Zhou et al. [31, 66] have

developed a susceptible-infected model with identical infectivity, where each node can

contact with a constant number of neighbors at each time step. They concluded that

this hypothesis is not always correct. In rumor spreading, the hub nodes have many

acquaintances; however they can not contact all their acquaintances in single time step.

They assumed that the rumor spreadness is not equal to the degree but identical for

all nodes of the scale free networks and obtained the threshold, λc = 1
A

, where A is

the constant infectivity of each node and is not equal to the degree of node. Recently,

Fu et al. [67] have defined piecewise linear infectivity. They suggested if the degree k,

of a node is small, its infectivity is α�k, otherwise its infectivity is a saturated value A

when k is beyond a constant A/α�. In both constant and piecewise linear infectivity, the

heterogeneous infectivity of the nodes due to different degrees has not been considered.
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While in scale free networks heterogeneity in nodal degree is very common. There may

be nodes with different degrees, having the same infectivity, and there will be a large

number of such nodes if infectivity does not saturate, or the size of network is infinite.

In this chapter, we have investigated rumor spread in the scale free network considering

the varying tie strengths between the nodes. Therefore, rumor spreading and stifling

rate vary with tie strength of edges. Further, we have assumed that a non linearly

varying number of neighbors are infected with the rumor in each time step. While in

the earlier models [45, 3], tie strength has been considered to be uniform, and a constant

number of neighbors has been assumed to be infected in each time step by each node.

In the earlier models if a node has k neighbors, in each time step, all the k neighbors

will be infected. We have modified the earlier SIR model given by Nevokee et al. [3]

and included a rumor spreading exponent α . In this work, kα neighboring nodes will be

infected in each time step. Here, α is the rumor spreading exponent where, 0 < α ≤ 1.

The tie strength between two nodes is (kikj)
β where, ki and kj are the degrees of nodes

i and j, and β is tie strength exponent 1. We have used Barabasi-Albert (BA) model

[21] to create scale free networks with power law distribution of nodal degree, and then

used the proposed strategy in them to study the rumor spread. Scale free networks have

been specifically chosen as they are much more heterogeneous than the small world or

the random network models, and thus a good candidate for testing our proposition.

5.1 Modified Rumor Spreading Model

In classic rumor spreading model, a node spreads rumors to all of its neighbor nodes

in a single time step. But, it may be possible that a node can spread only some

1Anurag Singh and Y. N. Singh, “Nonlinear spread of rumor and inoculation strategies in the

nodes with degree dependent tie stregth in complex networks,” Acta Physica Polonica B, vol. 44, no. 1,
pp. 5–28, Jan 2013.
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fraction of the neighbor nodes in single time step. The real world networks can have

the intimacy, confidence etc. between the nodes. In the real network, a person can

send the information only to some of his/her friends. Unlike previous studies where

each node can spread the rumor with constant transmission rate λ, in this study, we

have considered a rumor spreading model with varying rumor spreading rates. In a

social network a person has many friends but he may have different intimacy with all

his friends. Some of his friends may be very close to him, and some may be occasional

friends. Therefore, the chances are greater to spread the rumor to his very close friends

than occasional ones. Similar things can happen in call networks where a person may

call higher number of duration than other friends. The transmission rate between two

connected nodes has been considered as a function of their degrees. If Φ(l) represents

the rumor spreadness, the number of neighbors contacted to spread the rumor in a

single time step, for a node with degree l, λlk and σlk represents the rumor spreading

rate and stifling rate from nodes of degree l to nodes with degree k, respectively. These

spreading rates depend on the degrees of contacted nodes. Therefore, in the classic

rumor spreading model, P (l|k) can be replaced by Φ(l)P (l|k)
l

. Based on this assumption,

we can write the rate equations as follows,

dI(k, t)

dt
= −kI(k, t)

�

l

P (l|k)S(l, t)
Φ(l)

l
λlk, (5.1.1)

dS(k, t)

dt
= kI(k, t)

�

l

P (l|k)S(l, t)
Φ(l)

l
λlk − kS(k, t)

�

l

(S(l, t)

+R(l, t))P (l|k)
Φ(l)

l
σlk − δS(k, t), (5.1.2)

dR(k, t)

dt
= kS(k, t)

�

l

(S(l, t) + R(l, t))P (l|k)
Φ(l)

l
σlk + δS(k, t). (5.1.3)

Where, Φ(l) represents the rumor spreadness of a node with degree l, λlk and σlk

represents the rumor spreading rate and stifling rate from nodes of degree l to nodes
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with degree k, respectively and P (l|k) replaced by Φ(l)P (l|k)
l

.

5.1.1 Tie Strength in Complex Networks

The topological properties of a graph are fully encoded in its adjacency matrix A ,

whose elements aij (i �= j) are 1 if a link connects node i to node j, and 0 otherwise. The

indices i, j run from 1 to N, where N is the size of the network. Similarly, a weighted

network is entirely described by a matrix W whose entry wij gives the weight on the

edge connecting the vertices i and j (wij = 0, if the nodes i and j are not connected).

In this study, we will consider only the case of symmetric weights (wij = wji) while the

undirected case of the network is considered [68]. In a call network, if two nodes call

each other for a long duration then weight of the connecting edge will be high and it

shows high tie strength between them [69]. Here, weight of the edge in terms of total

call duration defines the tie strength between the nodes. It has also been observed

in the dependence of the edge weight wij to define strength between nodes with end

point degrees ki and kj. Weight as a function of the end-point degrees can be well

approximated by a power-law dependence,

wij = b(kikj)
β.

Where, β is the degree influenced real exponent which depends on the type of complex

networks and b is a positive quantity. When β > 0 then rumor transmits to high degree

nodes and when β < 0 then rumor will transmit to low degree nodes. Further, if β = 0

there will be degree independent transmission.

It has been observed that the individual edge weight does not provide clear view of

network’s complexity. A detailed measurement if tie strength using the actual weights

is obtained by enhancing the property of a vertex degree ki =
�

j aij in terms of
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the vertex strength Si =
�N

j=1 aijwij (total weights of their neighbors). Therefore,

there is a coupling between interaction strengths of the nodes with the counterintuitive

consequence that social networks are robust enough for the removal of the strong ties

but fall apart after a phase transition if the weak ties are removed [68]. Therefore, we

can measure the strength of a node of degree k for scale free network,

Sk = k
�

l

P (l|k)wkl,

= k
�

l

lP (l)

�k�
wkl,

= b
k1+β

�k�
�k1+β�. (5.1.4)

Here, the rumor spreading model has been considered, where the rumor transmission

rate in contact process between a spreader node and an ignorant node is influenced by

their degrees. If wkl is the tie strength between k-degree node and l-degree node for

(k,l) edge, Sk is the node strength with degree k. In scale free network for each node

of degree k, there is a constant rumor transmission rate λk. Therefore, the rumor

transmission rate from k-degree node to l-degree node is given by the proportion of wkl

to Sk. Hence, λkl can be defined as,

λkl = λk
wkl

Sk
. (5.1.5)

We can see in Equation (5.1.5) that by increasing the proportion of wkl/Sk, the pos-

sibility of rumor transmission rate can be increased through the edge. In the present

work, uncorrelated networks have been considered, hence λkl = λlβ�k�/�k1+β�. In this

model, rumor spreadness, Φ(k) = kα where 0 < α ≤ 1, it defines that each spreader

node may contact with kα neighbors within one time step. Therefore, spreadness of a

rumor will vary nonlinearly with the growing degree k. In Equations (5.1.1)-(5.1.3), we
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can explain the rumor equations for Φ(k) and λlk as,

dI(k, t)

dt
= −

λk1+β

�k1+β�
I(k, t)

�

l

lαP (l)S(l, t), (5.1.6)

dS(k, t)

dt
=

λk1+β

�k1+β�
I(k, t)

�

l

lαP (l)S(l, t) −
σk1+β

�k1+β�

�

l

[S(l, t)

+R(l, t)]lαP (l) − δS(k, t), (5.1.7)

dR(k, t)

dt
=

σk1+β

�k1+β�

�

l

[S(l, t) + R(l, t)]lαP (l) + δS(k, t). (5.1.8)

After solving rumor Equations (5.1.6)-(5.1.8) with initial conditions I(k, 0) � 1, S(k, 0) �

0, R(k, 0) � 0 we get,

I(k, t) = e
−λk1+β

�k1+β�
Θ(t).

(5.1.9)

Where, Θ(t) is an auxiliary function defined as,

Θ(t) =
�

k

kαP (k)

� t

0

S(k, t�)dt�. (5.1.10)

5.2 Rumor Threshold of the Modified Model

In the infinite time limit, i.e., at the end of rumor spreading, we will have S(k,∞)=0,

limt→∞Θ(t) → Θ and limt→∞dΘ/dt=0. Near the critical threshold, the value of Θ will

be small, as S(k,∞) = 0. After solving Equations (5.1.6) - (5.1.8) and Equation (5.1.10)

we get,

Θ =
(λ �kα+β+1�

�k1+β�
− δ)

λ2 �k
α+2β+2�
�k1+β�2

(1/2 + σδ �kα+β+1�
�k1+β�

I).
(5.2.11)



5.2 Rumor Threshold of the Modified Model 74

Where, I =
� t

0
eλ(t− t�)f(t�)dt� is the finite and positive integral and Θ(t) = Θf(t)

where, f(t) is a finite function. Equation (5.2.11) will give positive value for Θ, when,

λ
�kα+β+1�

�k1+β�
− δ ≥ 0,

λ

δ
≥

�k1+β�

�kα+β+1�.
(5.2.12)

Therefore, to leading order in σ, the critical threshold is independent of the stifling

mechanism, for δ = 1 the critical rumor spreading threshold is given by,

λc =
�k1+β�

�kα+β+1�
. (5.2.13)

It is interesting to note that by putting, α = 1 and β = 0 in Equation (5.2.13), the

threshold for this model reduces to �k�/�k2� for classical rumor spreading model [7].

When, t → ∞ spreader nodes will be 0, (S(k,∞) = 0) and from Equation (5.1.9),

I(k,∞) = e
−λk1+β

�k1+β�
Θ

. Therefore, final size of rumor R at t → ∞ (limt→∞R(k, t) = R)

will be as,

R =
�

k

P (k)R(k,∞) (5.2.14)

=
�

k

P (k)(1 − S(k,∞))

=
�

k

P (k)(1 − e
−λk1+β

�k1+β�
Θ

)

= 1 −
�

k

P (k)e
−λk1+β

�k1+β�
Θ

(5.2.15)

In the real world complex networks rumor spreads on a finite size complex networks.

It may be possible that size of scale free network is very large. The maximum or
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minimum degrees of scale free network is mentioned by kmax or kmin. Pastor et al.

[9] found that the epidemic threshold λc for kmax for SIS model on bounded scale free

networks with P (k) ∼ k−2−γ�
, 0 < γ� ≤ 1. They assumed that with the soft and hard

cut-off kmin and kmax, when α = 1. The hard cut-off denotes that, a network does not

possess any node with degree k > kmax. As kmax of a node is network age, defined in

terms of number of nodes N ,

kmax = kminN
1

γ�+1 . (5.2.16)

The normalized degree distribution is defined by,

P (k) =
(1 + γ�)k1+γ�

min

1 − (kmax/kmin)−1−γ� k
−2−γ�

θ(kmax − k). (5.2.17)

Here, θ(x) is a heaviside step function [9] .

In modified rumor spreading model if α = 1 and β = 0 then, it converges to classic

rumor spreading model. As the degree distribution in scale free networks P (k) = k−γ

where, 2 < γ ≤ 3, therefore (Appendix B.1)

λc
�(kmax) =

�k�

�k2�
(5.2.18)

=

� kmax

kmin
k1−γdk

� kmax

kmin
k2−γdk

(5.2.19)

�
3 − γ

(γ − 2)kmin

(kmax/kmin)γ−3 (5.2.20)

Equation (5.2.16) is modified for the given scale free network as,

kmax = kminN
1

γ−1 . (5.2.21)

Therefore, rumor threshold for modified model for 2 < γ < 3 is,

λc
�(N) �

3 − γ

(γ − 2)kmin
(N)(γ−3)/(γ−1). (5.2.22)
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Rumor threshold for γ = 3 (Appendix B.2),

γc
�(N) � 2[kminln(N)]−1. (5.2.23)

Equations (5.2.22)-(5.2.23) show that λ�
c → 0 if N → ∞

In modified rumor spreading model, nonlinear rumor spread is considered using

Φ(k) = kα and degree dependent spreading and stifling rates are considered with

λkl = λlβ�k�/�k1+β�, σkl = σlβ�k�/�k1+β�, respectively. The rumor threshold for the

modified model is given by,

λc
#(kmax) =

� kmax

kmin
kβ+1−γdk

� kmax

kmin
kα+β+1−γdk

= k
(−α)
min

α + β − γ + 2

β − γ + 2

[(kmax/kmin)β−γ+2 − 1]

[(kmax/kmin)α+β−γ+2 − 1]
. (5.2.24)

Theorem 5.2.1 In classic rumor spread model (α = 1, β = 0) threshold is smaller

than the modified rumor spread model (0 < α < 1 and β �= 0).

The proof is given in the next section after lemmas.

Lemma 5.2.2 When the size of network (N) increases, the value of critical threshold

λ#
c > 0 for α + β + 2 < γ, otherwise it approaches to 0.

Proof Since kmax/kmin = N
1

γ−1 , therefore kmax/kmin increases when N increases, it

becomes infinity when N → ∞. When, α+β+2 < γ, ( kmax

kmin
)β−γ+2 = (kmax

kmin
)α+β−γ+2 = 0.

The value of λ#
c will be positive. Here, β < 0 (rumor transmission influenced to low

degree nodes) is considered. Now from Equation (5.2.24), we can conclude that λ#
c will
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be positive . For α + β + 2 ≥ γ, λ#
c → 0 when N increases. It can be summarized as,

λc
#(kmax) =











k
(−α)
min

α+β−γ+2
γ−β−2

(kmax/kmin)γ−α−β−2, α + β + 2 > γ

k
(−α)
min

γ−α−β−2
γ−β−2

, α + β + 2 < γ

k
(−α)
min

1
αln(kmax/kmin)

, α + β + 2 = γ

(5.2.25)

Lemma 5.2.3 In given rumor spreading model when α+β+2 < γ then rumor spreading

threshold λ# is independent from the size of scale free network (N).

Proof It may also be defined using Equations (5.2.21)-(5.2.25) in the term of the num-

ber of nodes N ,

λc
#(N) =











k
(−α)
min

α+β−γ+2
γ−β−2

(N)(γ−α−β−2)/(γ−1) , α + β + 2 > γ

k
(−α)
min

γ−α−β−2
γ−β−2

, α + β + 2 < γ

k
(−α)
min

γ−1
αln(N)

, α + β = γ

(5.2.26)

Here, it is observed that for α + β + 2 < γ, λ#
c is independent of N .

Proof Now using lemmas 5.2.2 and 5.2.3, the theorem can be proved for α+β+2 > γ.

The ratio of rumor threshold in classic model and given model is given as,

λ�
c(N)

λc
#(N)

=
(2 − γ)(γ − β − 2)

(γ − 2)k
(1−α)
max (α + β − γ + 2)N (1 − γ − β + 2)/(γ − 3)

(5.2.27)

It has been found from Equation (5.2.27) that λ�
c(N)

λc
#(N)

< 1 for finite scale free networks.

Therefore, it has been justified that rumor threshold λ#
c (N) is greater than the λ�

c(N)

in finite size scale free networks. In finite size scale free networks, when 0 < α < 1,

β �= 0 and α + β + 2 > γ then, it is hard to spread rumor in comparison to networks

having α = 1 and β = 0. Finite rumor threshold is possible for any size of networks as

seen in Equation (5.2.26). However, it will be 0 when N approaches infinity.
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5.3 Random Inoculation

In random inoculation strategy, randomly selected nodes will be inoculated. This

approach inoculates a fraction of the nodes randomly, without any information of the

network. Here, variable g (0 ≤ g ≤ 1) defines the fraction of inoculative nodes. In the

presence of random inoculation, rumor spreading rate λ is reduced by a factor (1 − g).

In mean field level, for the scale free networks in the case of random inoculation, the

rumor equations are modified using initial conditions as,

dI(k, t)

dt
= −

(1 − g)λk1+β

�k1+β�
I(k, t)

�

l

lαP (l)S(l, t), (5.3.28)

dS(k, t)

dt
=

(1 − g)λk1+β

�k1+β�
I(k, t)

�

l

lαP (l)S(l, t) −
σk1+β

�k1+β�

�

l

(S(l, t)

+R(l, t))lαP (l) − δS(k, t), (5.3.29)

dR(k, t)

dt
=

σk1+β

�k1+β�

�

l

(S(l, t) + R(l, t))lαP (l) + δS(k, t). (5.3.30)

Therefore, final size of the informed nodes (R) is,

R = 1 −
�

k

P (k)(1 − g)e
−λ(1−g)k1+β

�k1+β�
Θ
− g. (5.3.31)

The rumor spreading threshold in the case of random inoculation is obtained from

Equations (5.3.28)-(5.3.30) as,

λ̂c =
�kβ+1�

(�kα+β+1�)(1 − g)
. (5.3.32)

The relation between rumor spreading threshold, with inoculation (λ̂c) and without
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inoculation(λc) can be defined as,

λ̂c =
λc

1 − g
. (5.3.33)

It is to noted that by applying random inoculation, the rumor spreading threshold (λ̂c)

can be increased as seen in Equation (5.3.33) (i.e., λ̂c > λc).

5.4 Targeted Inoculation

Scale free networks permit efficient strategies and depend upon the hierarchy of

nodes. It has been shown that scale free networks show robustness against random

inoculation. It shows that the high fraction of inoculation of nodes can be resisted

without loosing its global connectivity. But on the other hand, scale free networks are

strongly affected by targeted inoculation of nodes. The scale free network suffers an

interesting reduction of its robustness to carry information. In targeted inoculation,

the high degree nodes have been inoculated progressively, i.e more likely to spread the

information. In scale free networks, the robustness of the network decreases at the effect

of a tiny fraction of inoculated individuals.

Let us assume that fraction gk of nodes with degree k are successfully inoculated.

An upper threshold of degree kt , such that all nodes with degree k > kt get inoculated.

Fraction gk of nodes with the degree k are successfully inoculated. The fraction of

inoculated nodes is given by,

gk =











1, k > kt,

f, k = kt,

0, k < kt.

(5.4.34)
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Where 0 < f ≤ 1, and
�

k gkP (k) = ḡ, here ḡ is the average inoculation fraction. Now

rumor spreading equation is defined for targeted inoculation as,

dI(k, t)

dt
= −

(1 − gk)λk
1+β

�k1+β�
I(k, t)

�

l

lαP (l)S(l, t), (5.4.35)

dS(k, t)

dt
=

(1 − gk)λk
1+β

�k1+β�
I(k, t)

�

l

lαP (l)S(l, t) −
σk1+β

�k1+β�

�

l

(S(l, t)

+R(l, t))lαP (l) − δS(k, t), (5.4.36)

dR(k, t)

dt
=

σk1+β

�k1+β�

�

l

(S(l, t) + R(l, t))lαP (l) + δS(k, t). (5.4.37)

Next, rumor spreading threshold in the case of targeted inoculation is obtained from

Equations (5.4.35)-(5.4.37) as,

λ̃c =
�kβ+1�

�kα+β+1� − �gkkα+β+1�
. (5.4.38)

Here, �gkk
α+β+1�=ḡ�kα+β+1� + η�, where η� = �(gk − ḡ)[�kα+β+1 − �kα+β+1�]� is the co-

variance of gk and kα+β+1. The cut-off degree kt is large enough where, η� < 0, but for

small kt, gk − ḡ and kα+β+1 − �kα+β+1� have the same signs except for k’s where gk − ḡ

and/or kα+β+1 − �kα+β+1� is 0.

Hence, η� > 0 for appropriate kt,

λ̃c >
1 − g

1 − ḡ
λ̂c. (5.4.39)

If average inoculation fraction of nodes in targeted inoculations is same as fraction of

nodes in the random inoculations then g = ḡ,

λ̃c > λ̂c. (5.4.40)

The above relation shows that in scale free networks, the targeted inoculation is more

effective than the random inoculation.
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5.5 Numerical Simulations: Results and Discussion

The studies of uncorrelated networks have been performed using the degree distri-

bution of scale free network. The size of the network is considered to be N = 105,the

degree exponent (γ)=2.4, δ = 1 and σ = 0.2. At the starting of rumor spreading, the

spreaders are randomly chosen. In Figures 5.1 and 5.2, the final size of rumor R is

plotted against rumor transmission rate for N=100000, 1000 and 100 by tuning α and

β as,

• α+ β = 0: Finite rumor threshold has been found. It has been observed that for

different size of networks, constant threshold is there (after fixing the value of α

and β). For the case α + β + 2 < γ, since γ = 2.4. Therefore it seems interesting

that finite threshold has been found which is independent from the size of network

same as obtained from Equations (5.2.25) and (5.2.26).

• α+ β = −1 : The simulation results are found same as above since α+ β + 2 < γ

with finite threshold and constant for any network size (for fix values of α and β).

• α + β = 1: In this case the rumor threshold has nonzero value but it tends to be

0 when the network size increases. For this case α + β + 2 > γ, since γ = 2.4.

Therefore, the threshold approaches to 0 as network size increases. Similar results

have been obtained by Equations (5.2.25)-(5.2.26).

• α + β = 2: The simulation results are found same as above since α + β + 2 > γ

with threshold approaches to 0 as size of network increases.

Final size of rumor (R) obtained in numerical simulation is plotted against time (t)

in Figures 5.3-5.6. It has been observed that rumor size increases exponentially as time
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Figure 5.1: R vs λ with α + β + 2 > γ for different size of scale free networks.
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Figure 5.2: R vs λ with α + β + 2 < γ for different size of scale free networks.
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increases and after some time it approaches a steady state, that will remain constant,

since spreader density is 0 at that time. It has also been observed that when α + β is

low, then rumor size initially increases slowly but when, α+ β increases the rumor size

increases rapidly with time. While tuning the parameter α and β from α + β = −1 to

α+ β = 2 rumor increments are faster, initially (Figures 5.3-5.6). When ratio of α and

β is high than the rumor size is also high. This observation justifies that the α affects

more the final size of rumor R than β. It is seen from Equation (5.2.13) that when α is

very small (0.1- 0.3), then the rumor threshold will be high. The final size of rumor will

be too small when rumor transmission rate (λ) is less than the rumor threshold (λc).
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Figure 5.3: R(t) vs t and S(t) vs t for λ = 0.8 and α + β = −1.

Critical rumor threshold is plotted against α in Figures 5.7-5.8 while considering

β = 0. Here, λc decreases exponentially with the increase of α. It is maximum for

α = 0.1 and almost 0 at α = 1 for N = 100000. Interestingly, this also happens in

real life situation, when an informed node passes information to its maximum number

of neighbors then rumor spreading will get outbreak in the network. However, the

outbreak is hard to achieve when it passes rumor to less number of neighbors (� 10-
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Figure 5.4: R(t) vs t and S(t) vs t for λ = 0.8 and α + β = 0.
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Figure 5.5: R(t) vs t and S(t) vs t for λ = 0.8 and α + β = 1.
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Figure 5.6: R(t) vs t and S(t) vs t for λ = 0.8 and α + β = 2.

30%). Similarly, λc has been studied against β at α = 1 in Figures 5.7-5.8. It is

found that β has less effect on the rumor threshold for entire range except when β >

0. Further, it approaches to 0. When size of the network (N) increases then rumor

threshold is decreased as shown in Figure 5.7 and Figure 5.8.
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Figure 5.7: Threshold (λc) vs α for γ = 2.4 for different size of scale free networks.
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Figure 5.8: Threshold (λc) vs β for γ = 2.4 for different size of scale free networks.

In Figures 5.9-5.10, final size of rumor has been plotted against β for α = 1, γ = 2.4,

3, and λ = 1. It can be seen that that R is maximum when β = −1. Initially rumor

size R increases with β but after achieving a maximum value for β = −1, it decays

exponentially. Further, for α = 1, γ = 2.4, the final rumor size R approaches to 0

(beyond β = 1.5).

Furthermore, it is interesting to note that the final rumor size R increases with

increase of α, see Fig. 5.11.

For random inoculation g = 0.1, 0.3, 0.5, 0.7, 0.9, the final rumor size R has been

plotted against β (Figures 5.12-5.14). It is observed that to get maximum value of R,

β increases when g increases. Also, maximum size of rumor decreases with increase

of g. It is because in random inoculation rumor, the threshold value is larger than

the threshold in model without inoculation as inferred from from Equation (5.3.33)

(λ̂c > λc). A sharp decrease in the value of R is seen when rumor transmission rate (λ)
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Figure 5.9: Final size of rumor R vs β (N = 105 nodes, α = 0.5 and α = 1) for γ = 2.4.
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Figure 5.10: Final size of rumor R vs β (N = 105 nodes, α = 0.5 and α = 1) for γ =3.



5.5 Numerical Simulations: Results and Discussion 88

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

R

γ=2.4
γ=3.0

Figure 5.11: Final size of rumor R vs α (N = 105 nodes, β = −1 and λ = 1) for
γ = 2.4, 3.

is decreased by 0.5 in comparison to the case where decrease of R is shallow and α is

decreased by 0.5. For λ � 1 there may be a chance that rumor spreads to some extent

at any value of g < 1 for very large N.

Similar results have been observed in the case of targeted inoculation in Figures

5.15-5.17. Here, maximum rumor size is much smaller with the inoculation of very less

fraction of nodes (e.g. for g=0.25 the final rumor size R is almost suppressed), as the

rumor threshold in targeted inoculation is larger than the random inoculation.

For random inoculation strategy, the rumor spreading is plotted against time evo-

lution using modified model through simulation results. For g = 0.1, 0.3, 0.5, 0.7, the

Figures 5.18-5.21 show, if α + β increases from -1 to 2, R will increase since the ru-

mor threshold decreases. Further, it can be observed from Equation (5.2.26) that for

α+ β = −1 and 0, λc is finite and higher than the case where α+ β = 1 and 2. There-
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Figure 5.12: Final size of rumor R vs β with α = 1 and λ = 1 in random inoculation
scheme for different fractions of inoculation (g).
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Figure 5.13: Final size of rumor R vs β with α = 1 and λ = 0.5 in random inoculation
scheme for different fractions of inoculation (g).
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Figure 5.14: Final size of rumor R vs β with α = 0.5 and λ = 1 in random inoculation
scheme for different fractions of inoculation (g).
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Figure 5.15: Final size of rumor R vs β with α = 1 and λ = 1 in targeted inoculation
scheme for different fractions of inoculation (g).
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Figure 5.16: Final size of rumor R vs β with α = 1 and λ = 0.5 in targeted inoculation
scheme for different fractions of inoculation (g).
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Figure 5.17: Final size of rumor R vs β with α = 0.5 and λ = 1 in targeted inoculation
scheme for different fractions of inoculation (g).
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fore, R(t) is almost 0 and grows slowly with time when, α + β = −1. The growth in

R(t) is higher for lower values of g, but the case is reversed for the higher values of g.
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Figure 5.18: R(t) vs t with α+ β = −1 , λ = 0.6 in random inoculation for g= 0.1, 0.3
(upper) 0.5, 0.7 (lower).

Similarly, in the case of targeted inoculation scheme using lower values of g =

0.05, 0.1, 0.15, 0.2 for α + β = −1 to 2, the rumor threshold is found more than the

random inoculation scheme (Equation (5.4.40)) and rumor spreading is suppressed af-

ter inoculating less number of nodes than the random inoculation scheme (Fig. 5.22-

Fig. 5.25).

5.6 Conclusions

In present investigations, the modified SIR model has been proposed by considering

standard SIR rumor spreading model with degree dependent tie strength of nodes and

nonlinear spread of rumor. The two parameters - nonlinear exponent α and degree de-
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Figure 5.19: R(t) vs t with α + β = 0 , λ = 0.6 in random inoculation for g = 0.1, 0.3
(upper) 0.5, 0.7 (lower).
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Figure 5.20: R(t) vs t with α + β = 1 , λ = 0.6 in random inoculation for g = 0.1, 0.3
(upper) 0.5, 0.7 (lower).
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Figure 5.21: R(t) vs t with α + β = 2 , λ = 0.6 in random inoculation for g= 0.1, 0.3
(upper) 0.5, 0.7 (lower).
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Figure 5.22: R(t) vs t with α + β = −1 , λ = 0.6 in targeted inoculation for g= 0.05,
0.1 (upper) 0.15, 0.2 (lower).
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Figure 5.23: R(t) vs t with α+ β = 0 , λ = 0.6 in targeted inoculation for g= 0.05, 0.1
(upper) 0.15, 0.2 (lower).
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Figure 5.24: R(t) vs t with α+ β = 1 , λ = 0.6 in targeted inoculation for g= 0.05, 0.1
(upper) 0.15, 0.2 (lower).
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Figure 5.25: R(t) vs t with α+ β = 2 , λ = 0.6 in targeted inoculation for g= 0.05, 0.1
(upper) 0.15, 0.2 (lower).

pendent tie strength exponent β have been introduced for this purpose. In the modified

rumor spreading model, finite rumor spreading threshold has been found for finite scale

free networks. Further, the rumor threshold has been found to be fixed for any size of

network when α + β + 2 < γ. Random and targeted inoculation schemes have been

introduced in the proposed modified model. Rumor threshold in targeted inoculation

scheme is found to be highest and without inoculation lowest in the modified model.

For random inoculation, the rumor threshold will be in between the two extremes. It

has also been observed that for scale free networks targeted inoculation scheme is suc-

cessful in suppressing the rumor spreading in the network, to inoculate less number of

nodes than in random inoculation. Further, the rumor threshold is found to be more

sensitive against α than β as it affects more the rumor threshold. Finally, it is seen

that in real world networks finite rumor threshold can be achieved by considering more

realistic parameters (degree dependent tie strength of nodes and nonlinear spread of
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rumor). The targeted inoculation scheme can be successfully applied to suppress the

rumor spreading over scale free networks.



Chapter 6

Structural Centrality Based
Inoculation on Rumor Dynamics in
Complex Networks

6.1 Introduction

In social networks, the mechanism to suppress harmful rumors is of great importance.

A rumor spreading model has been defined using the susceptible-infected-refractory

(SIR) model to characterize rumor propagation in social networks. In this chapter,

a new inoculation strategy based on structural centrality has been applied on rumor

spreading model for heterogeneous networks. Using the proposed method, we can find

the most influential node in the context of centrality measures in the graph 1. It is

compared with the targeted and random inoculations. The structural centrality of each

node has been ranked in the topology of social networks which is modeled as scale

free network. The nodes with higher structural centrality are chosen for inoculation

in the proposed strategy. The structural centrality based inoculation strategy is more

1Anurag Singh, R. Kumar, and Y. N. Singh, “Effects of inoculation based on structural centrality

on rumor dynamics in social networks,” in Computing and Combinatorics. Springer, 2013, pp. 831–

840.
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efficient in comparison with the random and targeted inoculation strategies. One of the

bottleneck is the high complexity to calculate the structural centrality of the nodes for

very large number of nodes in the complex networks. The proposed hypothesis has been

verified using simulation results for email network data [70] and the generated scale free

networks.

In this work, for all the simulations of the complex networks, the scale free property

has been considered with power law degree distribution. The scale free properties are

found in the real world networks e.g., email networks, Internet networks, telephone call

graphs etc. [24].

6.2 Complex Network Topology Using Graph Spec-

tra

The complex network topology can be understood by the graph structure [71, 72].

A graph is defined by G = (V,E), where V is the set of vertices or nodes and E is the

set of edges or links. A = [aij ] is an adjacency matrix of |n×n| size, where n = |V |, aij

will be 1 if edge exists between i and j vertices otherwise 0 and aij = aji for undirected

(symmetric) graphs. The degree of the ith vertex, di =
�

j aij and D = [di] is the degree

matrix which is a diagonal matrix.

Spectral graph theory using eigenvalues and eigenvectors can be applied in the graphs

to find out the structural centrality of the graphs. If a matrix is square, symmetric and

positive semidefinite [73] then, eigenvectors and eigenvalues will exist for the matrix.

Eigenvectors and eigenvalues exist for A, since the adjacency matrix A of a graph is

symmetric, and it is positive semidefinite.
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The Laplace matrix, L of the adjacency matrix A for graph G is given by L = D−A.

The Laplace matrix of the graph is a positive semidefinite and symmetric, therefore it

has all eigenvalues, i.e. λi ≥ 0, ∀i. Hence, these eigenvalues (λi) ordered as λ1 ≥ λ2 ≥

... ≥ λn = 02, have eigenvectors �zi respectively such that ||�zi||
2 = �zi

T �zi =1. The set

of eigenvectors of L, �Z = [�z1, ...�zi..., �zn], will be orthonormal i.e., ZTZ = I. If Λ is

a diagonal matrix, Λ = [λii] of eigenvalues then L follows the eigen decomposition as

L = �ZΛ�ZT .

6.3 Structural Centrality

From Laplace matrix L, Moore-Penrose pseudo inverse matrix L+ can be defined. It

follows all the properties (square, symmetric, doubly-centered, positive semidefinite) of

L. The eigen decomposition of L+ will be �ZTΛ−1 �Z. �Z is an orthonormal matrix made

of the eigenvectors of L+. If Λ has an eigenvalue value, λi = 0 then, corresponding

eigenvalue λ−1 in Λ−1 will also be 0. As L+ has the doubly centered (all rows and

columns sum will be zero) property therefore, centroid of the nodes (having position

vectors) lies on the origin of the space [73]. The graph matrix maps into the new

euclidean space. We can represent each node by a unit vector �v as,

�vi = [0 −−− 1 −−− 0]T

i

�vj = [0 −−− 1 −−− 0]T

j

Now, we can calculate distance between the nodes i and j in terms of number of
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hops required to reach j from i and vice versa, is defined by average commute distance

n(j|i). Average commute distance measure is,

n(i, j) = m(j|i) + m(i|j) (6.3.1)

where, m(i, j) is the first passage time, when a random walker starts from node i �= k

and enter into state k first time. n(i, j) will follow the distance measure for any node

i, j and k,

1. n(i, j) ≥ 0

2. n(i, j) = 0 iff i = j

3. n(i, j) = n(j, i)

4. n(i, j) ≤ n(i, k) + n(k, j)

Therefore, using L+ matrix and graph volume, VG (=
�n

k=1 dkk), n(i, j) can be ex-

pressed as [73],

n(i, j) = VG(l+ii + l+jj − 2l+ij) (6.3.2)

Now ,the node vector �vi can be mapped into the new euclidean space by using the

following transformations,

�vi = �Z�yi, (6.3.3)

�yi
� = �Λi

1/2
�yi (6.3.4)

Where, �yi is the transformation node vector. Now, Equation (6.3.2) can be decomposed

as,

n̄(i, j) = VG(�yi
� − �yj

�)T (�yi
� − �yj

�) (6.3.5)
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Hence, in the new euclidean space the node vectors �yi and �yj are separated by average

commute euclidean distance measure (n̄(i, j)).

Therefore, euclidean distance measure for the node i from the origin can be found

as the diagonal entry of the L+,

||�y�i||
2
2 = l+ii . (6.3.6)

Definition If Le be the Laplacian of the graph on n vertices consisting of just the edge

e and �w ∈ �n then,

�wTL�w =
�

e∈E

�wTLe �w =
�

(i,j)∈E

( �wi − �wj)
2. (6.3.7)

Definition Structural centrality is able to make the hierarchy from the most influential

nodes to least influential nodes.

The structural centrality of node i for graph G is

SC(i) =
1

l+ii
. (6.3.8)

From Equation (6.3.8), for the lower value of l+ii the structural centrality (SC) will be

high and vice versa . Therefore, the value of l+ii determines the influential nodes.

If a node i is closer to origin in n- dimensional space then it will have lower value

of l+ii , i.e., more centrally located in the network. Therefore, the value of l+ii in pseudo

inverse matrix L+ can be defined as,

l+ii =

n−1
�

k=1

�z2ki
λk
. (6.3.9)
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Figure 6.1: The node ranks in graph with (a) degree centralities (b) structural central-
ities mentioned inside the nodes.

It is observed from Equation (6.3.9) that the structural centrality of a node is defined

by the eigenvectors and eigenvalues of the Laplace matrix, L of the graph.

The concept of the structural centrality can be understood with the help of an

example given in Fig. 6.1. There are seven nodes in the graph and the hierarchy of

their degrees is given in the center of the nodes. Hence, node 5 is the most influential

in the case of targeted inoculation based on nodal degree as shown in Fig. 6.1(a).

After defining the adjacency matrix A and degree matrix D of the given graph, we can

calculate the Laplace matrix L = D −A as

L =





















1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 3 −1 −1 0 0.
0 0 −1 2 −1 0 0
0 0 −1 −1 4 −1 −1
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2





















.

Laplace matrix, L holds following desirable properties to calculate the structural cen-

trality,

1. Symmetric: aij = aji, in L
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2. Square matrix : L is 7 × 7

3. Doubly centered: Summation of all rows and columns in L is 0

4. Positive semidefinite: Let �w be any vector, i.e., �w =

�

−0.8507
−0.5257

�

, then �wT =

�

−0.8507 −0.5257
�

, for edge between node 1 and 2, L12 =

�

1 −1
−1 2

�

, and

�wTL12 �w = 0.3820. (6.3.10)

Therefore, L will be positive semidefinite.

Using the L, pseudo inverse matrix L+ can be generated as,

L+ =





















1.4626 0.6054 −0.1088 −0.3469 −0.4422 −0.5850 −0.5850
0.6054 0.7483 0.0340 −0.2041 −0.2993 −0.4422 −0.4422
−0.1088 0.0340 0.3197 0.0816 −0.0136 −0.1565 −0.1565
−0.3469 −0.2041 0.0816 0.5102 0.0816 −0.0612 −0.0612
−0.4422 −0.2993 −0.0136 0.0816 0.3197 0.1769 0.1769
−0.5850 −0.4422 −0.1565 −0.0612 0.1769 0.7007 0.3673
−0.5850 −0.4422 −0.1565 −0.0612 0.1769 0.3673 0.7007





















From the above matrix diagonal values l+ii are defined for ith node respectively. Thus

vector for l+ii ∀i is,

l+ii =
�

1.462 0.7483 0.3197 0.5102 0.3197 0.7007 0.7007.
�

After observing the above values of l+ii , it is found that nodes 3 and 5 have the most

structural centrality in the network. Therefore, node 3 can also be most influential like

node 5 (i.e. most influential in degree centrality).
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6.4 Structural Centrality Inoculation

The diagonal elements, l+ii can be sorted from low to high with their node numbers.

Now, we will be able to get the list of the nodes sorted according to their degree

centralities from high to low from Equation (6.3.8). Then, we can select fraction, g of

inoculated nodes from the sorted array. Therefore, we will be able to inoculate most

structurally central nodes first.

Random Inoculation

In random inoculation strategy, randomly selected node will be inoculated. This

approach inoculates a fraction of nodes randomly, without any information about the

network. Here, variable g (0 ≤ g ≤ 1) defines the fraction of inoculated nodes. In the

presence of random inoculation, rumor spreading rate λ is reduced by a factor (1 − g).

Targeted inoculation

Scale free networks permit efficient strategies which depend upon the hierarchy of

the degrees of nodes (degree centrality). The scale free networks are strongly affected

by targeted inoculation of nodes [17]. In targeted inoculation, the high degree nodes

have been inoculated as they are more likely to spread the information. In scale free

networks, the robustness of the network decreases with a tiny fraction of inoculated

individuals.

Let us assume that fraction gk of nodes with degree k are successfully inoculated.

An upper threshold of degree is kt , so that all nodes with degree k > kt get inoculated
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(gk = 1). Fraction gk of the nodes with degree k are successfully inoculated.
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Figure 6.2: The degree distributions of (a) generated scale free network (b) Email
network.

6.5 Rumor Spreading Model Used for Comparison

We have used rumor spreading model proposed in chapter 5 for unweighted network.

The mean field equations for complex networks while considering non linearly varying

number of informed neighbor nodes by a spreader in each time step (not all neighbors
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of the node) have been used. Therefore, rate equations for rumor spreading model are,

dI(k, t)

dt
= −

kλI(k, t)

�k�

�

l

lαP (l)S(l, t), (6.5.11)

dS(k, t)

dt
=

kλI(k, t)

�k�

�

l

lαP (l)S(l, t) −
kσS(k, t)

�k�

�

l

[S(l, t) +

R(l, t)]lαP (l) − δS(k, t), (6.5.12)

dR(k, t)

dt
=

kσS(k, t)

�k�

�

l

[S(l, t) + R(l, t)]lαP (l) + δS(k, t). (6.5.13)

Where, λ, σ and δ are the rumor spreading, stifling and forgetting rates respectively.

After solving Equations (1)-(3) for δ = 1, the rumor threshold (below this spreading

rate rumor will not spread in the network) is λc = �k�
�kα+1�

6.6 Simulations and Results

The numerical simulations have been carried out to observe the complete dynamical

process with inoculation strategies with spreading (λ = 0.5), stifling (σ = 0.2) and

spontaneous forgetting (δ = 1) rates. Nodes interact with each other for rumor pass-

ing in each time step. After N nodes update their states according to the proposed

rumor model, time step is incremented. To reduce the complexity, α = 1 is consid-

ered. The scale free networks are generated according to the power law, P (k) = k−γ ,

where 2 < γ ≤ 3 for N = 5000 and γ = 2.3 (Fig. 6.2 (a)). Email network has also

been considered for the verification as real world complex network (Fig. 6.2 (b)).The

random inoculation is implemented by selecting gN nodes randomly in the network.

The targeted inoculation can be done after selection of the fraction of higher degree of

nodes. The structural centrality inoculation can be done by getting the diagonal values,

l+ii of the pseudo inverse matrix L+, for the corresponding node i. Using l+ii , we can sort
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out the values in an array from low to high and inoculate fraction of the sorted nodes

in the array.

(a) (b)

Figure 6.3: The structure of (a) Email network (b) generated scale free network with
the different ranking of structural centralities (red → blue → brown → green nodes
show higher to low ranking).

The structures of the email and generated scale free network are constructed for

some nodes along with the structural centrality (Fig. 6.3). In the degree distribution of

email network more number of very high degree nodes are found as compared with the

generated scale free network, as shown in Fig. 6.2. Therefore, Fig. 6.3 (a) shows lot of

edges around more number of higher degree nodes as compared to the generated scale

free networks shown in Fig. 6.3 (b). The most structurally central node represented

by red and least by green can be verified from Fig. 6.3. For high structurally central

node, less number of hops are required to reach the other nodes, even at less degree.

The most structurally centered node provides the well connected path between the two

dense nodes shown as a sub-graph.
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Figure 6.4: Distributions of (a) degree centralities (b) structural centralities with the
node ids in email network.

In Fig. 6.4 (a), degree centrality has been mentioned for all the nodes in the decreas-

ing order of degrees and corresponding node’s structural centrality is shown in Fig.

6.4 (b) for email networks. It is observed that even with the less degree of nodes, the

structural centrality is high, and can affect the network in the case of rumor spreading

in comparison with the high degree nodes. Therefore, we observe influential nodes in

the structural centrality. Hence, it is required to inoculate these nodes to suppress the

rumor in the network.

Using the rumor model from Equations (6.5.11)-(6.5.13), rumor dynamics is studied

for random inoculation, and targeted inoculation on the basis of nodal degree and

structural centrality. In Fig. 6.5, evolution of size of rumor is plotted against time

for email network. Final size of rumor is less in the structural centrality then the

targeted inoculation for 10 % inoculation of nodes (Fig. 6.5 (a)). Similar pattern for
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rumor evolution with time has been found for 30 % inoculations (Fig. 6.5), but rumor

is almost suppressed in this case. Thus, the structural centrality based inoculation

suppresses the rumor in the networks more effectively.
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Figure 6.5: Rumor evolution with the time for (a) 10 % inoculations (b) 30 % inocula-
tions for Email network.

Random inoculation is not much effective in both cases i.e., in email network and

generated scale free network to suppress the rumor . In the case of generated scale free

networks, for very small fraction of time, rumor size has been found to be higher in

structural centrality based inoculations initially for 10 % as well as 30 % of inoculations

of node, as shown in Fig. 6.6. But later rumor size decreases in the structural centrality

based inoculation in comparison with targeted inoculations (the reason is, highest degree

is very less in the network but number of high degree nodes are more). Therefore, degree

centrality plays important role initially but later structural centrality plays its role.
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Figure 6.6: Rumor evolution with the time for (a) 10 % inoculations (b) 30 % inocula-
tions for generated scale free network.

6.7 Conclusions

In scale free network we have derived the structural centralities of nodes in the

complex networks and ranked it with the help of l+ii values. A node with the high

structural centrality needs less number of hops to reach the other node, even at less

degree. We have inoculated nodes according to the rank of structural centrality. After

this we observed less rumor spreading than the targeted inoculation based on degree

centrality and random inoculation. It has also been observed that there are lot of nodes,

having low degree but high structural centrality and vice versa.



Chapter 7

Conclusions and Future works

In this work, a new compartment of nodes viz. stifler who rejects the rumor with

rate ρ is added to the rumor spreading model. The proposed model supports the small

critical inoculation value gc in random as well as targeted inoculation to control rumor

spreading when average degree �k� of small world network is small. It is also found that

in the targeted inoculation, gc is smaller than in the case of random inoculation when

degree �k� is small. When �k� is high, mean field approximation fails. In this case, ran-

dom or targeted inoculation alone will not be effective. Therefore, one should decrease

the acceptability of the rumor and apply either random or targeted inoculation method

at the same time. After doing this, we got a small value of gc to control rumor spread-

ing. We have also investigated the rumor diffusion mechanism in scale free networks,

with the new compartment of stifling nodes who reject the rumors. After decreasing

the rumor acceptability factor, the population who reject the rumor increases. If the

degrees of nodes are known, then targeted inoculation strategy is found to be the best

for scale free networks. But, if this information about the scale free networks is not

available, then neighbor inoculation strategy can be applied which is better than the

random inoculation to control the rumor. It has also been observed that decreasing
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the rumor acceptability factor makes the inoculation more effective in controlling the

rumor in scale free networks.

The rumor spreading model has also been extended to correlated networks. As ex-

pected, it is observed that rumor can be stopped more effectively in correlated networks

using targeted inoculation. The degree distribution in the reduced network after ran-

dom inoculation is found to be independent of degree-degree correlation. Thus the

performance of random inoculation is independent even if degree-degree correlation is

present or not. However, it does not hold true for targeted inoculations. It is interesting

to observe that for small values of rumor transmission rate (λ), final size of rumor in

uncorrelated networks is larger than in correlated one with or without inoculation. On

the other hand, for higher values of transmission rate, rumor size is lower in uncorre-

lated scale free networks. It is concluded that removal of connections among hub nodes

can decrease the rumor spreading.

A modified SIR model has also been proposed by considering standard SIR rumor

spreading model with degree dependent tie strength of nodes and nonlinear spread of

rumor. The two parameters - nonlinear exponent α and degree dependent tie strength

exponent β have been introduced for this purpose. In the modified rumor spreading

model, finite rumor spreading threshold has been found for finite scale free networks.

Further, the rumor threshold has been found to be fixed for any size of network when

α+ β + 2 < γ. Random and targeted inoculation schemes have been introduced in the

proposed modified model. Rumor threshold in targeted inoculation scheme is found

to be highest and without inoculation lowest in the modified model. For random in-

oculation, the rumor threshold will be in between the two extremes. It has also been

observed that for scale free networks targeted inoculation scheme is successful in sup-

pressing the rumor spreading in the network since, one need to inoculate less number
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of nodes than in random inoculation. Further, the rumor threshold is found to be more

sensitive against α in comparison with β. Finally, it is seen that in real world networks

finite rumor threshold can be achieved by considering more realistic parameters (degree

dependent tie strength of nodes and nonlinear spread of rumor).

At last, in scale free network we have derived the structural centralities of nodes in

the complex networks and ranked it with the help of l+ii values. A node with the high

structural centrality needs less number of hops to reach the other node, even at less

degree. We have inoculated nodes according to the rank of structural centrality. After

this we observed less rumor spreading than the targeted inoculation based on degree

centrality and random inoculation. It is also observed that there are lot of nodes, having

low degree but high structural centrality and vice versa.

Many more problems worth further investigations have been found during the course

of this research work. Some of the problem which can be further pursued are given

below:

1. In the present work, the rumor spreading rate has been assumed to be constant.

Once take it to be variable entity which may change with progress of rumor spread.

2. Some of the nodes can be considered as trusted, information received from these

nodes will be considered reliable information (not rumor).

3. Some new methods can be investigated to find more influential nodes for the real

world networks to inoculate them.

4. Complex network has been considered undirected to define the rumor spreading

models, in this thesis. This work can be extended for directed networks also.



Appendix A

Chapter 3

A.1

Initial conditions of our model are

I(0) ≈ 1, S(0) ≈ 0, Racc(0) = 0, Rrej(0) = 0 and S(∞) = 0. From Equations (3.1.3)

-(3.1.6),

� t

0

1

I(τ)
dI(τ) = −(λ + ρ + η)�k�

� t

0

S(τ) dτ,

I(t) = I(0)e[−(λ+ρ+η)�k�
� t

0
S(τ) dτ ]. (A.1.1)

From Equation (3.0.1),

S(t) + R(t) = 1 − I(t).

From Equation (3.1.7), we get,

R(0) ≈ 0.

dR(t)

dt
= σ�k�S(t)[1 − I(t)] + [ρ + η�k�I(t)S(t)] (A.1.2)
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From Equation (A.1.2),

dR(t)

dt
=

dRacc(t)

dt
+
dRrej(t)

dt
,

dR(t)

dt
= σ�k�S(t)(S(t) + R(t)) +

�k�I(t)S(t)(ρ + η). (A.1.3)

From Equation (3.0.1) and (3.1.7),

dR(t)

dt
= σ�k�S(t)[1 − I(t)] + (ρ + η)�k�I(t)S(t). (A.1.4)

After integrating Equation (A.1.4),

� t

0

dR(τ) = σ�k�

� t

0

S(τ) dτ +
σ − ρ− η

λ+ ρ + η

� t

0

1 dI(τ),

R(t) − R(0) = σ�k�

� t

0

S(τ) dτ +
σ − ρ− η

λ+ ρ + η
[I(t) − I(0)].

For t = ∞,

R(∞) = σ�k�

� t

0

S(τ) dτ +
σ − ρ− η

λ+ ρ + η
[1 − R(∞) − 1],

�k�

� t

0

S(τ) dτ =
R(∞)

σ

�

λ + σ

λ + ρ + η

�

. (A.1.5)

Put value of Equation (A.1.5) into Equation (A.1.1),

R(∞) = 1 − e−
λ+σ
σ

R(∞)

A.2

Similarly by using initial conditions for g fraction of initial inoculation of the nodes

in our model.
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I(0) ≈ 1 − g, S(0) ≈ 0, Racc(0) = 0, Rrej(0) = g we will get,

R(∞) = 1 − (1 − g)e
λ+σ
σ

ge−
λ+σ
σ

R(∞).

A.3

From Equations (3.1.3) -(3.1.6),

dI(t)

dRrej(t)
=

−(λ + ρ + η)

ρ

After integrating with t = 0 to ∞,

I(∞) − I(0) =
−(λ + ρ + η)

ρ
[Rrej(∞) − Rrej(0)].

Putting I(∞) = 1 − R(∞),

Rrej(∞) =
ρ

λ + ρ + η
R(∞).

As R(∞) = Rrej(∞) + Racc(∞), therefore

Racc(∞) =
(λ + η)

λ + ρ + η
R(∞).

A.4

Let λ+σ
σ

= β,

R(∞) = 1 − (1 − g)eβ(g−R(∞))

If (g − R(∞)) ≥ 0, R(∞) goes to 0 and for (g − R(∞)) < 0, then R(∞) goes to 1.

Therefore, R(∞) lies between 0 and 1. For nonzero solution for R(∞), (g−R(∞)) = 0,

thus R(∞) will be g.
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A.5

Form the given rumor equations,

dI(k, t)

dt
= −k(λ + ρ + η)I(k, t)

�

l

P (l|k)S(l, t), (A.5.6)

dRrej(k, t)

dt
= ρkI(k, t)

�

l

P (l|k)S(l, t). (A.5.7)

From Eq. (A.5.6),

I(k,∞) = exp

�

−k(λ + ρ + η)

�k�
Θ

�

. (A.5.8)

From Eqs. (A.5.6) and (A.5.7),

dRrej(k, t)

dt
=

−ρ

(λ + ρ + η)

dI(k, t)

dt
. (A.5.9)

After integrating both sides,

Rrej(k, t) =
−ρ

(λ + ρ + η)
I(k, t) + C; C is an integrating constant. (A.5.10)

C =
ρ

(λ + ρ + η)
I(k, 0); I(k, 0) is the initial fraction of ignorants of degree k, is almost 1.

Final size of rumor R(∞) is,

R(∞) =
�

l

P (l)R(l,∞), (A.5.11)

R(∞) = Racc(∞) + Rrej(∞). (A.5.12)
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For t → ∞, Eq. (A.5.10) will be

Rrej(k,∞) =
ρ

(λ + ρ + η)

�

1 − exp

�

−k(λ + ρ + η)

�k�
Θ

�

�

. (A.5.13)

After multiplying P (k) both sides of Eq. (A.5.14), and summing over all values of k,

Rrej(∞) =
ρ

(λ + ρ + η)

�

1 −
�

k

P (k)exp

�

−k(λ + ρ + η)

�k�
Θ

�

�

. (A.5.14)

Rrej(k,∞) =
ρ

λ + η + δ
Racc(k,∞). (A.5.15)

From Eq. (A.5.12),

Rrej(∞) = R(∞) − Racc(∞).

Since I(∞) + Rrej(∞) + Racc(∞) = 1 or I(∞) + R(∞) = 1, therefore R(∞) can be

calcultaed using Eq. (A.5.11) as,

R(∞) =
�

l

P (l)

�

1 − exp

�

−(λ + ρ + η)lΘ

�k�

�

�

. (A.5.16)

(A.5.17)

Now, using Eqs. (A.5.16)-(A.5.14),

Racc(∞) = =
λ + η

λ + η + ρ

�

1 −
�

l

P (l)exp

�

−(λ + η + ρ)lΘ

�k�

�

�

. (A.5.18)
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Chapter 5

Rumor threshold (λc) for 2 < γ < 3

B.1

kmax = kminN
1

γ−1 (B.1.1)

λc =
�k�

�k2�

=

� kmax

kmin
kP (k)dk

� kmax

kmin
k2P (k)dk

=

� kmax

kmin
k1−γdk

� kmax

kmin
k2−γdk

(B.1.2)

(P (k) ∝ k−γ for SF network)

=
(3 − γ)

2 − γ

k2−γ
max − k2−γ

min

k3−γ
max − k3−γ

min

(B.1.3)
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In eq. (B.1.3), numerator and denominator divided by k3−γ
max,

λc =
(3 − γ)

2 − γ

1/kmax − (k2−γ
min/kmax)3−γ

1 − (kmin/kmax)γ−3
(B.1.4)

For leading order in kmax/kmin,

λc =
(3 − γ)

(γ − 2)kmin
(kmin/kmax)γ−3 (B.1.5)

B.2

Rumor threshold for γ = 3 can be calculated from Eq. (B.1.2),

λc =

� kmax

kmin
k1−γdk

� kmax

kmin
k2−γdk

Put γ = 3, (B.2.6)

=

� kmax

kmin
k−2dk

� kmax

kmin
k−1dk

(B.2.7)

=

�

1

kmin
−

1

kmax

�

ln(kmax/kmin) (B.2.8)

From Eq. (B.1.1),

λc =

�

1

kmin

−
1

kmax

�

ln(N1/2)

For the leading order,

� 2[kmin ln(N)]−1 (B.2.9)
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