next up previous
Next: SET II : The Up: No Title Previous: No Title

SET I: PRELIMINARY

1.
Using the result
$\displaystyle \int_{- \infty}^{\infty} e^{- ax^2} \,dx$ = $\displaystyle \left(\frac{\pi}{a}\right)^{1/2}$ (1)

(a)
Normalize the gaussian function $\exp\{-x^2 / 2 \sigma^2\}$ where $\sigma$ is the variance.
(b)
Evaluate $\int_{- \infty}^{\infty} x^2 e^{-ax^2} \,dx$ .

2.
Matter wave-packet : The wave-number distribution of a matter wave-packet is

\begin{displaymath}g(k) = A^{\prime} e^{- (k - k_0)^2 / 2 (\Delta k)^2} \end{displaymath}

where $A^{\prime}$ is a constant.
(a)
Obtain the matter wave pulse shape f(x) where
f(x) = $\displaystyle \frac{1}{\sqrt{2 \pi}} \int_{- \infty}^{\infty} g(k) e^{i k x} \,dx$  

(b)
Show that the width of the pulse (r.m.s. value) is proportional to $1/\Delta k$
(c)
Obtain the momentum-position uncertainty relation.
3.
OPTIONAL Derive the re;lation between the group velocity vg and the phase velocity vp

\begin{displaymath}v_g = v_p \mid_{k_0} + k \frac{d v_p}{d k} \mid_{k_0} \end{displaymath}

where k0 is the central wave-number of the many waves present in the wave-packet.

©Vijay A. Singh



Vivek Ranjan
2000-08-07