Shalabh
shalab@iitk.ac.in
shalabh1@yahoo.com
Department of Mathematics & Statistics
Indian Institute of Technology Kanpur, Kanpur - 208016 (India)

HOME PAGE


Exploratory Statistical Data Analysis With R Software

Swayam Prabha Course

 

The course provides an introduction to the tools used in descriptive statistics and their use using R software.

Suggested books:

Introduction to Statistics and Data Analysis  - With Exercises, Solutions and Applications in R  By Christian Heumann, Michael Schomaker and Shalabh, Springer, 2016

 

Language of the course: Hindi

 

Duration of the course: 40 Hours

 

Swayam Prabha DTH Channel 16 Youtube link: The telecasted lectures are available at  YouTube (Click here)

 

Slides and Videos used in the lectures: 

 

 

Video Lecture links

Lecture download links

Lecture Title

Lecture No.

Click here Lecture 1

Click here Lecture 1

What is R and How to Learn the Course

1

Click here Lecture 2

Click here Lecture 2

Analysis of Variance and Design of Experiments

2

Click here Lecture 3

Click here Lecture 3

Working with R Software

3

Click here Lecture 4

Click here Lecture 4

Basic Calculations and R as a Calculator

4

Click here Lecture 5

Click here Lecture 5

Built-in Commands and Missing Values

5

Click here Lecture 6

Click here Lecture 6

Operations with Matrices in R

6

Click here Lecture 7

Click here Lecture 7

Introduction to Exploratory Statistical Data Analysis

7

Click here Lecture 8

Click here Lecture 8

Basic Concepts of Exploratory Statistical Data

8

Click here Lecture 9

Click here Lecture 9

Basic Terminologies of Exploratory Statistical Data Analysis

9

Click here Lecture 10

Click here Lecture 10

Data, Frequency and Frequency Distribution

10

Click here Lecture 11

Click here Lecture 11

Frequency Distribution and Cumulative Distribution Functions

11

Click here Lecture 12

Click here Lecture 12

Frequency Distribution with R Software

12

Click here Lecture 13

Click here Lecture 13

Graphics and Plots-Bar Diagrams

13

Click here Lecture 14

Click here Lecture 14

Subdivided Bar Plots and Pie Diagrams

14

Click here Lecture 15

Click here Lecture 15

3D Pie Diagram and Histogram

15

Click here Lecture 16

Click here Lecture 16

Kernel Density and Stem - Leaf Plots

16

Click here Lecture 17

Click here Lecture 17

Central Tendency of Data: Arithmetic Mean

17

Click here Lecture 18

Click here Lecture 18

Central Tendency of Data: Weighted Arithmetic Mean and Partition Values

18

Click here Lecture 19

Click here Lecture 19

Partition Values - Median and Quantiles

19

Click here Lecture 20

Click here Lecture 20

Partition Values - Quantiles

20

Click here Lecture 21

Click here Lecture 21

Mode

21

Click here Lecture 22

Click here Lecture 22

Geometric Mean and Harmonic Mean

22

Click here Lecture 23

Click here Lecture 23

Variation in Data and Measurement of Variability

23

Click here Lecture 24

Click here Lecture 24

Variation Measures based on Range and Quartiles 

24

Click here Lecture 25

Click here Lecture 25

Variation Measures based on Absolute Deviations

25

Click here Lecture 26

Click here Lecture 26

Absolute Deviation in R and Measures Based on Squared Deviations

26

Click here Lecture 27

Click here Lecture 27

Mean Squared Error, Variance Standard Deviation and Standard Error

27

Click here Lecture 28

Click here Lecture 28

Variance, Standard Error and Their Computations in R

28

Click here Lecture 29

Click here Lecture 29

Coefficient of Variation and Boxplots

29

Click here Lecture 30

Click here Lecture 30

Raw and Central Moments

30

Click here Lecture 31

Click here Lecture 31

Sheppard's Correction in Moments,  Absolute Moments and Computation of Moments in R

31

Click here Lecture 32

Click here Lecture 32

Skewness and Kurtosis

32

Click here Lecture 33

Click here Lecture 33

Association of Variables : Univariate and Bivariate Scatter Plots

33

Click here Lecture 34

Click here Lecture 34

Association of Variables : Smooth Scatter Plots

34

Click here Lecture 35

Click here Lecture 35

Correlation Coefficient

35

Click here Lecture 36

Click here Lecture 36

Correlation Coefficient using R and Rank Correlation Coefficient

36

Click here Lecture 37

Click here Lecture 37

Association of Discrete Variables

37

Click here Lecture 38

Click here Lecture 38

Association of Discrete Variables with R Software

38

Click here Lecture 39

Click here Lecture 39

Fitting of Linear Models : Least Squares Method - One Variable

39

Click here Lecture 40

Click here Lecture 40

Fitting of Linear Models with More than One Variables and R Software

40