next up previous
Next: About this document ... Up: No Title Previous: SET I: PRELIMINARY

SET II : The Dirac Delta Function

1.
  Consider the function f(x),
 
f(x) = $\displaystyle \left\{\begin{array}{cc}
0 & \mbox{\hspace{1cm} $\mid x \mid > a/2$ } \\
1/a & \mbox{\hspace{1cm} $\mid x \mid \leq a/2$ }
\end{array} \right.$ (1)

(a)
Plot f(x) for a = 1 and a = 1/2.
(b)
Evaluate $\int_{- \infty}^{\infty} f(x) \, dx$.
2.
The Dirac delta-function $\delta (x)$ is defined as
 
$\displaystyle \delta (x)$ = $\displaystyle \lim_{a \rightarrow 0} f (x)$ (2)

where f(x) is defined in problem [*] above. Obviously $\delta (x = 0)$ is undefined. Evaluate
(a)
$\delta (x \neq 0)$.
(b)
$\int_{- b}^{b} \delta (x) \,dx$, where b is a real positive constant.
(c)
$\int_{- b}^{b} \delta (- x) \, dx$, where b is a real positive constant.
(d)
$\int_{c - b}^{c + b} \delta (x - c) \, dx$, where b and c are real positive constants.
3.
Let g (x) be a smooth function, and `b' be a real constant. Show that
(a)

$\displaystyle \int_{- \infty}^{\infty} \delta (x - b) g(x) \,dx$ = g(b) (3)

(b)

$\displaystyle \int_{- \infty}^{\infty} \delta (bx) g(x) \,dx$ = $\displaystyle \frac{1}{\mid b \mid} g(0)$ (4)

4.
OPTIONAL : If g(x) is a smooth function with the zero given by g(x0) = 0, show that
 
$\displaystyle \delta (g(x))$ = $\displaystyle \frac{\delta (x - x_0)}{\left\vert \frac{d}{dx} g(x_0)
\right\vert }$ (5)

Using Eqn ([*]) show that
$\displaystyle \delta (x^2 - a^2)$ = $\displaystyle \frac{1}{2 \vert a\vert} [\delta (x - a) + \delta (x - a)]$ (6)

©Vijay A. Singh


next up previous
Next: About this document ... Up: No Title Previous: SET I: PRELIMINARY
Vivek Ranjan
2000-08-07