Shalabh
shalab@iitk.ac.in
shalabh1@yahoo.com
Department of Mathematics & Statistics
Indian Institute of Technology Kanpur, Kanpur - 208016 (India)

HOME PAGE


Introduction to R Software

Swayam Prabha Course

 

 

Suggested books:

1.  Introduction to Statistics and Data Analysis  - With Exercises, Solutions and Applications in R  By Christian Heumann, Michael Schomaker and Shalabh, Springer, 2016

 

2.  The R Software-Fundamentals of Programming and Statistical Analysis -Pierre Lafaye de Micheaux, Remy Drouilhet, Benoit Liquet, Springer 2013

 

3.  A Beginner's Guide to R (Use R) By Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, Springer 2009

 

Language of the course: Hindi

 

Duration of the course: 40 Hours

 

Swayam Prabha DTH Channel 16 Youtube link: The telecasted lectures are available at Youtube (Click here)

 

Slides and Videos used in the lectures

Video Lecture links

Lecture slides download links

Lecture Title

Lecture No.

Click here Lecture 1

Click here Lecture 1

Why R

1

Click here Lecture 2

Click here Lecture 2

Installation Procedure and How to Start

2

Click here Lecture 3

Click here Lecture 3

Help, Demonstration, and Examples

3

Click here Lecture 4

Click here Lecture 4

Command line, Libraries, Packages and  Data Editor

4

Click here Lecture 5

Click here Lecture 5

Introduction to R Studio

5

Click here Lecture 6

Click here Lecture 6

Basics of Calculations and R as a Calculator

6

Click here Lecture 7

Click here Lecture 7

R as a Calculator with Data Vectors

7

Click here Lecture 8

Click here Lecture 8

R as Calculator, Built-in Functions and Assignments

8

Click here Lecture 9

Click here Lecture 9

Functions and Introduction to Matrix

9

Click here Lecture 10

Click here Lecture 10

Matrices

10

Click here Lecture 11

Click here Lecture 11

Matrix Operations

11

Click here Lecture 12

Click here Lecture 12

Matrix Operations and Missing Data

12

Click here Lecture 13

Click here Lecture 13

Missing Data and Logical Operators

13

Click here Lecture 14

Click here Lecture 14

Logical Operators: More Operations

14

Click here Lecture 15

Click here Lecture 15

Truth Table and Conditional Executions

15

Click here Lecture 16

Click here Lecture 16

Loops

16

Click here Lecture 17

Click here Lecture 17

Repeat Loop and Sequences of Numbers

17

Click here Lecture 18

Click here Lecture 18

Sequences of Dates and Alphabets

18

Click here Lecture 19

Click here Lecture 19

Repeats, Sorting and Mode

19

Click here Lecture 20

Click here Lecture 20

Ordering and Lists

20

Click here Lecture 21

Click here Lecture 21

Vector Indexing

21

Click here Lecture 22

Click here Lecture 22

Data Frames

22

Click here Lecture 23

Click here Lecture 23

Data Frames: Creation and Operations

23

Click here Lecture 24

Click here Lecture 24

More Operations on Data Frames

24

Click here Lecture 25

Click here Lecture 25

Display using Print and Format Functions with Concatenate

25

Click here Lecture 26

Click here Lecture 26

Display Strings Using Paste Function and Splitting

26

Click here Lecture 27

Click here Lecture 27

Splitting and Substitution in Strings

27

Click here Lecture 28

Click here Lecture 28

Search in Strings and Other Data Operations

28

Click here Lecture 29

Click here Lecture 29

Factors

29

Click here Lecture 30

Click here Lecture 30

Factors - Examples and Operations

30

Click here Lecture 31

Click here Lecture 31

Importing, Reading and Saving Data Files

31

Click here Lecture 32

Click here Lecture 32

Importing  and Reading Data Files

32

Click here Lecture 33

Click here Lecture 33

Introduction and Frequencies

33

Click here Lecture 34

Click here Lecture 34

Partition Values, Graphics and Plots

34

Click here Lecture 35

Click here Lecture 35

Graphics, Plots and Central Tendency of Data

35

Click here Lecture 36

Click here Lecture 36

Central Tendency and Variation in Data

36

Click here Lecture 37

Click here Lecture 37

Boxplots, Skewness and Kurtosis

37

Click here Lecture 38

Click here Lecture 38

Bivariate and Three Dimensional Plots

38

Click here Lecture 39

Click here Lecture 39

Programming in R

39

Click here Lecture 40

Click here Lecture 40

More Examples of Programming

40